DSpace logo

Use este identificador para citar ou linkar para este item: http://repositorioinstitucional.uea.edu.br//handle/riuea/2265
Registro completo de metadados
Campo DCValorIdioma
dc.contributor.authorPrado, Kélia Larissa Lobo-
dc.date.available2020-03-13-
dc.date.available2020-03-12T15:11:00Z-
dc.date.issued2009-06-12-
dc.identifier.urihttp://repositorioinstitucional.uea.edu.br//handle/riuea/2265-
dc.description.abstractTo better understand the biogeochemistry cycles of an environment, it is necessary to know the soil, where happen intense reactions contemplating the general dynamics of the environment. The soil is an highly environment complex dominated by its solid phase. In it is found several live organisms, besides elements that compose the inorganic matter and the flora that are intimately linked to it. In the up land areas of Amazonia, these soils are represented in its majority by Oxisols and Ultisols, considered in their majority, of low fertility and high acidity. In areas explored by the man, the degradation/recuperation process may indicate the modification degree of the soil. To evaluate the level of degradation/recuperation of gap areas in Urucu and of fruit cultivations in the Community of Brasileirinho, Manaus, a research was accomplished evaluating the enzymatic potential of the microbiota of those soils. In the soils of native forests of Urucu, as well as in impacted soils for the petroleum exploration of Urucu and in soils cultivated with species of economic importance of Brasileirinho occur microorganisms producing enzymes of biotechnological interest. There was found production of the enzymes amilase, protease, celulase, urease and lipase for microorganisms isolated in those soils. The microorganisms producing alkaline phosphatase was not detected by the methodology (dilution) adopted in the analyzed soils. There was the presence of microorganisms producing urease in all the analyzed soils. The soils located in the extension of Brasileirinho didn't present population of celulitic microorganisms at the dilution of 103 of the adopted methodology. The sample of natural forest denominated Urucu FN 05 presented the largest diversity of enzymes, confirming that it is not impacted, because there were microorganisms occurrence producing the enzymes amilase, protease, celulase, urease and lipase. The number and the type of vegetable species introduced for the recovery of the gap areas of Urucu didn't influence in the microorganisms population producing the enzymes of interest of the present study.pt_BR
dc.languageporpt_BR
dc.publisherUniversidade do Estado do Amazonaspt_BR
dc.rightsAcesso Abertopt_BR
dc.rightsAtribuição-NãoComercial-SemDerivados 3.0 Brasil*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/br/*
dc.subjectEnzimas microbianaspt_BR
dc.subjectmetabolismo microbianopt_BR
dc.subjectáreas degradadaspt_BR
dc.subjectimpacto ambientalpt_BR
dc.titleMicrorganismos produtores de amilase, celulase, fosfatase, lipase, protease e urease nos solos amazônicos do ramal do brasileirinho (Manaus) e de urucu (Coari).pt_BR
dc.typeDissertaçãopt_BR
dc.date.accessioned2020-03-12T15:11:00Z-
dc.contributor.advisor-co1Oliveira, Arlem Nascimento de-
dc.contributor.advisor-co1Latteshttp://lattes.cnpq.br/8240358439163233pt_BR
dc.contributor.advisor1Oliveira, Luiz Antonio de-
dc.contributor.referee1Oliveira, Luiz Antonio de-
dc.contributor.referee2Oliveira, Arlem Nascimento de-
dc.contributor.referee2Latteshttp://lattes.cnpq.br/8240358439163233pt_BR
dc.creator.Latteshttp://lattes.cnpq.br/8495191732258224pt_BR
dc.description.resumoPara entender melhor os ciclos biogeoquímicos de um ambiente, se faz necessário conhecer o solo, local onde ocorrem intensas reações refletindo na dinâmica geral do ambiente. O solo é um ambiente altamente complexo dominado pela sua fase sólida. Nele são encontrados diversos seres vivos, além de elementos que compõem a matéria inorgânica e a flora que está intimamente ligada a ele. Nas áreas de terra firme da Amazônia, estes solos são representados em sua maioria por Latossolos e Argissolos, considerados em sua maioria de baixa fertilidade e acidez elevada. Em áreas exploradas pelo homem, o processo de degradação/recuperação pode indicar o grau de modificação em que se encontra o solo. Com vistas a avaliar o nível de degradação/recuperação de áreas de jazidas e clareiras de Urucu e de cultivos de frutíferas na Comunidade do Brasileirinho, Manaus, foi realizada uma pesquisa avaliando-se o potencial enzimático da microbiota desses solos. Nos solos de florestas nativas de Urucu, como também em solos impactados pela exploração de petróleo de Urucu e em solos cultivados com espécies de importância econômica do Brasileirinho ocorrem microrganismos produtores de enzimas de interesse biotecnológico. Houve a produção das enzimas amilase, protease, celulase, urease e lipase por microrganismos isolados nesses solos. Os microrganismos produtores de fosfatase alcalina não foram detectados pela metodologia (diluição) adotada nos solos analisados. Houve a presença de microrganismos produtores de urease em todos os solos analisados. Os solos localizados no ramal do Brasileirinho não apresentaram população de microrganismos celulíticos na diluição de 103 da metodologia adotada. A amostra de floresta natural de Urucu denominada FN 05 apresentou a maior diversidade de enzimas, confirmando que não se encontra impactada, pois houve ocorrência de microrganismos produtores das enzimas amilase, protease, celulase, urease e lipase. O número e o tipo de espécies vegetais introduzidas para a recuperação das jazidas de Urucu não influenciaram na população de microrganismos produtores das enzimas de interesse do presente estudo.pt_BR
