DSpace logo

Use este identificador para citar ou linkar para este item: http://repositorioinstitucional.uea.edu.br//handle/riuea/5537
Registro completo de metadados
Campo DCValorIdioma
dc.contributor.authorRoessing, Daniel Saraiva-
dc.date.available2024-02-22-
dc.date.available2024-02-22T20:01:49Z-
dc.date.issued2023-12-15-
dc.identifier.urihttp://repositorioinstitucional.uea.edu.br//handle/riuea/5537-
dc.description.abstractThis dissertation describes a study that aimed to isolate and identify ligninolytic fungi from the Bosque da Ciência of the National Institute of Amazonian Research (INPA), located in Manaus, Amazonas, Brazil, and to evaluate their capacity for degrading low-density polyethylene (LDPE) films in agar medium and liquid medium. Thirty-eight samples of sporomes of ligninolytic macrofungi associated with decomposing lignocellulosic samples were collected. From these samples, eight fungi were isolated, four belonging to the phylum Basidiomycota and four to the phylum Ascomycota, with the latter four being contaminants of Basidiomycota. Phylogenetic analysis based on the ITS region sequence revealed precise identification of the isolated species, which were identified as Schizophyllum commune, Irpex laceratus, Phlebiopsis flavidoalba, Peniophora crassitunicata, Endomelanconiopsis endophytica, Annulohypoxylon stygium, Xylaria heliscus, and Xylaria plebeja. Regarding the results of LDPE film degradation assessment, all isolates showed potential in plastic degradation, depending on the culture conditions. In mineral agar medium, after 21 days of stationary culture at room temperature, all isolates except Xylaria plebeja XPM090323 promoted plastic mass reduction, with the most effective being Pleurotus ostreatus CPOINPA1, used as positive control (3.7%), Irpex laceratus ILM050722 (3%), Endomelanconiopsis endophytica EEM140223 (3.2%), and Annulohypoxylon stygium ASS170223 (3.8%). E. endophytica EEM140223 exhibited the highest laccase activity (18.1 U/Kg), while Schizophyllum commune SCM050722 excelled in peroxidase activity (5.9 U/Kg). In contrast, in liquid mineral broth, after 21 days of stationary culture at room temperature, X. plebeja XPM090323 stood out as the most efficient in reducing LDPE mass (1.5%). Finally, the isolate Xylaria heliscus XHS310123 presented the highest biomass production (4.1 g/L) and peroxidase activity (13.3 U/L), while S. commune SCM050722 showed the highest laccase activity (25.2 U/L). This study contributes to the understanding of the diversity of ligninolytic fungi in the Amazon region and their capacity for polyethylene degradation, presenting potential relevance in environmental applications and plastic waste remediationpt_BR
dc.languageporpt_BR
dc.publisherUniversidade do Estado do Amazonaspt_BR
dc.rightsAcesso Abertopt_BR
dc.subjectBasidiomycotapt_BR
dc.subjectAscomycotapt_BR
dc.subjectBiodegradaçãopt_BR
dc.subjectPlástico LDPEpt_BR
dc.subjectFeneloxidasespt_BR
dc.titleIdentificação, filogenia e biodegradação de plástico LDPE por fungos lignícolas isolados do Bosque do INPA (Basidiomycota Ascomycotapt_BR
dc.title.alternativeIdentification, phylogeny and biodegradation of LDPE plastic by lignicultural fungi isolated from the INPA Forest (Basidiomycota Ascomycotapt_BR
dc.typeDissertaçãopt_BR
dc.date.accessioned2024-02-22T20:01:49Z-
dc.contributor.advisor-co1Souza, João Vicente Braga de-
dc.contributor.advisor-co1Latteshttp://lattes.cnpq.br/7804981785557071pt_BR
dc.contributor.advisor1Souza, Érica Simplício de-
