DSpace logo

Use este identificador para citar ou linkar para este item: http://repositorioinstitucional.uea.edu.br//handle/riuea/2264
Registro completo de metadados
Campo DCValorIdioma
dc.contributor.authorHiga, André Miasato-
dc.date.available2020-03-13-
dc.date.available2020-03-12T15:09:24Z-
dc.date.issued2008-12-30-
dc.identifier.urihttp://repositorioinstitucional.uea.edu.br//handle/riuea/2264-
dc.description.abstractScorpion venoms show a complex mixture of neurotoxic protein and peptides wich causes toxic effects in mammals and insects. Brotheas amazonicus scorpion is an abundant specimen in Manaus rural areas and feeds of insects. Clinical evidences suggest very low toxicity from his venom for humans. In this work we are introducing results about chemical composition, biological and immunological properties of toxins from B. amazonicus venom. Proteomic methods (gradient SDS PAGE, tris-tricine SDS-PAGE and 2D) showed constituents 7 and 80 kDa molecular mass range, mainly toxins with Ip 4 – 7 range. The venom showed phospholipasic A2 activity that was not inhibited by antiscorpion, antiaracnide, antilonomia, antielapidic and antiophydian antivenoms, suggesting exclusive toxin epitopes of the specie. Venom also showed serineproteases toxins with 70 kDa molecular mass, wich degradates Aα and Bβ bovine fibrinogen chain, and without fibrin coagulation. Serineproteinase activity was inhibited by antiscorpion antivenom. Bleeding and blood incoagulation was not detected in mice after intravenous venom injection. Lethal activity with 100 µg of venom was not observed in mice after intracranial and intravenous venom injection. Formalin and acetic acid test to pain induction showed that, in nervous central system level, venom toxins have a potent analgesic activity of pain of inflammatory origin but in minor level to pain of neurogenic origin, and euphoria signals were not observed. Western blotting test showed antigen-antibody interaction between B. amazonicus venom toxins and IgG antibody antiscorpionic and antiaracnide antivenoms, but both antivenoms were not detected at 7kDa venom toxins. Venom has very low toxicity in mice (mammals), and a potent analgesic activity of toxins from B. amazonicus venom suggest a high biotechnological application to development of analgesic drugs.pt_BR
dc.languageporpt_BR
dc.publisherUniversidade do Estado do Amazonaspt_BR
dc.rightsAcesso Abertopt_BR
dc.rightsAtribuição-NãoComercial-SemDerivados 3.0 Brasil*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/br/*
dc.subjectVenenopt_BR
dc.subjectEscorpiãopt_BR
dc.subjectBrotheas amazonicus scorpionpt_BR
dc.titlePropriedades moleculares, atividades biológicas e imunológicas das toxinas protéicas do veneno de Brotheas amazonicus Lourenço, 1988 (Chactidae, Scorpiones)pt_BR
dc.typeDissertaçãopt_BR
dc.date.accessioned2020-03-12T15:09:24Z-
dc.contributor.advisor1López-Lozano, Jorge Luis-
dc.contributor.advisor1Latteshttp://lattes.cnpq.br/6251525203051399pt_BR
dc.contributor.referee1López-Lozano, Jorge Luis-
dc.contributor.referee1Latteshttp://lattes.cnpq.br/6251525203051399pt_BR
dc.contributor.referee2Carvalho, Rosany Picolloto-
dc.contributor.referee3Andrade, Edmar Vaz de-
dc.contributor.referee3Latteshttp://lattes.cnpq.br/4691893433367918pt_BR