dc.publisher.countryBrasilpt_BR
dc.publisher.programPrograma de pós-graduação em biotecnologia e recursos naturais da Amazôniapt_BR
dc.relation.referencesAGUILAR, G.; HUITRON, C. Enzima Microbiol. Revista Technol. v. 9, n.41, 1986. ALFAIA, S. S; OLIVEIRA, L.A. Pedologia e fertilidade dos solos da Amazônia. In: Duas décadas de contribuições do INPA à Pesquisa Agronômica no trópico úmido. Act. Amaz., Manaus: INPA, p.179-191, 1997. ALTAMIRANO, M.M.; BLACKBURN, J.M.; AGUAYO, C.; FERSHT, A.R. Directed evolution of new catalytic activity using the alpha/beta-barrel scaffold. Nature, v. 403, n. 6.770, p. 617-622, 2000. ALVIM, P.T. Perspectivas na produção agrícola na região Amazônica. Interciência, v. 3 p. 243-245, 1978. AMANN, C. I.; FRANZIER, M. L.; WANG, W. DNA pooling in mutation detection with reference to sequence analys. Am J Hum Genet., v. 66, p. 1689-92, 1995. ANDRESON, J.M; INGRAN, J.S.I. 1993. Tropical Soil Bioloy and Fertility: a handbook of methods. Wallingford, UK, CAB International. p.221, 2003. ANDREWS, R. K.; BLAKELEY, R. L; ZERNER, B. Urea and Urease. In: Advances in Inorganic Biochemistry, Eichhorn, G.L.; Marzilli, L.G. (eds.) v.6, Elsevier, Amsterdam, p. 245–283, 1984 ANTOUN, M. D; RAMOS, Z.; VAZQUES, J; OQUENDO, I.; PROCTOR, G. R.; GERENA, L.; FRANZBLAU, S. G. Evaluation of the flora of Puerto Rico for in vitro antiplasmodial and antimycobacterial activities. Phytother Res. v.15, p. 638-624, 2001. AOKI, K. et al. Anaerobic synthesis of extracellular proteases by the soil bacterium Bacillus sp. AM-23: purification and characterization of the enzymes. Soil Biology and Biochemistry, v.27, p.1377-1382, 1995. ASSAD, A. L. D. Biodiversidade e instituciolização e programas governamentais no Brasil. Campinas, SP. Tese de doutorado, p.200, 2000. ATLAS, R. M. Diversity of mivrobial communities. In: MARSHALL, K. C (Ed.). Advances in Microbial Ecology, New York, v.7, p. 1-47, 1984. AUTERINEN, ANNA-LIISA. White Biotechnology and Modern Textile Processing Textile World, p. 40-44, 2006. BARNS, S.M.; FUNDYGA, R.E.; JEFFRIES, M. W., PACE, N. R. Remarkable archaeal diversity detect in a Yellowstone National Park hot spring environment. Proc Natl Acad Sci USA, v.91, p.1609- 13, 1994. BARROTI, G.; NAHAS, E. População microbiana total e solubilizadora de fosfato em solo submetido a diferentes sistemas de cultivo. Pesquisa Agropecuária Brasileira, Brasília, v.35, n.10, p. 2043-2050, 2000. 57 BAYER, E.A. ;LAMED, R. The cellulose paradox: pollutant par excellence and/or a reclaimable natural resource?. Biodegradation v.3, p.171-188, 1992. BENLLOCH, S.; MARTINEZ-MURCIA, A.J.; RODRIGUEZ-VALERA, F. Sequencing of bacterial and archaeal 16S rRNA genes directly amplified from a hypersaline environment. Systematic and Applied Microbiology. v.18, p. 574-581, 1995. BENINI, S.; RYPNIEWSKI, W.R.; WILSON, K.S.; MILLETI, S.; CIURLI, S.; MORGANI, S. A new proposal for urease mechanism based on the crystal structures of native and inhibited enzyme from Bassillus pasteurii: why urea hydrolysis costs two nickels. Struct. Fold. Design. v 7, p.205-216, 1999. BERTON, R.S.; PRATT, P.F.; FRANKENBERGER, W.T. Phosphorus availability in soils amended with organic materials, estimated by three chemical methods and two enzyme activities. Revista Brasileira de Ciência do Solo, Campinas, v.21, n.4, p.617-624, 1997. BIELY, P. Microbial Xylanolitic Systems. Trends in Biotechnology, v.3, p. 286–295, 1985. BINET, P.H.; PORTAL, J.M.; LEYVAL, C. Dissipation of 3-6- ring polycyclic aromatic hydrocarbons in the rhizosphere of ryegrass. Soil Biol. Biochem., v.32, 2011-2017, 2000b. BIRBOIM, H. C; DOLY, J.A. A rapid alkaline extraction procedure for screening recombinant plasmid DNA. Nucleic Acids Res, v.7, p.1513-1523, 1979. BOLLAND, M.D.A.; GILKES, R.J. Long-term residual value of North Carolina and Queensland rock phosphates compared with triple superphosphate. Fertilizer Research, Dordrecht, v.41, n.2, p.151-158,1995. BORNEMANN, J. Culture-independent identification of microorganisms that respond to specified stimuli. Appl Environ Microbiol 65, p. 3398-400, 1999. BORNEMANN, J.; TRIPLETT, E. W. Molecular microbial diversity in soil from eastern Amazonia: evidence for unusual microorganisms and microbial population shifts associated with deforestation. Appl Environ Microbiol 65, p. 3398-400, 1999. BRITSCHGI, T.B., GIOVANNIS. J. Phylogenetic analysis of a natural marine bacterioplankton by rRNA gene cloning and sequencing. Appl Environ Microbiol 57, p. 1707-13, 1991. BRUGGEN, A.H.C.; SEMENOV, A.M. In search of biological indicators for soil health and disease suppression. Applied Soil Ecology, Amsterdam, v.15, n.1, p. 13-24, 2000. BRZOZOWSKI, A.M.; LAWSON, D.M.; TURKENBURG, J.P.; BISGAARDFRANTZEN, H.; SVENDSEN, A.; BORCHERT, T.V.; DAUTER, Z.; ILSON, K.S.; DAVIES, G. J. Biochemistry, v.39, p. 9099-9107, 2000 58 BUZZINI, P.; MARTINI, A. Extracellular enzymatic activity profiles in yeast and yeastlike strains isolated from topical environments. J. Appl. Microbiol., 93, p.1020-1025, 2002. CALL, H.P.; MÜCKE, I. Minireview: history, overview and applications of mediated ligninolytic systems, especially laccase-mediator-systems (Lignozym-Process). J. Biotechnol., Amsterdam, v. 53, p. 163-202. 