dc.contributor.advisor1Latteshttp://lattes.cnpq.br/4333531513081697pt_BR
dc.contributor.referee1Souza, Érica Simplício de-
dc.contributor.referee1Latteshttp://lattes.cnpq.br/4333531513081697pt_BR
dc.contributor.referee2Rocha, Waldireny Caldas-
dc.contributor.referee3Silva, João Paulo Alves-
dc.creator.Latteshttp://lattes.cnpq.br/0003379364095258pt_BR
dc.description.resumoEsta dissertação descreve um estudo que teve como objetivo isolar e identificar fungos lignícolas do Bosque da Ciência do Instituto Nacional de Pesquisas da Amazônia (INPA), localizado em Manaus, Amazonas, Brasil, e avaliar sua capacidade de degradação de filmes de polietileno de baixa densidade (LDPE) em meio com ágar e em meio líquido. Foram coletadas 38 amostras de esporomas de macrofungos ligninolíticos associados a amostras lignocelulósicas em decomposição. A partir dessas amostras, foram isolados oito fungos, sendo quatro pertencentes ao filo Basidiomycota e quatro ao filo Ascomycota, sendo estes quatro últimos contaminantes dos Basidiomycota. A análise filogenética baseada na sequência da região ITS revelou a identificação precisa das espécies dos isolados, que foram identificadas como Schizophyllum commune, Irpex laceratus, Phlebiopsis flavidoalba, Peniophora crassitunicata, Endomelanconiopsis endophytica, Annulohypoxylon stygium, Xylaria heliscus e Xylaria plebeja. Quanto aos resultados da avaliação da degradação de filmes de LDPE, todos os isolados demonstraram potencial na degradação do plástico, dependendo das condições de cultivo. Em meio com ágar mineral, após 21 dias de cultivo estacionário em temperatura ambiente, todos os isolados salvo Xylaria plebeja XPM090323 promoveram a redução da massa do plástico, destacando-se Pleurotus ostreatus CPOINPA1, usado como controle positivo (3,7%), Irpex laceratus ILM050722 (3%), Endomelanconiopsis endophytica EEM140223 (3,2%) e Annulohypoxylon stygium ASS170223 (3,8%). E. endophytica EEM140223 exibiu a atividade de lacase mais elevada (18,1 U/Kg), enquanto Schizophyllum commune SCM050722 se destacou na atividade de peroxidases (5,9 U/Kg). Em contraste, em meio líquido caldo mineral, após 21 dias de cultivo estacionário em temperatura ambiente, X. plebeja XPM090323 destacou-se como o mais eficiente na redução da massa do LDPE (1,5%). Por fim, o isolado Xylaria heliscus XHS310123 apresentou a maior produção de biomassa (4,1 g/L) e de peroxidases (13,3 U/L), enquanto S. commune SCM050722 apresentou a maior atividade de lacase (25,2 U/L). Este estudo contribui para a compreensão da diversidade de fungos lignícolas na região amazônica e sua capacidade de degradação de polietileno, apresentando potencial relevância em aplicações ambientais e de remediação de resíduos plásticospt_BR
dc.publisher.countryBrasilpt_BR
dc.publisher.programPPGMBT - PROGRAMA DE PÓS-GRADUAÇÃO EM BIOTECNOLOGIA E RECURSOS NATURAIS DA AMAZÔNIApt_BR
dc.relation.referencesADERIYE, B. I. et al. Monitoring Fungal Biodegradation of Low-density Polyethylene [LDPE] from Plastic Wastes Dump Sites Using FT-IR Spectra. Microbiology Research Journal International, v. 26, n. 1, p. 1–15, 1 jan. 2019. AKPASI, S. O. et al. Mycoremediation as a Potentially Promising Technology: Current Status and Prospects—A Review. Applied Sciences (Switzerland) MDPI, 1 abr. 2023. ALI, M. I. et al. Isolation and molecular characterization of polyvinyl chloride (PVC) plastic degrading fungal isolates. Journal of Basic Microbiology, v. 54, n. 1, p. 18–27, jan. 2014. ALI, S. S. et al. Plastic wastes biodegradation: Mechanisms, challenges