dc.creator.Latteshttp://lattes.cnpq.br/4107880506292112pt_BR
dc.description.resumoVenenos de escorpiões apresentam uma mistura complexa de proteínas e peptídeos neurotóxicos, que são os responsáveis pelos efeitos tóxicos nos mamíferos e insetos. O escorpião Brotheas amazonicus é uma espécie muito comum nas florestas das áreas rurais de Manaus, alimentando-se de insetos, mas evidencias clínicas sugerem baixa toxicidade de suas toxinas em caso de acidente em humanos. Neste trabalho estamos apresentando dados sobre a composição química, propriedades biológicas e imunológicas das toxinas do veneno de B. amazonicus. Técnicas proteômicas (SDS-PAGE gradiente, SDS-PAGE tris-tricina e 2D) indicam constituintes com massas moleculares de 7 a 80 kDa, principalmente toxinas com pI de 4 a 7. No veneno foi detectada atividade fosfolipásica A2 que não foi inibida pelos antivenenos antiescorpiônico, antiaracnídeo, antielapídico, antilonomia e antiofídico, sugerindo epitopos próprios da espécie. Foi detectada a atividade de serinoproteases com massa molecular de 70 kDa que degrada as cadeias Aα e Bβ do fibrinogênio bovino sem produzir coágulo de fibrina. A atividade da serinoprotease foi inibida pelo soro antiescorpiônico. Quando injetado intravenosamente em camundongos, o veneno não produz hemorragia e o sangue não se torna incoagulável. Com a dose máxima testada (100 µg), via intracranial e endovenosa, não foi observada letalidade em camundongos. Os testes de indução da dor com a formalina e o ácido acético indicam, ao nível do sistema nervoso central, uma potente atividade inibitória do veneno sobre a dor de origem inflamatória e em menor grau sobre a dor de origem neurogênica, e não foram observados sintomas de euforia. Análises por Western Blotting demostraram a formação de complexo antígeno-anticorpos entre as toxinas de B. amazonicus e as IgG dos antivenenos antiescorpiônico e antiaracnídeo, mas nenhum desses antivenenos reconheceu as toxinas de 7 kDa do veneno. A baixa toxicidade do veneno e o potente efeito analgésico das toxinas do veneno de B. amazonicus sugerem um grande potencial biotecnológico para o desenvolvimento de novas drogas analgésicas.pt_BR
dc.publisher.countryBrasilpt_BR
dc.publisher.programPrograma de Pós-Graduação em Biotecnologia e Recursos Naturaispt_BR
dc.relation.referencesABBOT, Frances V.; FRANKLIN, K. B. J.; WESTBROOK, R. F. The formalin test: scoring properties of the first and second phases of the pain response in rats. Pain, n. 60, p. 91-102, 1995. AIRES, M. de M.; BALDO, M. V. et al. Fisiologia. Pag. 224-225. Guanabara Koogan, 1999. ALMEIDA, F. M.; PIMENTA, A. M.; DE FIGUEIREDO, S. G.; SANTORO, M. M.; MARTIN-EAUCLAIRE, M. F.; DINIZ, C. R.; DE LIMA, M. E. Enzymes with gelatinolytic activity can be found in Tityus bahiensis and Tityus serrulatus venoms. Toxicon, v. 40, n. 7, p. 199-203, 2002. ARAÚJO, T. F.; HIGA, A.M.; NORONHA, M. D. N.; MARTINS, M. J. P.; MUNIZ, E. G.; MEDEIROS, B. M.; AGUIAR, N. O.; LÓPEZ-LOZANO, J. L. Proteolytic activity of amazonian scorpion Tityus metuendus venom (Scorpiones: Buthidae) J. Venom. Anim. Toxins incl. Trop. Dis., V. 13, n. 1, p. 254, 2007. BARNES, R. D.; RUPPERT, Edward E. Zoologia dos Invertebrados. 