1997. CALBRIX, R.; LAVAL, K.; BARRAY, S. Analysis of the potential functional diversity of the bacterial community in soil: A reproducible procedure using sole-carbon-source utilization profiles. Eur. J. Soil Biol., v. 41, p.11-20, 2005. CAMPBELL, R.; GREAVES, M.P. Anatomy and community structure of the rhizusphere. In: LYNCH, J.M. (Eds.). The rhizusphere. John Wiley and Sons, New York, v. 570, p. 11-34, 1990. CARDOSO, E. J. B. N.; FREITAS, S. S. A rizosfera. In: CARDOSO, E.J.B.N.; TSAI, S.M.; NEVES, M.C.P. (Eds.). Microbiologia do solo. Sociedade Brasileira de Ciência do Solo, p.41-57, 1992. CECCATO-ANTONINI, S.R. Guia prático de microbiologia. Araras: UFSCar, p. 58, 1996 (Apostila). CHAGAS-JUNIOR, A.F. Efeito da inoculação de bactérias solubilizadoras de fosfato na fisiologia de quatro espécies de plantas de importância econômica da Amazônia. Dissertação. Manaus: INPA/ UFAM, p. 96, 2000. CHAGAS, JUNIOR, A. F.; OLIVEIRA, L.A. Tolerância de bactérias solubilizadoras de fosfatos à acidez e ao alumínio. Ciências Agrárias e Ambientais: Revista da Universidade Federal do Amazonas, v.1, n.1/2, p. 39-51, 2001 CHUMP, B.C.; ARMBRUST, E.V.; BARROS, J.A. Phylogenetic analysis of particleattached and free-living bacterial communities in the Columbia river, its estuary, and the adjacent coastal ocean. Appl Environ Microbiol. Jul, 65(7): v.3, p. 193-204, 1999. CHAUVEL, A.; LUCAS, Y.; BOULET, R. 1987. On the genesis of soil mantel of the region of Manaus, Central Amazonia, Brasil. Experientia, v. 43, p. 234-241, 1987. CHRISTENSEN, A. B. Uea decomposition as means of differentiating Proeteus and Paracolon cultures from each other and from Salmonella and Shigella types. Journal of Bacteriology, v.52, p. 461-466., 1946. CHRISTENSEN B.T.; JOHNSTON A.E. Soil organic matter and soil quality: Lessons learned from long-term experiments at Askov and Rothamsted. In: GREGORICH, E.G.; CARTER, M.R. (Eds.) Soil quality for crop production and ecosystem health. Amsterdam, Elsevier, p.399-430, 1997. 59 CHRISTENSEN, A. B.; RIEDEL, K.; EBERL, L.; FLODGAARD, L. R.;MOLIN, S.; GRAM, L.; GIVSKOV, M. Quorum-sensing-direct protein expression in Serratia procamaculans B5a. Microbiology, v 149, p. 471- 483, 2003. CLEMENT, C.R. 1942 and the loss of Amazonian crop genetic resources. I. The relation between domestication and human population decline. Economic Botany, v.53, n.2, p.188-202, 1999. COCHRANE, T.T. Land resources, soils and their management in the Amazon region: a state of knowledge report. In: HECHT, S.B. (Eds.). Amazônia: Agriculture and land use research. Cali, CIAT, p. 137-209, 1982. COCHRANE, T. T.; SANCHEZ, AZEVEDO, L.G.; PORRAS, J. A.; GARVER, C. L. A Terra na América Tropical, v.3, p.16-18, 1985. CONRAD, J.P. Catalytic activity causing the hydrolysis of urea in soil as influenced by several agronomic factors. Soil Sci. Soc. Am. Proc., v.5, p.238-241, 1940a. CONRAD, J.P. The nature of the catalyst causing the hydrolysis of urea in soils. Soil Sci., v.50, p.119-134, 1940b. CONRAD, J.P. The occurrence and origin of urease like activities in soil. Soil Sci., v. 54, p.357-380, 1942a. CONRAD, J.P. Enzymatic vs. microbial concepts of urea hydrolysis in soils. J. Agron., v.34, p.1102-1113, 1942b. CONRAD, J.P. Some effects of developing alkalinities and other factors upon urease like in soils. Soil Sci. Am. Proc., v.5,p.171-174, 1943. DALAL, R.C. Urease activity in some Trindad soils. Soil Biol. Biochem., v.7, p. 5-8, 1975. DAVIDSON. E.A; ARTAXO, NETO P. Globally siginficant changes in biological processes of the Amazon Basin: results of the Large-Scale Biophere- Atmosphere Experiment. Global Change Biology, v.10, p 529-529, 2004. DENG, S.P.; TABATABAI, M.A. Cellulase activity of soils. Soil Biology and Biochemistry, v.26, p.1347-1354, 1994. DINIZ, F.M.; MARTIN, A. M. Hidrolisado protéico de pescado In: OGAWA, M.; MAIA, E.L. Manual de Pesca. São Paulo: Varela, 1999. DOUGLAS, L.A.; BREMNER, J.M. A rapid method of evaluating different compounds as inhibitors of urease activity in soils. Soil Biol. Biochem., v. 3, p.309-315, 1971. DUNBAR, J.; TAKALA, S.; BARNS, S. M; DAVIS, J. A.; KUSKE, C.R. Levels of bacterial community diversity in four arid soils compared by cultivation and 16S rRNA gene cloning. Appl Environ Microbiol 65, p.1662-1669, 1999. 