and future prospects. Science of the Total Environment, Elsevier B.V., 1 ago. 2021. ALLOUZI, M. M. A. et al. Micro (nano) plastic pollution: The ecological influence on soil-plant system and human health. Science of the Total Environment, v. 788, 20 set. 2021. ALSHEHREI, F. Biodegradation of Synthetic and Natural Plastic by Microorganisms. Journal of Applied & Environmental Microbiology, v. 5, n. 1, p. 8–19, 2017. ALTSCHUL, S. F.; GISH, W.; MILLER, W.; MYERS, E. W.; LIPMAN, D. J. Basic local alignment search tool. Journal of Molecular Biology, v. 215, n. 3, p. 403-410, out. 1990. AMEEN, F. et al. Biodegradation of low density polyethylene (LDPE) by mangrove fungi from the red sea coast. Progress in Rubber, Plastics and Recycling Technology, v. 31, n. 2, p. 125–144, 1 maio 2015. AZEVEDO, Isreele Jussara Gomes de. Microplásticos em peixes siluriformes comercializados em Itacoatiara (AM), Brasil. 2023. 56 f.: il. color; 31 cm. Dissertação (Mestrado em Ciência e Tecnologia para Recursos Amazônicos) - Universidade Federal do Amazonas. Orientador: Gustavo Yomar Hattori. Coorientador: Gustavo Frigi Perotti. BACHA, A. U. R. et al. Biodegradation of macro- and micro-plastics in the environment: A review on mechanism, toxicity, and future perspectives. Science of the Total Environment, Elsevier B.V., 1 fev. 2023. BAHL, S. et al. Biodegradation of plastics: A state of the art review. Materials Today: Proceedings, Elsevier Ltd, 2020. BARI, E. et al. Decay capacity and degradation patterns of Xylaria hypoxylon on different wood species Decay capacity and degradation patterns of Xylaria hypoxylon on different wood species. [Disponível em: <www.irg-wp.com>.2022. CAVALCANTE, F. S. et al. Macrofungos pertencentes à família Polyporaceae no sudoeste da Amazônia, Brasil. South American Journal of Basic Education, Technical and Technological, v. 8, n. 1, 2021. CHAUDHARY, A. K. et al. Synergistic effect of UV, thermal, and chemical treatment on biological degradation of low-density polyethylene (LDPE) by Thermomyces lanuginosus. Environmental Monitoring and Assessment, v. 193, n. 8, 1 ago. 2021. 85 CHEN, H. et al. Waste to Wealth: Chemical Recycling and Chemical Upcycling of Waste Plastics for a Great Future. ChemSusChem John Wiley and Sons Inc, , 5 out. 2021. CHIA, W. Y. et al. Nature’s fight against plastic pollution: Algae for plastic biodegradation and bioplastics production. Environmental Science and Ecotechnology Elsevier B.V., 1 out. 2020. DA LUZ, J. M. R. et al. Degradation of green polyethylene by Pleurotus ostreatus. PLoS ONE, v. 10, n. 6, 15 jun. 2015. DA LUZ, J. M. R. et al. Degradation of Oxo-Biodegradable Plastic by Pleurotus ostreatus. PLoS ONE, v. 8, n. 8, 15 ago. 2013. DA LUZ, J. M. R. et al. Plastics Polymers Degradation by Fungi. In: BLUMENBERG, M.; SHAABAN, M.; ELGAML, A. Microrganisms. IntechOpen, 2020. DALY, P. et al. From lignocellulose to plastics: Knowledge transfer on the degradation approaches by fungi. Biotechnology Advances, Elsevier Inc., 1 set. 2021. DANSO, D.; CHOW, J.; STREITA, W. R. Plastics: Environmental and biotechnological perspectives on microbial degradation. Applied and Environmental Microbiology, American Society for Microbiology, 1 out. 2019. DEMETS, R. et al. Addressing the complex challenge of understanding and quantifying substitutability for recycled plastics. Resources, Conservation and Recycling, v. 174, 1 nov. 2021. EKANAYAKA, A. H. et al. A Review of the Fungi That Degrade Plastic. Journal of Fungi, MDPI, 1 ago. 2022. FERRER, C. et al. Detection