6° Ed., 1029 p., 1996. BÜCHERL, W. Scorpionism in the old world. In: Bücher, W. & Buckley, E E (eds), Venomous animal and their venoms Vol. 111. Academic Press, pp 317-369, 1971. CALDERON-ARANDA, Emma Soraida; OLAMENDI-PORTUGAL, Timoteo; POSSANI, Lourival Domingos. The use of synthetic peptides can be a misleading approach to generate vaccines against scorpion toxins. Vaccine, v. 13, n. 13, p. 1198-1206, 1995. CHIPPAUX, J.-P.; GOYFFON, M. Epidemiology of scorpions: A global appraisal. Acta Tropica, v. 107, p. 71-79, 2008. CHUANG, R. S.; JAFFE, H.; CRIBBS, L.; PEREZ-REYES, E.; SWARTZ, K. J. Inhibition of T-type voltage-gated calcium channels by a new scorpion toxin. Nat. Neurosci., v. 1, p. 668-674, 1998. CONDE, R.; ZAMUDIO, F. Z.; BECERRIL,B.; POSSANI, L. D. Phospholipin, a novel heterodimeric phospholipase A2 from Pandinus imperator scorpion venom. Eur. Biochem. Soc., v. 460, n. 3, p. 447-450, 1999. CUI, Meng; SHEN, Jianhua; BRIGGS, James M.; LUO, Xiaomin; TAN, Xiaojian; JIANG, Hualiang; CHEN, Kaixian; JI, Ruyun. Brownian dynamics simulations of interaction between scorpion toxin Lq2 and potassium ion channel. Biophysical Journal, v. 80, n. 4, p. 1659-1669, 2001. DE LIMA, M. E; MARTIN-EAUCLAIRE, M. F. The toxins purified from Tytus serrulatus (Lutz &Mello) venom. J. Toxicol. Toxin Reviews, v. 14, p. 457-481, 1995. 68 DEBIN, J. A.; STRICHARTZ, G. R. Chloride channel inhibition by the venom of the scorpion Leiurus quinquestriatus. Toxicon, v. 29, n. 11, p. 1403-1408, 1991. DESHANE, J.; GARNER, C. C.; SONTHEIMER, H. Chlorotoxin inhibits glioma cell invasion via matrix metalloproteinase-2. J. Biol. Chem., n. 278, p. 4135-4144, 2003. DORCE, Valquiria A. C.; SANDOVAL, Maria Regina L. Brazilian Scorpion venoms: Pharmacological aspects. Instituto Butantan, v. 53, n. 2, p. 191-195, 1992. EL-ALFY, Abir T.; AHMED, A. E.; FATANI, Amal F.; KADER, Farida. Amelioration of the cardiovascular manifestations of the the yellow scorpion Leiurus quinquestriatus envenomation in rats by red grape seeds proanthocyanidins. Toxicon, v. 51, n. 3, p 321-333, 2007. FINNEY, D. J. Probit analysis: a statistical treatment of the sigmoid response curve. Cambridge university Press, n. 31, 256 p., 1971. FU, Wei; CUI, M.; BRIGGS, M.; HUANG, X.; CHEN, Kaixian. Brownian Dynamics simulation of the recognition of the scorpion toxin Maurotoxin with the voltage-gated potassium ion channels. Biophysical Journal, v. 83, n. 5, p. 2370-2385, 2002. FUKUHARA, Y. D. M.; DELLALIBERA-JOVILIANO, R.; CUNHA, F. Q. C.; REIS, M. L.; DONADI, E. A. The kinin system in the envenomation caused by the Tityus serrulatus scorpion sting. Toxicology and Applied Pharmacology v. 196, p. 390– 395, 2004. FUKUHARA, Y. D. M.; REISB, M. L.; DELLALIBERA-JOVILIANO, R. ; CUNHA, F. Q. C.; REIS, M. L.; DONADI, E. A. Increased plasma levels of IL-1b, IL-6, IL-8, IL-10 and TNF-a in patients moderately or severely envenomed by Tityus serrulatus scorpion sting. Toxicon, v. 41, p. 49-45, 2003. FUNASA. Manual de diagnóstico e tratamento de acidentes por animais peçonhentos. Brasília, DF. 2001. GAO, Rong; ZHANG, Yong; GOPALAKRISHNAKONE, Ponnampalam. Purification and N-terminal sequence of a serine proteinase-like protein (BMK-CBP) from the venom of the Chinese Scorpion (Buthus martensii Karsch). Toxicon, v. 