60 ELSAS, J.D. Van; DUARTE, G. F.; ROSADO, A. S.; SMALLA, K. Microbiological and molecular biological methods for monitoring microbial inoculants and their effects in the soil environment. Journal of Microbiological Methods, Washington, DC, v.32, p.133-154, 1998. EMBRAPA. Manual de métodos de análise de solo. Centro Nacional de Pesquisa de Solos, ed.2. Rev. Atual - Rio de Janeiro: Embrapa Comunicação para Transferência de Tecnologia. Documentos 1, p.212, 1997. ESTERMAN, E. F.; McLAREN, A.D. Contribution of rhizoplane organism to the total capacity of plants to utilize organic nutrients. Pl. Soil, Hague, v.15, p.243-260,1961. FALCÃO, M.A. Aspectos Fenológicos, Ecológicos e de Produtividade de Algumas Fruteiras Cultivadas na Amazônia, v.2, p. 97, 1993. FERREIRA, M.E.; GRATTAPAGLIA, D. Introdução ao Uso de Marcadores Moleculares em Análise Genética. EMBRAPA - Recursos Genéticos e Biotecnologia, Brasília, DF. p.200, 1998. FERREIRA, S.J.F., LUIZAO, F.J., MIRANDA, S.A.F. et al. Nutrients in soil solution in an upland forest submitted to selective logging in central Amazonia. Acta Amaz. Manaus, v. 36, n. 1, p. 59-67, 2006. FRANKEN, W; LEOPOLDO, P.R.; BERGAMIN FILHO, H. Fluxo de nutrientes através de águas naturais em floresta de terra firme na Amazônia Central. In: Workshop on Biogeochemistry of Tropical Rain Florest: Problems for Research. Proceedings. Piracicaba, São Paulo, p. 29-37, 1985. FOHSE, D.; CLAASSEN, N.; JUNGK, A. Phosphorus efficiency of plants. I. External and internal P requirement and P uptake efficiency of different plant species. Plant and Soil, The Hague, v.110, p.101-109, 1988. FULLBROOK, P.D.; KINETICS. 1983. In: GODFREY, T.; REICHELT, J. (Eds.). Industrial enzymology: the application of enzymes in industry. Great Britain: The Nature, 1983. GARBEVA, P.; VANVEEN, J.A.; VAN ELSAS, J.D. Microbial diversity in soil: selection of microbial populations by plant an soil type ad implications for disease suppressiveness. Ann. Rev. Phytopathol.v.42, p.243-270, 2004. GIORDANO, R.L.C.: Estudo da Coimobilização de Glicoamilase e Levedura para Fermentação Alcoólica Contínua de Matéria-Prima Amilácea. Tese Doutorado. USP, S. Paulo-SP, 238p, 1992. GODFREY, T. ;REICHELT, J. Industrial enzymology, The Nature Press, New York, p. 582, 1983. GODFREY, T.; WEST, S.I. Introduction to industrial enzymology. In: Godfrey, T. 61 (Ed.). Industrial Enzymology. 2.ed., Macmillan Press, p. 120-138, London, 1996. GOEDERT, W.J. Management of the cerrado soils of Brazil: a review. J. Soil Sci., v.34, p.405-428, 1983. GÓMES, K.A.; GÓMEZ, A.A. Statistical procedures for agricultural research. New York, John & Sons, p.680, 1984 GOODFELLOW, M.; O’DONNEL, A. G. Search and discovery of industrially significant actinomycetes. In Microbial Products: New Approaches, Society for General Microbiology Symposium, n. 44, ed. Baumberg, S., Hunter, I. S. and Rhodes, P. M. p. 343–383. Cambridge: Cambridge University Press, 1989. GOULD, W.D.; COOK, F.D. ; WEBSTER, R.G. Factors affecting urea hydrolysis in several Alberta soils. Plant Soil, v. 38, p. 393-401, 1973. GUPTA, R.; GUPTA, N.; RATHI, P. Bacterial lipases: an overview of production, purification and biochemical properties. Applied Microbiology and Biotechnology, v. 64, p.763-781, 2004. HARA, F. A. S.; OLIVEIRA, L. A. Características fisiológicas e ecológicas de isolados de rizóbios oriundos de solos ácidos e álicos de Presidente Figueiredo, Amazonas. Acta amaz, v. 34, n. 3, p. 343-357, 2004. HASSAN, R.; SCHOLES, R.; ASH, N. (eds.). Ecosystems and Human Well-being, Current state and trends. Island Press, Washington, DC. , v.1, p.917, 1995. HAUSINGER R. P., KARPLUS P. A. In: Handbook of Metalloproteins, eds Wieghardt K., Huber R., Poulos T. L., Messerschmidt A. (John Wiley & Sons, Ltd. West Sussex, UK), p. 867–879, 2001. HARGROVE, W.L.;THOMAS, G.W. Effect of organic matter on exchangeable aluminum and plant growth in acid soils. In: Chemistry in the soil environment, Am. Soc. Agron., Soil Sci. Soc. Am., Madison, WI, p.151-166, 1981. HARGROVE, W.L.; THOMAS, G.W: Extraction of aluminum from aluminum organic matter in relation to titratable acidity. Soil Sci. Soc. Am. J, v.48, p.1458-1460, 1984. HECHT, S.B. Environment, development and politics: capital accumulation and he livestock Sector in eastern Amazonia. Word Development, v. 13, p.663-684, 1985. HORIKOSHI, K. Alkaliphiles: Some Applications of Their Products for Biotechnology. Microbiology and Molecular Biology Reviews, v 43, p.735-750, 1999. HUGENHOLTZ, P.; PITULLE, C.; HERSHBERGER, K. L.; PACE, N. R. Novel division level bacterial diversity in a Yellowstone hot spring. J. Bacteriol 180, p.366- 76, 1998. HUNTER-CEVERA, J.C. The value of microbial diversity. Current Opinion in Microbiology, Amsterdam, v. 1, n. 3, p. 278-285, 1998. 62 JAEGER, K.E; SCHNEIDINGER, B.;RSENAU, F.; WERNER, M.; LANG, D.; DISJKSTRA, B. W.; SCHIMOSSEK, K. ZONTA, A; REETZ, M.T. Bacterial lipases for biotechnological applications. Journal of Molecular Catalysis B. Enzymatic, v. 3, n.3, p.12, 1997. JAEGER, K. E; KOUKER, G. Specific and sensitive plate assay for bacterial lipases. Applied and Environmental Microbioloy , p 211-213, 1987. JI, G; SILVER, S. Bacterial resistence mechanism for heavy metals of environmental concern. Jornal Industry Microbiology. v.14, p.61-75, 1995. JOO, H. S.; CHANG, C. S. Production of protease from a new alkalophilic Bacillus sp. I-312 grow on soybean meal: optimization and some properties. Process Biochemistry, v. 40, p.1263-1270, 2005. JORDAN, C. F.; STARK, N. Retention de nutrients en la estera de raices de un bosque pluvial amazônico. Acta Cient. Venezolana, n. 29, p. 263-267, 1978. JOERGENSEN, R. G. ; SCHEU, S. Response of soil microorganisms to the addition of carbon, nitrogen and phosphorus in a forest Rendzina. Soil Biology and Biochemistry, v. 31, p. 859-866, 1999. KARLEM, D.L.; DITZLER, C.A.; ANDREWS, S.S. Soil quality: Why and how? Geoderma: An International Journal of Soil Science, Amsterdam, v. 114, n. 3/4, p. 145-156, 2003. KANEKAR, P. P., NILEGOANKAR, S. S., SARNAIK, S. S., KELKAR, A. S. Optimization of Protease Activity of Alkaliphilic