and identification of fungal pathogens by PCR and by ITS2 and 5.8S ribosomal DNA typing in ocular infections. Journal of Clinical Microbiology, v. 39, n. 8, p. 2873–2879, 2001. FILICIOTTO, L.; ROTHENBERG, G. Biodegradable Plastics: Standards, Policies, and Impacts. ChemSusChem Wiley-VCH Verlag, , 7 jan. 2021. FORTUNA, J. L. Apostila da Disciplina de Biologia dos Fungos. Teixeira de Freitas: Projeto Fungus Extremus, UNEB, Campus X. 2020, 27 p. FORTUNA, J. L. Protocolos de Coletas, Análises, Identificação e Armazenamento de Fungos Ambientais. Teixeira de Freitas: Projeto Fungus Extremus, UNEB, Campus X. 2020, 37 p. FORTUNA, J. L. Protocolos de Coletas, Análises, Identificação e Armazenamento de Fungos Ambientais. Teixeira de Freitas: Projeto Fungus Extremus, UNEB, Campus X. 2020, 37 p. FREIRE, B. et al. Produção de enzimas lignocelulolíticas por fermentação em estado sólido de resíduos agroindustriais sob ação de fungo basidiomiceto. p. 640–647, 2015. FUJISAWA, M.; HIRAI, H.; NISHIDA, T. Degradation of Polyethylene and Nylon-66 by the 86 Laccase-Mediator System. Journal of Polymers and the Environment, v. 9, n. 3, jul. 2001. GAMBARINI, V. et al. Phylogenetic Distribution of Plastic-Degrading Microorganisms. mSystems, v. 6, n. 1, 23 fev. 2021. GEROLIN, C. R. et al. Microplastics in sediments from Amazon rivers, Brazil. Science of the Total Environment, v. 749, 20 dez. 2020. GHATGE, S. et al. Biodegradation of polyethylene: a brief review. Applied Biological Chemistry, Springer, 1 dez. 2020. GÓMEZ-MÉNDEZ, L. D. et al. Biodeterioration of plasma pretreated LDPE sheets by Pleurotus ostreatus. PLoS ONE, v. 13, n. 9, 1 set. 2018. HADIBARATA, T.; YUNIARTO, A. Biodegradation of polycyclic aromatic hydrocarbons by high-laccase basidiomycetes fungi isolated from tropical forest of Borneo. Biocatalysis and Agricultural Biotechnology, v. 28, 1 set. 2020. HAIDER, T. P. et al. Plastics of the Future? The Impact of Biodegradable Polymers on the Environment and on Society. Angewandte Chemie - International Edition, Wiley-VCH Verlag, 2 jan. 2019. HE, M. Q. et al. Notes, outline and divergence times of Basidiomycota. Fungal Diversity, v. 99, n. 1, p. 105–367, 1 nov. 2019. HE, M. Q. et al. Species diversity of Basidiomycota. Fungal Diversity Springer Science and Business Media B.V., 1 maio 2022. HOFSTETTER, V. et al. The unbearable lightness of sequenced-based identification. Fungal Diversity, v. 96, n. 1, p. 243–284, 1 maio 2019. IIYOSHI, Y.; TSUTSUMI, Y.; NISHIDA, T. Polyethylene degradation by lignin-degrading fungi and manganese peroxidase. Journal of Wood Science, v. 44, n. 3, p. 222–229, 1998. IWAŃCZUK, A. et al. Anaerobic Biodegradation of Polymer Composites Filled with Natural Fibers. Journal of Polymers and the Environment, v. 23, n. 2, p. 277–282, 22 jun. 2015. JIMÉNEZ, D. J. et al. Merging Plastics, Microbes, and Enzymes: Highlights from an International Workshop. Applied and Environmental Microbiology, American Society for Microbiology, 1 jul. 2022. KANG, B. R. et al. Accelerating the biodegradation of high-density polyethylene (Hdpe) using bjerkandera adusta tbb-03 and lignocellulose substrates. Microorganisms, v. 7, n. 9, 1 set. 2019. KHRUENGSAI, S.; SRIPAHCO, T.; PRIPDEEVECH, P. Low-density polyethylene film biodegradation potential by fungal species from thailand. Journal of Fungi, v. 7, n. 8, 1 ago. 2021. KUMAR, R. et al. Impacts of plastic pollution on ecosystem services, sustainable development goals, and need to focus on circular economy and policy interventions. Sustainability (Switzerland), MDPI, 1 set. 2021. 