52 p. 348353, 2008. GAZARIAN, Karlen G.; GAZARIAN, Tatiana; HERNÁNDEZ, Ricardo; POSSANI, Lourival D. Immunology of scorpion toxins and perspectives for generation of antivenom vaccines. Vaccine, v. 23, p. 3357-3368, 2005. GOLDSTEIN, S. A.; PHEASANT, D. J.; MILLER, C. The charybdotoxin receptor of a Shaker K+ channel: peptide and channel residues mediating molecular recognition. Biophys. J., v. 65, n. 4, p. 1613-1619, 1994. GORDON, D.; KARBAT, I.; COHEN, L.; KAHN, R.; GILLES, N.; DONG, K.; STÜMER, W.; TYTGAT, J. GUREVITZ, M. The differential preference of scorpion α 69 toxins for insects or mammalian sodium channels: Implications for improved insect control. Toxicon, v. 49, n.4, p. 452-472, 2007. GOUDET, Cyril; TYTGAT, Jan et al. An overview of toxins and genes from the venom of the asian scorpion Buthus martensi Karsh. Toxicon, v. 40, n. 9, p. 12-39, 2002. GUERON, M.; ILIA, R.; SHAHAK, E.; SOFER, S. Renin and aldosterone levels and hypertension following envenomation in humans by the yellow scorpion Leiurus quinquestriatus. Toxicon, v. 30, n. 7, p. 765-767, 1992. GUREVITZ, M.; FROY, O.; ZILBEBERG, N.; TURKOV, M.; STRUGATSKY, D.; CHEJANOVSKY, N. et al. Sodium channel modifiers from scorpion venom: Structureactivity relationship, mode of action and application. Toxicon, v. 36, n. 11, p. 16711682, 1998. GUREVITZ, M.; KARBAT, I.; ILAN, N.; COHEN, L.; KAHN, R.;TURKOV, M.; STANKIEWICZ, M.; STÜMER, W.; DONG, K.; GORDON, D. The insecticidal potential of scorpion beta-toxins. Toxicon, v. 49, n. 4, p. 473-489, 2007. HARGREAVES, K. M.; KEISER, K. Development of new pain management strategies. Journal of dental education, v. 66, n. 1, p. 113-121, 2001. HARVEY, B. J. Cross-Talk between sodium and potassium channels in tight epithelia. Kidney Int., v. 48, p. 1191-1199, 1995. HEUSSEN, C; DOWDLE, E.B. Electrophoretic analysis of plasminogen activators in polyacrylamide gels containing sodium dodecyl sulfate and copolymerized substrates. Anal. Biochem., v. 102, p. 196-202, 1980. HÖFFER, Hubert.; WOLLSCHEID, Evi.; GASNIER, Thierry. The relative abundance of Brotheas amazonicus (Chactidae, Scorpiones) in different habitat types of a central amazon rainforest. The Journal of Arachnology, v. 24, p. 34-38, 1996. HOWSE, P. E. Brain structure and behavior in insects. Annual Review of Entomology. Vol. 20, p. 359-379, 1975. HUANG, C.C.; STRICHER, F.; MARTIN, L. KWONG, P. D. et al. Scorpion-toxin mimics of CD4 in complex with human immunodeficiency virus gp120 crystal structures, molecular mimicry, and neutralization breadth. Structure, v. 5, p. 755-758, PDB: 1yyl-1yym, 2005. ISMAIL, M.; FATANI, Amal J. Y.; DABES, T. T.Experimental treatment protocols for scorpion envenomation: a review of common therapies and an effect of Kallikreinkinin inhibitors. Toxicon, v. 30, p. 1257 – 1279, 1992. KARBAT, Izhar; GUREVITZ, Michael et al. Molecular basis of the high insecticidal potency of scorpion α-toxin. The Journal of Biological Chemistry., v. 279, p. 31679 – 31686, 2004. 