Bacteria Isolated From an Alkaline Lake in India. Bioresource Technology, v. 85, p. 87-93, 2002. KAUSHIK, N. Effect of capsule maturity on germination and seedling vigour in Jatropha curcas. Seed Science and Technology, Wageningen, v. 31, n. 2, p. 449- 454, 2003. KIRK, O.; BORCHERT, T.V.; FUGLSANG, C.C. Industrial enzyme applications. Current Opinion in Biotechnology. v. 13, p. 345-351, 2002 KLOSE, S.; MOORE, J.M.; TABATABAI, M. A. Arylsulphatase activity of microbial biomass in soils as affected by cropping systems. Biol. Fert. Soils. v. 29, p. 46-54, 1999. KUMAR, C. G.; TAKAGI, H. Research review paper Microbial Alkaline proteases: from a bioindustrial viewpoint. Biotechnology Advances, v. 17, p.561-594, 1999. KUMAR, S.; SHARMA, N. S.; SAHARAM, M. R.; SINGH, R. Extracellular acid protease from Rhizopus oryzae: purification and characterization. Process Biochemistry, 2005. 63 KUNS, Airton; DURÁN, Sandra. Novas tendências no tratamento de efluentes têxteis. Química Nova, v. 25, n. 1 São Paulo, Jan./Fev, 2002. LANCHER, W. Ecofisiologia Vegetal. Ed. Rima. São Paulo, SP, p. 531, 2004. LANDI, L.; VALORI, F.; ASCHER, J.; RENELLA, G.; FALCHINI, L.; NANNIPIERI, P. Root exudate effects on the bacterial communities, CO2 evolution, nitrogen transformations and ATP content of rhizosphere and bulk soils. Soil Biol. Biochem., v.38., p.509-516, 2006. LUIZAO, F. J. Ciclos de nutrientes na Amazônia: respostas às mudanças ambientais e climáticas. In: E. A. DAVIDSON, ARTAXO, P. Global Change Biology, v.10, p. 519-529, 2004. LOPES, A.C.; GOEDERT, W. J. Eficiência agronômica de fertilizantes fosfatados para culturas anuais, perenes, pastagens e reflorestamento. In: SEMINÁRIO SOBRE RECUPERAÇÃO DE FÓSFORO, 1987, São Paulo. [Trabalhos apresentados]. São Paulo: Ibrafos, p. 2449, 1987. LOPES, P. S.; GUILHERME, L.R.G. Fertilizantes e corretivos agrícolas: Sugestões de manejo para uso eficiente. In: DECHEN, A.R.; BOARETO, A. E.; VERDADE, F.C., Reunião Brasileira de Fertilidade do Solo e Nutrição mineral de plantas, 20, Piracicaba, 1992. Anais. Campinas, Fundação Cargill, p.39-70, 1992. LLOYD, A.B.; SHEAFFE, MJ. Urease activity in soils. Plant and Soil, The Hague, v.39, p.71-80, 1973 LYNCH, J.M.; SLATER, J.H.; BENNETT, J.A.; HARPER, S.H.T. Cellulase activities of some aerobic micro-organisms isolated from soil. Journal of General Microbiology, v.127, p. 231-236, 1981. MACRAE, A. The use of 16s rDNA methods in soil microbial ecology. Brazilian Journal of Microbiology, v. 31, p. 77-82, 2000. MADIGAN, M.T.; MARTINKO, J. M.; PARKER, J. Brock Biology of Microorganism, 8. Ed., Pretince Hall, New Jersey, p. 986, 1996. MALUF, E.; WOLFGANG, K. Dados Técnicos para a Indústria Têxtil. São Paulo: Instituto de Pesquisas Tecnológicas do Estado de São Paulo, Associação Brasileira da Indústria Têxtil e de confecção, p. 198, 2003. MARCONDES, D. M. S. S. V.; SILVA, D. M.; VITTI, L. S. S.; SILVA, J. C. Celulase do extrato de rúmen bovino. Energia Nuclear e Agricultura, Piracicaba, v. 5, n. 2, p. 145-160, 1983. MARGESIN, R.; ZIMMERBAUER, A.; SCHINNER, F. Monitoring of bioremediation by soil biological activities. Chemospere, v. 40, p.339-346, 2000. MARRIEL, I. E. Circular Técnica, 72. Caracterização de Microrganismos Dominantes na Rizosfera de Plantas Cultivadas em Solo Ácido. EMBRAPA Milho e 64 Sorgo, p.1-8, 2005. MAY, P.B.; DOUGLAS, L.A. Assay for soil urease activity. Plant Soil, v.45 p.301- 305, 1976. MCCOY, M. Novozymes emerges. Chemical & Engineering News, v. 19, p. 23-25, 2000. MELO, M. G. S; CAMPOS-TAKAKI, G.M. Uso do meio sólido para screening de atividade amilolítica em Arpegillus niger. Arquivos de Biologia e Tecnologia, v.32, p.613-620, 1989. MENDONÇA, E. S; MATOS E. S. Matéria Orgânica do Solo: Método de análise. Viçosa: UFV, 2005. 107p. MERCKX, R.; DIJKSTRA, A.; HARTOG, A. den; VEEN,J.A. Van. Production of rootderived material and associated microbial growth in soil at different nutrient levels. Biology and Fertility of Soils, West Germany, v.5, p.126-132, 1987. MILLER, H.J.; HENKEN, G.; VAN VEEN, J.A. Variation and composition of bacterial population in the rhizosphere of maize, wheat, and grass cultivars. Can. J. Microbiol., v.35,p.656-660, 1989. MONIZ, A.C. et al. A responsabilidade social da Ciência do Solo. Campinas. Sociedade Brasileira do solo, p. 365-378, 1988. MOREIRA, F. W. Características químicas dos solos e colonização radicular por fungos micorrízicos arbusculares em plantas introduzidas em clareiras da Província Petrolífera de Urucu, Coari. UFAM, Manaus, Amazonas, 2006. MOREIRA, F.M.S.; SIQUEIRA, J.O. Microbiologia e bioquímica do solo. Lavras, Universidade Federal de Lavras, p. 625, 2002. MOREIRA, F. M. S.; SIQUEIRA, J. O. Microbiologia e bioquímica do solo. Lavras: Universidade Federal de Lavras, p. 729, 2006. MUYZER, G.; RAMSING, N.B. Molecular methods to study the organization of microbial communities. Water Science Technology, v.32, p. 1-9, 1995. NANNIPIERI, P.; JOHNSON, R.L.; PAUL, E.A. Criteria for measurement of microbial growth and activity in soil. Soil Biology and Biochemistry, Oxford, v.10, p.223-229, 1978. NANNIPIERI, P.; GREGO, S; CECCANTI, B. Ecological significance of the biological activity in soil. In: BOLLAG, J.-M.; STOTZKY, G. (Ed.). Soil Biochemistry, v.6, Marcel Dekker, New York, p. 293-354, 1990. NAHAS, E. WALDEMARIN, M. M. Control of amylase prodution and growth characteristics of Aspergilus ochraceus. Revista Lationoamericana de Microbiologia, v. 44, p. 5-10, 2002. 