70 KOLESNIKOV, Y. A.; JAIN, S.; WILSON, R.; PASTERNAK, G. W. Peripheral morphine analgesia: synergy with central sites and a target of morphine tolerance. J. Pharmacol. Exp. Ther., v. 279, p. 502-506, 1996. LAEMMLI, U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T 4. Nature, v. 27, p. 680-685, 1970. LIPPENS, G.; NAJIB, J.; BIANCI, A.; DHALLUIN, C.; TARTAR, A. Solution structure of chlorotoxin and a three-dissulfide bridge analogue. Toxicon, v. 34, n. 10, p. 10791079, 1996. LIPPS, Binie V.; KHAN, Abbas A. Antigenic cross reactivity among the venoms and toxins from unrelated diverse sources. Toxicon, v. 38, p. 973-980, 1999. LIU, C. M.; PEI, G. Q. Analgesic effect of the venom of scorpion Buthus martensi Karsh. J. Shen Yang Coll. Pharm., v. 6, p. 176-180, 1989. LIU, Yan-Feng. WU, Chun-Fu et al. Expression of an antitumor-analgesic peptide from the venom of Chinese scorpion Buthus martensii Karsch in Escherichia coli. Protein Expression & Purification., v. 27, n. 2, p. 253-258, 2002. LORET, E. & HAMMOCK, B. Structure and neurotoxicity of venoms. Scorpion biology and research, Oxford University Press, New York, p. 204-233, 2001. LÓPEZ-LOZANO, J. L.; DE SOUZA, M. V.; RICART, C. A.; CHÁVEZ-OLORTEGUI, C.; FLORES SANCHEZ, E.; MUNIZ, E.; BÜHRNHEIM, P. F.; MORHY, L. Ontogenetic variation of metalloproteinases and plasma coagulant activity in venoms of wild Bothrops atrox specimens from Amazonian rain forest. Toxicon., p.40, n. 7, p. 997-1006, 2002. LOURENÇO, W. R. Scorpions of Brazil. Ed. De I’lf, Paris, 308 p., 2002. LOURENÇO, W. R.; ADIS, Joachim. Amazonian Arachnida and Myriapoda. Cap. 4.9 (Scorpiones)., pag. 399-438, 2007. MACKINNNON, Roderick; COHEN, Steven L.; KUO, A.; LEE, A.; CHAIT, B. T. Structural conservation in prokaryotic and eukaryotic potassium channels. Science, v.280, n. 5360, p. 106-109, 1998. MALVAR, David do Carmo; VANDERLINDE, Frederico Argollo. Influencia do prétratamento com o sumo de Sedum dendroideum sobre a nocicepção em camundongos. Ver. Univ. Rural, v. 24, n. 2, p. 135-140, 2004. MILLER, C. The charybdotoxin family of K+ channel-blocking peptides. Neuron., v. 15, n. 1, p. 5 -10, 1995. MIRANDA, Fábio Guilherme G.; ANTONIOLLI, Ângelo Roberto. Toxicidade aguda e atividade antiedematogenica e antinociceptiva do extrato aquoso da entrecasca de Tabebuia avellanedae. R. B. de Farmacognosia, v. 12, p. 91-94, 2002. 71 MOUHAT, S.; JOUIROU, B.; MOSBAH, A.; DE WAARD, M.; SABATIER, J. M. Diversity of folds in animal toxins acting on ion channels. Biochem. Journal, v. 378, p. 717 – 726, 2004. MOURA, A. D.; FONSECA, P. H. M.; SANCHEZ, E. F.; RICHARDSON, M.; CORDEIRO, M. N.; BORGES, M. H. Identification of high molecular mass proteins in the venom of scorpion Tityus serrulatus. SBBq, 2008. NISHIKAWA, A. K.; DIAS DA SILVA, W. et al. Antigenic cross reactivity among the venoms from several species of Brazilian scorpions. Toxicon, vol. 32, p. 989-998, 1994. PAGE, Clive; CURTIS, Michael; SUTTER, Morley; WALKER, Michael; HOFFMAN, Brian. Farmacologia Integrada. 2 ed. Manole, São Paulo, SP. 2004. PETERSON, Brianna; KNOTTS, Taylor; CUMMINGS, Brian S. Involvement of Ca2+independent phospholipase A2 isoforms in oxidant-induced neural cell death. NeuroToxicology, v. 28, p. 150–160, 2007. PIMENTA, Adriano M. C.; MARTIN-EUCLAIRE, H.; ROCHAT, S. G.; FIGUEIREDO, E.; KALAPOTHAKIS, L. C. C. Afonso; DE LIMA, Maria Helena. Purification, aminoacid sequence and partial characterization of two toxins with anti-insect activity from the venom of the south american scorpion Tityus bahiensis. Toxicon, v. 39, p. 10091019, 2001. PIPELZADEH, Mohammad H.; JALALI, Amir; TARAZ, Mohammad; POURRABAS, Roya; ZAREMIRAKABADI, Abbas. An epidemiological and clinical study on scorpionism by the Iranian scorpion Hemiscorpius lepturus. Toxicon, v. 50, p. 984992, 2007. PLESSIS, L. H. du. ELGAR, D.; PLESSIS, J. L. du. Southern African scorpion toxins: An overview. Toxicon, v. 51, p. 1-9, 2007. PRIEST, B. T.; KACZOROWSKI, G. J. Subtype-selective sodium channel blockers promise a new era of pain research. PNAS, v. 104, n. 20, p. 8205 – 8206, 2007. POLIS, Gary A. Biology of Scorpions. Stanford University Press, 587 p., 1990. POSSANI, L. D. Structure of scorpion venom. Handbook of natural toxins, Vol. II. Marcel Dekker, v. 2, p. 513-550, 1984. POSSANI, L. D.; MARTIN, B. N.; FLETCHER, M. D.; FLETCHER Jr, P. L. Discharge effect on pancreatic exocrine secretion produced toxins purified from Tityus serrulatus scorpion venom. J. Biomol. Chem., v. 266, p. 3178 – 3185, 1991. POSSANI, L. D.; BECERRIL, 8.; DELEPIERRE, M.; TYTGAT, J. Scorpion toxins specific for Na channels. Eur. J. Biochem., v. 264, p. 287-300, 1999. 72 RADMANESH, Mohammed. Cutaneous manifestations of Hemiscorpius lepturus sting. International Journal of Dermatology, Blackwell Science, v. 37, p. 500-507, 1998. RENNER, I. G.; PANTOJA, J. L.; ABRAMSON, S.B.; DOUGLAS, A. P.; RUSSEL, F. E.; KOCH, M. K. Effects of scorpion and rattlesnake venoms on the canine pancreas following pancreaticoduodenal arterial injections. Toxicon, v. 21, n. 3, p. 405 – 420, 1983. RODRIGUEZ DE LA VEGA, R. C.; POSSANI, L. Current views on scorpion toxins specific for K+ -channels. Toxicon, v. 43, n. 8, p. 865 – 875, 2004. RODRIGUEZ DE LA VEGA, R. C.; POSSANI, L. D. Overview of scorpion toxins specific for Na+ channels and related peptides: biodiversity, structure-function relationships and evolution. Toxicon, v. 46, n. 8, p. 831-844, 2005. SCHÄGGER, Hermann. Tricine-SDS-PAGE. Nature Protocols, v. 1, n. 1, p. 16 – 22, 2006. SCHOLZ, Joachim.; WOOLF, Clifford J. Can we conquer pain? Nature Publishing group, v. 5, p. 1026 – 1067, 2002. SHAHBAZZADEH, D.; SRAIRI-ABID, N.; FENG, W.; RAM, N.; BORCHANI, L.; RONJAT, M.; AKBARI, A.; PESSAH, I. N.; DE WAARD, M.; EL AYEB, M. Hemicalcin, a new toxin from the Iranian scorpion Hemiscorpius lepturus which is active on ryanodine-sensitive Ca2+ channels. Biochemistry Journal, v. 404, p. 89 – 96, 2007. SHEN, S.; KHAZAELI, M. B.; GILLESPIE, G. Y.; ALVAREZ, V.L. Radiation dosimetry of 131 I-chlorotoxin for synergistic targeted radiotherapy for malignant glioma in mice. Int. J. Radiation Oncol. Bio. Physics, v. 57, n. 2, p. 254 – 255, 2005. SINAN - Sistema de Informação de Agravos de Notificação; SVS – Secretaria de Vigilância em Saúde; MS – Ministério da Saúde. Casos de acidentes por escorpião e Óbitos por acidentes por escorpiões. Brasil, 2008. SOMJEN, G. G. Extracellular Potassium in the Mammalian Central Nervous System. Annu. Rev. Physiol., v. 41, p. 159-177, 1979. SOROCEANU, L.; GILLESPIE, Y.; KHAZAELI, M. B.; SONTHEIMER, H. Use of chlorotoxin for targeting of primary brain tumors. Cancer research, v. 58, n. 21, p. 4871 – 4879, 1998. THEAKSTON, R.D.G.; WARREL, D.A.; GRIFFITHS, E. Report of a WHO workshop on the standardization and control of antivenoms. Toxicon, v. 41, p. 541–557, 2003. TYTGAT, J.; CHANDY, K. G.; GARCIA, M. L.; GUTMAN, G. A.; MARTINEAUCLAIRE, M-F; VAN DER WALT, J. J.; POSSANI, L. D. A unified nomenclature for short-chain peptides isolated from scorpion venoms: α-KTx molecular subfamilies. Trends Pharmacol. Sci., v. 20, n. 11, p. 444 – 447, 1999. 