65 OMAR, S.A. The role of rock-phosphate-solubilizing fungi and vesicular-arbuscularmycorrhiza (VAM) in growth of wheat plants fertilized with rock phosphate. World Journal of Microbiology and Biotechnology, London, v.14, n.2, p.211-218, 1998. NAHAS, E. Ciclo do fósforo: transformações microbianas. Jaboticabal: FUNEP, p. 67, 1991. NAM, K.D. et al: Simultaneous Saccharification and Fermentation of Unheated Starch by Free, Immobilized and Coimobilized Systems of Glucoamylase and S. cerevisiae. J. Ferm. Tech, v. 66, p. 427-32, 1988. NAVARRO, A.R. et al: Production of Ethanol by Yeasts Immobilized in Pectin. European J. Applied Microb.Biotech. v. 17, p. 148-151, 1983. NICHOLAIDES, J.J.; SANCHEZ, P. A.; BANDY, D.E.; VILLACHICA, J.H.; COUTU, A.J.; VALVERDE, C.S. Crop production systems in the Amazon Basin. In: MORAN, E. (Eds.) The dilemma of Amazonia Development. Westview, p. 101-153, 1983. OLIVEIRA, A. N; OLIVEIRA, L. A.; ANDRADE, J. S; CHAGS JÚNIOR, A. F. Atividade enzimática de isolados de rizóbia nativos da Amazônia Central crescendo em diferentes níveis de acidez. Ciência e Tecnologia de Alimentos, Campinas, v.26, n.1, p. 204-210, 2006. OLIVEIRA, A.N.; OLIVEIRA, L.A. Sazonalidade, colonização radicular e esporulação de Fungos Micorrízicos Arbusculares em plantas de cupuaçuzeiro e de pupunha na Amazônia Central. Revista Ciência Agrária. n. 40, p. 145-154, 2003. OLIVEIRA, L. A.; GUITTON, L. T.; MOREIRA, F.W. Relações entre colonizações por fungos micorrízicos arbusculares e teores de nutrientes foliares em oito espécies florestais da Amazônia. Acta Amazônica, n. 29, p.183-193, 1994. OVREAS, L.; DAAE, F. L; TORSVIK, V. V. Novel techniques for analysing microbial diversity in natural and pertubed environments. J Biotechnol 64, p.53-62, 1998. OVREAS, L.; TORSVIK, V. V. Microbial diversity and Community Structure in two different Agricultural Soil Communities. Microb Ecol 36, p. 303-315, 1998. OVREAS, L.; DAAE, F. L; TORSVIK, V. V. Distribution of bacterioplantkton in meromitic Lake Saelevenvannet, as determined by denaturing gradient gel eletrophoresis of PCR-amplified gene fragments coding for 16S rRNA. Appl. Environ Microbiol 63, p. 3367-3373, 1997. PACE, N.R.; STAHL, D.A.; LANE, D.J.; OLSEN, G.J. The analysis of natural microbial populations by ribosomal RNA sequences. Advances in Microbial ecology, New York, v.9, p. 1-55, 1986. PARK I. S.; HAUSINGER R. P. J. Bacteriol, v.177, p.1947–1951, 1995. PASSAGLIA, M.P.; ZAHA, Arnaldo. Biologia Molecular Básica. Porto Alegre: Mercado Aberto, 2003, 381 p. 66 PAUL, N.B.; RAO, W.V.B.S. Phosphate-dissolving bacteria in the rhizosphere of some cultivated legumes. Plant and Soil, Dordrecht, v.35, n.1, p.127-132, 1971. PEDROSO, A.A. Estrutura da comunidade de Bactéria do trato intestinal de frangos suplementados com promotores de crescimento. Doctor’s Thesis. Escola Superior de Agricultura Luiz de Queiroz. Piracicaba (SP), p. 103, 2003. PELCZAR JR, M.J.; CHAN, E.C.S.; KRIEG, N.R. Microbiologia, conceitos e aplicações. MAKRON, São Paulo, v.1, ed.2, p. 524, 1996. PEREIRA, P.A.A.; BLISS, F.A. Selection of common bean (Phaseolus vulgaris L.) for N2 fixation at different levels of available phosphorus under field and environmentallycontrolled conditions. Plant and Soil, Dordrecht, v.115, n.1, p.75-82, 1989. PEREIRA, J.C.; NEVES, M.C.P.; DROZDOWICZ, A. Quantificações das populações de bactérias em geral, de bactérias resistentes a antibióticos e de actinomicetos em solos. Seropédica: Embrapa - CNPAB (Embrapa - CNPAB. Documentos, 26), p.20, 1996. PETERS, S.; KOSCHINSKY, S.; SCHWIEGER, F. ; TEBBE, CC. Succession of microbial communities during hot composting as detected by PCR-single strandconformation polymorphism-based genetic profiles of small-subunit rRNA genes. Appl. Environ. Microbiol. 66, p.930-936, 2000. PETTIT, N.M.; SMITH, A. R. J.; FREEDMAN, R. B.; BURNS, R. G. Soil urease: activity, stability and kinetic properties. Soil Biol. Biochem. v.8, p. 479-484, 1976. PETKER, A.S.; RAI, P. K. Effect of fungicides on activity, secretion of some extra cellular enzymes and and growth of Alternaria alternata. Indian J. Appl. Pure. Biol., V.7, n.1, p. 57-59, 1992. PÖTTKER, D. ; BEN, J.R. Calagem em solos sob plantio direto e em campos nativos do Rio Grande do Sul. In: NUERNBERG, N.J., ed. Conceitos e fundamentos do sistema plantio direto. Lages, SBCS-Núcleo Regional Sul, p.77-92, 1998. RAIJ, B. van. Fertilidade do solo e adubação. Piracicaba: Agronômica Ceres, Associação Brasileira para a Pesquisa da Potassa e do Fosfato, p.343, 1991. RANJARD, L.; POLY, F.; COMBRISSON, J.; RICAHUME, A.; GOURBIERE, F.; THIOULOUSE, J.; NAZARET, S. Heterogenous cell density and genetic structure of bacterial pools associated with various soil microenvironments as determinated by enumeration and DNA fingerprinting approach (RISA). Microb Ecol 39, p. 263-272, 2000. RIVAS, B.; MOLDES, A. B.; DOMINGUEZ, J. M.; PARAJÓ, J. C. Development of culture media containing spent yeast cells of Debaryomyces hansenii and corn steep licor for lactic acid production with Lactobacillus rhamnosus. International Journal of Food Microbiology, v. 97, p. 93 - 98, 2004. 