73 UEDA, Hiroshi. MIZUNO, Kiyonobu. New approaches to study the development of morphine tolerance and dependence. Life sciences, v. 74, n. 2, p 313-320, 2003. VALDEZ-CRUZ, Norma A.; BATISTA, Cesar V. F.; POSSANI, Lourival D. Phaiodactylipin, a glycosylated heterodimeric phospholipase A2 from the venom of the scorpion Anuroctonus phaiodactylus. European Journal of Biochemistry, v. 271, p. 1453-1464, 2004. VALDEZ-CRUZ, Norma A.; SEGOVIAL, L; CORONA, M.; POSSANI, Lourival D. Sequence and phylogenetic relationship of genes encoding heterodimeric phospholipases A2 from the venom of the scorpion Anuroctonus phaiodactylus. Gene, v. 396, p. 149 – 158, 2007. VANDERPOOL, Alyssa. Study Demonstrates Safety of Promising Investigational Treatment for Deadly Brain Cancer. TransMolecular Inc. 2006. VITA, Claudio; DRAKOPOULOU, Eugenia; VIZZAVONA, Jean; ROCHETTE, Sandrine; MARTIN, Loi¨c; MÉNEZ, André; ROUMENSTAD, Christian; YANG, YinShan, YLISASTIGUI, Loyda; BENJOUADI, Abdelaziz; GLUCKMANI, Jean Claude. Rational engineering of a miniprotein that reproduces the core of the CD4 site interacting with HIV-1 envelope glycoprotein. PNAS, v 23, n. 23, p. 13091 – 13096, 1999. VOET, D.; VOET, J. Bioquimica. 6° Ed., 2006. YU, K.; FU, W.; LIU, HONG; LUO, X.; CHEN, K. X.; DING, J.; SHEN, J.; JIANG, H. Computational simulations of interactions of scorpion toxins with the voltage-gated potassium ion channel. Biophysical journal, v. 86, n. 6, p. 3542 – 3555, 2004. XIONG, Yu-Mei; CHI, Cheng-Wu et al. Molecular Characterization of a new excitatory insect neurotoxin with an analgesic effect on mice from the scorpion Buthus martensi Karsh. Toxicon, v. 37, n. 8, p. 1165 – 1180, 1999. WOOD, John N.; PERL, Edward R. Pain. Genetics of disease, v. 9, n. 3, p. 328 – 332, 1999. WOOLF, Clifford J.; MAX, Mitchell. Mechanism-based pain diagnosis. A. S. of Anesthesiology, v. 95, n. 1, p. 241 – 249, 2001. WU, J.J.; DAI, L.; LAN, Z. D.; CHI, C. W. The gene cloning and sequencing of Bm12, a chlorotoxin-like peptide from the scorpion Buthus martensi Karsch. Toxicon, v. 38, n. 5, p. 661 – 668, 2000. ZHOU, X. H.; YANG, D.; ZHANG, J.H.; LIU, C. M.; LEI, K. J. Purification and Nterminal partial sequence of anti-epilepsy peptide from venom of Buthus martensi Karsch. Biochem. Journal, v. 257, n. 2, p. 509 - 517, 1989. ZLOTKIN, E. The interaction of insect selective neurotoxins from scorpion venoms with insect neuronal membranes. Neuropharmacology and pesticides action, Ellis Horwwod, p. 352-383, 1986. 74 ZLOTKIN, E.; GORDON, D. Binding of an α scorpion toxin to insect sodium channels is not dependent on membrane potential. FEBS, v. 315, p. 125 – 128, 1993.pt_BR
dc.subject.cnpqBiotecnologiapt_BR
dc.publisher.initialsUEApt_BR
Aparece nas coleções:DISSERTAÇÃO - MBT Programa de Pós-Graduação em Biotecnologia e Recursos Naturais da Amazônia



Este item está licenciada sob uma Licença Creative Commons Creative Commons