67 ROBSON, L.M.; CHAMBLISS, G.H. Cellulases of bacterial origin. Enzyme and Microbial Technology v.11, p.626-644, 1989. RODRIGUES, T.E. Solos da Amazônia (1994). In: ALVAREZV. V. H; FONTES, L.E.F.; FONTES, M. P. F (Eds.). O solo nos grandes domínios morfoclimáticos do Brasil e o desenvolvimento sustentado. Viçosa: UFV/DPS/SBCS, p.19-60, 1996. RONDON, M.R.; GOODMAN, R.M.; HANDELSMAN, J. the Earth’s bounty: assessing and accessing soil microbial diversity. Trends Biotechnol 17, p. 403-9, 2001. ROSA, D. S.; PANTANO FILHO, R. Biodegradação: um ensaio com polímeros. São Paulo: Editora Universitária São Francisco, 2003. ROSSELÓ-MORA, R; AMANN, R. 2001. The species concept for prokaryotes. FEMS Microbiology Review, Amsterdam, v. 25, n. 1, p. 39-67, 2001. ROTINI, O. T. La transformazions enzimatica dell-urea nell terreno. Ann. Labor. Ric. Ferm., v.3, p.134-154, 1935. ROVIRA, A.D.; MCDOUGALL, B.M. Microbiological and biochemical aspects of the rhizosphere. In: McLAREN, A.D.; PETERSON, G.H. (Eds.). Soil Biochemistry. New York: Dekker, v.1, p.417-463, 1976. SAID, S; PIETRO, R.C.L.R. Enzimas como agentes biotecnológicos. Ed. Legis Summa. Ribeirão Preto, 2004. SALATI, E; SANTOS, A.A.; LOVEJOY, T.E., KLABIN, I. Por que salvar a floresta amazônica? Manaus. Ed. INPA. p.114, 1998. SANCHES, P. A. Suelos del tropic: características y manejo. San José: IICA, p. 634, 1981. SANCHEZ, P.A; VILLACHICA, J.H.; BAND, D.E. Soil Fertility dynamics after clearing a tropical rainforest in Peru. Soil Science Society American Journal, v. 47, p.1171- 1178, 1983. SANTOS, P.C.T.C. dos; VIEIRA, M. de N.F. et al. Os solos da Faculdade de Ciências Agrárias do Pára. Belém: FCAP, (FCAP. Informe Didático, 5), p. 60, 1983. SAWADA, KAZUYA; SUGIMOTO, MASAKATU; UEDA, MITSUO. Hydrophilic Treatment of Polyester Surfaces Using TiO2: Photocatalytic Reaction. Textile Research Journal, pag.119-122, setember, 2003SCHLOSS, P. D. HANDELSMAN, J. Biotechnological prospects from metagenomics. Curr Opin Biotechnol 14, p. 303- 310, 2003. SAXENA, A.; SAXENA, D. K.; SRIVASTAVA H.S. The influence of glutathione on physiological effects of lead and its accumulation in moss Sphagnum squarrosum. Water Air Soil Pollut. v.143, p.351-361, 2003. 68 SCHMIDT, G.; LASKOWSKI, S. R. M. Phosphate ester cleavage (Survey). In: Boyer PD, Lardy H, Myrback K (eds). The enzymes, 2nd edn. Academic Press, New York, p. 3-35, 1961. SCHINNER, F.; ÖHLINGER, R.; KANDELER, E.; MARGESIN, R. (Eds). Methods in soil biology. Springer, Heidelberg Berlin New York, 1996. SCHUBART, H.O.R.; FRANKEN, W.; LUIZÃO, F.J. Uma floresta sobre solos pobres. Ciência Hoje, v.10, p.26-32, 1984. SCHWIEGER, F.; TEBBE, CC. Effect of field inoculation with Sinorhizobium meliloti L33 on the composition of bacterial communities in rhizospheres of a target plant (Medicago sativa) and a non-target plant (Chenopodium album) – Linking of 16S rRNA gene-based single-strand conformation polymorphism community profiles to the diversity of cultivated bacteria. Appl. Environ. Microbiol. 66, p.3556-3565, 2000. SENA, AMANDA REGES DE. Seleção de Fungos do Semi-árido Baiano Secretores de Hidrolases de Interesse em Alimentos. Sitientibus, Feira de Santana, n. 35, p. 91-98, 2006. SENE, C. P; MARQUES, P.D.; FERRO, P. R. S; PINHEIRO, D. M; PASTORE, C. M. Seleção de microrganismos produtores de lipase alcalina. Enzitec. 2002, Brasília, Livro de Resumo, p. 72-73, 2002. SHARMA, S. D.; SINGH, M. Environmental factors affecting absorption and bio-efficacy of glyphosate in florida beggarweed (Desmodium tortuosum). Crop Protec., v. 20, p. 511-516, 2001. SHIEH, T. R.; WARE, J.H. Survey of microorganisms for the production of extracellular phytase. Applied Microbiology, Washington, v.16, n.9, p.l348-135, l968. SHORT, J. M. Recombinant approaches for accessing biodiversity. Nat Biotechnol, v.15, p.1332-1333, 1997. SILVA, D.; MARTINS.; SILVA, R.; GOMES, E. Pesctinase prodution by Penicilium viricatum RFC3 by solid state fermentation using agricultural wastes and agroindustrial byproducts. Brazilian Journal of Microbiology, v.33, p. 318-324, 2002. SIQUEIRA, J. O; FRANCO, A. A. Biotecnologia do solo: Fundamentos e Perspectivas. Brasília: MEC/ABEAS, p.236, 1988. SISO, M. I. G. The biotechnological utilization of cheese whey: a review. Bioresource Technology, v. 57, p.1-11, 1996. SPIER, M. R.; WOICIECHOWSKI, A. L.; VANDENBERGHE, L. P. S.; SOCCOL, C. R.; Production and Characterization of Amylases by Aspergillus niger under Solid State Fermentation Using Agro Industrials Products. International Journal of Food Engineering. Vol. 2 : Iss. 3, Article 6, 2006. 69 SPOSITO, G.; ZABEL, A. The assessment of soil quality. Geoderma: Na International Journal of Soil Science, Amsterdam, v. 114, n.3/4, p. 143-144, 2003. STAMFORD, T. L. M,; STAMFORD, N. P.; COELHO, L. C. B. B.; ARAUJO, J. M. Production and characterization of a thermostable glucoamylase from Streptosporangium sp. Endophyte of maize leaves. Bioresure Technology, 83: 105-109, 2002. STAMFORD, T. L. M.; ARAUJO, J. M.; STAMFORD, N. P. Atividade enzimática de microrganismos isolados do jacatupé (Pachyrhizus erosus L. Urban). Ciênc.Tecnol. Aliment., v.18, n.4, p. 382-385, 1998. STRALIOTTO, R.; RUMJANEK, N.G. Aplicação e Evolução dos Métodos Moleculares para o Estudo da Biodiversidade do Rizóbio. Seropédica: Embrapa Agrobiologia, (Embrapa-CNPAB. Documentos, 93)p. 58, 1999. TABATABAI, M.A. Enzymes. In: WEAVER, R.W.; AUGLE, S.; BOTTOMLY, P.J.; BEZDICEK, D.; SMITH, S.; TABATABAI, A.; WOLLUM, A. (Eds). Methods of soil analyses. Part 2. Microbial and biochemical properties, n.5. Soil Society of America, Madison, p. 775-833, 1994. TABATABAI, M. A.; BREMNER, J. M. Michaelis constants of soil enzymes. Soil Biol. Biochem, n.3, p. 317-323, 1971. TAYLOR, E., MCALOON, A. J.; CRAIG, J. C.; YANG, P.; WAHJUDI, J.; ECKHOFF, R. S. Fermentation and costs of fuel ethanol from corn with quick-germ process. Applied Biochemistry and Biotechnology, v. 94, p. 41-19, 2001. TEATHER, R.M. ; WOOD, P.J. Use of congo red-polysaccharide interactions in enumeration and characterization of cellulolytic bacteria from the bovine rumen. Applied and Environmental Microbiology, v.43, p.777-780, 1982. TIWARI, S.C.; TIWARI, B.K.; MISHRA, R.R. Enzyme activities in soils: effects of leaching, ignition, autoclaving and fumigation. Soil Biology and Biochemistry, v.20, p.583-585, 1988. TORSVIK, V; DAAE, F. L; SANDAA, R.A; OVREAS, L. Novel techniques for analyzing microbial diversity in natural and perturbed environments. Journal of Biotechnology, Washington, v.64, p. 53-52, 1998. TORSVIK, V; GOSKOYR, J; DAAE, F. L. High diversity in DNA of soil bacteria. Applied Environmental Microbiology, Washington, v.56, n. 2, p. 782-787, 1990. TORSVIK, V; OVREÅS, L. Microbial diversity and function in soil: from genes to ecosystems. Current Opinion in Microbiology, Amsterdam, v.5, n.3, p. 240-245, 2002. TORTORA, G.J.; FUNKE, B.R.; CASE, C.L. Microbiologia. Porto Alegre: Artmed, 2000. 70 TRÜPER, H.G. Prokaryotes: an overview with respect to biodiversity and environmental importance. Biodiversity and Conservation, London, v.1, n.2, p. 227- 236, 1992. UEDA, K.; SEKI, T.; KUDO, T.; YOSHIDA, T.; KATAOKA, M. Two distinct mechanisms cause heterogeneity of 16S rRNA. J. Bacteriol., 181, 78-82, 1999. VALINSKY, L.; DELLA-VEDOVA, G..; SCUPHAM, A. J. ALVEYS, S.; FIGUEROA, A.; YIN, B.; HARTIN, R. J.; CHROBAK, M.; CROWLEY, D.E.; JIANG,T.; BORNEMAN, J. Analysis of bacterial community composition by oligonucleotide fingerprinting of rRNA genes. Appl Environ Microbiol 68, p. 3243-50, 2002. VANCE, E. D.; BROOKS, P. C.; JENKINSON, D. S. An extraction method for measuring soil microbial biomass. C. Soil Biol. Biochem., v. 19, n. 6, p. 703-707, 1987. VESSEY, J.K. Plant growth promoting rhizobacteria as biofertilizers. Plant Soil., Dordrecht, v. 255, p. 571-586, 2003. VICENT, J. M. A manual for the practical study of root-nodules bacteria. Oxford, USA: Blackwell Science Publication, p. 140, 1970. VIEIRA, L. S. Manual da Ciencia do Solo. São Paulo. Ed. Agronômica Ceres, p.464, 1975. VIEIRA, L.S.; SANTOS, P.C.T. dos. Amazônia: seus solos e outros recursos naturais. São Paulo: Ceres, p. 420, 1987. WALKER, I.; FRANKEN, W. Ecossistemas frágeis: a floresta da terra firme da Amazônia Central. Ciência Interamericana, v.23, p.9-21, 1983. WARD, D. M; BATESON, M.M; WELLER, R. e RUFF-ROBERTS, A. L. Ribosomal RNA analysis of microorganisms as they occur in nature. Advances in Microbial Ecology, v.12, p.219-286, 1992. WARDLE, D.A.; HUNGRIA, M.A. A biomassa microbiana do solo e sua importância nos ecossistemas terrestres. In: ARAÚJO, R.S.; HUNGRIA, M. (eds.) Microrganismos de importância agrícola. Brasília, Embrapa-SPI, p.193-216., 1994 WILSON, E.O. The current state of biology diversity. In: WILSON, E.O. (org). Biodiversity. Washington: National Academy Press, p. 3-18, 1998. WESTERS, L.; WESTERS, H.; QUAX, W.J. Bacillus subtilis as cell factory for pharmaceutical proteins: a biotechnological approach to optimize the host organism. Biochimica et Biophysica Acta - Molecular Cell Research, v. 1694, p. 299-310, 2004. WHITELAW, M. A. Growth promotion of plant inoculated with phosphate-solubilizing fungi. Advances in Agronomy, New York, v. 69, p. 99-151, 2000. 71 WONG, K.K.Y.; TAN, L.U.L.; SADDLER, J.N. Multiplicity of â-1,4 Xylanase in Microorganisms: Functions and Applications. Microbiological Reviews, v.52, n.3, p.305 – 317, 1988. WOODWARD, J. Xylanases: Functions, Properties and Applications. In: Introduction to Topics in Enzyme and Fermentation Biotechnology, cap. p. 9-30, 1984. XAVIER, G. R.; SILVA, F.V.; ZILLI, J.E.; RUMJANEK, N.G. Adaptação de método para extração de DNA de microrganismos associados a raízes de plantas. Seropédica: Embrapa Agrobiologia (Embrapa Agrobiologia. Documentos, 171). p.24, 2004. ZAHRAN, M. A.; MAHMOUD, B. K.; MASHALY, L.A. Introduction of non-conventional foders under drought and salinity stresses of arids lands. Proceedings Workshop in Livestock and Drought: Policies of a cooping with Changes. Desert Research Center (DRC), Cairo, p. 75-79, 1999. ZANIN, G. M.: Sacarificação de Amido em Reator de Leito Fluidizado com Enzima Amiloglicosidase Imobilizada. Tese Doutorado, UNICAMP, Campinas-SP, 454 p. 1989. ZANTUA, M. I.; BREMNER, J. M. Stability of urease in soils. Soil Biol.Biochem, v.9, p.135-140, 1977. ZILLI, J.E.; RUMJANEK, N.G.; XAVIER, G.R.; COUTINHO, H.L.C.; NEVES, M.C.P. Diversidade Microbiana como Indicador de Qualidade do Solo. Caderno de Ciência & Tecnologia, Brasília, v.20, n.3, p.391-411, 2003.pt_BR
dc.subject.cnpqBiotecnologiapt_BR
dc.publisher.initialsUEApt_BR
Aparece nas coleções:DISSERTAÇÃO - MBT Programa de Pós-Graduação em Biotecnologia e Recursos Naturais da Amazônia



Este item está licenciada sob uma Licença Creative Commons Creative Commons