87 KUMAR, S. et al. MEGA X: Molecular evolutionary genetics analysis across computing platforms. Molecular Biology and Evolution, v. 35, n. 6, p. 1547–1549, 1 jun. 2018. KUTRALAM-MUNIASAMY, G. et al. Microplastic diagnostics in humans: “The 3Ps” Progress, problems, and prospects. Science of the Total Environment, Elsevier B.V., 15 jan. 2023. LA FUENTE, C. I. A.; MANIGLIA, B. C.; TADINI, C. C. Biodegradable polymers: A review about biodegradation and its implications and applications. Packaging Technology and Science John Wiley and Sons Ltd, , 1 fev. 2023. LASMAR, R. P.; DAMASCENO, A. A. Bioprospecção de Fungos Basidiomicetos Produtores de Enzimas Oxidativas Coletados no Município de Alvarães - Amazonas. Recursos Naturais, p. 1-10, 2017. LEE, B. et al. Biodegradation of Degradable Plastic Polyethylene by Phanerochaete and Streptomyces Species. Applied and Environmental Microbiology, v. 57, n. 3, p. 678-685, 1991. LEONOWICZ, A.; GRZYWNOWICZ, K. Quantitative estimation of laccase forms in some white-rot fungi using syringaldazine as a substrate. Enzyme and Microbial Technology, v. 3, n. 1, p. 55-58, 1981. LI, C.T. et al. PAH emission from the incineration of three plastic wastes. Environment International, v. 27, n. 1, 2001, p. 61-67. LI, S. et al. Recent advances in biodegradation of emerging contaminants - microplastics (MPs): Feasibility, mechanism, and future prospects. Chemosphere Elsevier Ltd, 1 ago. 2023. LOPES, Alfredo. Igarapé do Mindu, retrato dramático da civilização Manaó. Brasil Amazônia Agora, 22 de março de 2021. Disponível em: https://brasilamazoniaagora.com.br/2021/igarape-mindu-retrato-dramatico-civilizacao-manao/\. LÜCKING, R. et al. Unambiguous identification of fungi: Where do we stand and how accurate and precise is fungal DNA barcoding? IMA Fungus, v. 11, n. 1, 10 jul. 2020. MALACHOVÁ, K. et al. Ability of Trichoderma hamatum isolated from plastics-polluted environments to attack petroleum-based, synthetic polymer films. Processes, v. 8, n. 4, 1 abr. 2020. MENDOZA, A. Y. G. et al. Potencialidades Biotecnológicas dos Fungos da Amazônia Brasileira: Uma Revisão Sistemática. Diversitas Journal, v. 7, n. 4, 2022. MENEZES, Alik. Falta de recursos é entrave para a implantação de aterros sanitários no AM. A Crítica, 05 de dezembro de 2018, 09:10. Atualizado em 11 de março de 2022. MIRI, S. et al. Biodegradation of microplastics: Better late than never. Chemosphere Elsevier Ltd, , 1 jan. 2022. MISHRA, U. N.; DAS, S.; KANDALI, R. Bioremediation of Synthetic Polymers: Present and Future Prospects of Plastic Biodegradation. International Journal of Current Microbiology 88 and Applied Sciences, v. 9, n. 12, p. 1234–1247, 20 dez. 2020. MOHANAN, N. et al. Microbial and Enzymatic Degradation of Synthetic Plastics. Frontiers in Microbiology, Frontiers Media S.A., 26 nov. 2020. MONTAZER, Z.; NAJAFI, M. B. H.; LEVIN, D. B. Challenges with verifying microbial degradation of polyethylene. Polymers, MDPI AG, 1 jan. 2020. MUKHERJEE, S.; KUNDU, P. P. Alkaline fungal degradation of oxidized polyethylene in black liquor: Studies on the effect of lignin peroxidases and manganese peroxidases. Journal of Applied Polymer Science, v. 131, n. 17, p. 8982–8990, 5 ago. 2014. MUNIR, E. et al. Plastic degrading fungi Trichoderma viride and Aspergillus nomius isolated from local landfill soil in Medan. IOP Conference Series: Earth and Environmental Science. Anais... Institute of Physics Publishing, 19 mar. 2018. NAKAJIMA, V. M.; SOARES, F. E. DE F.; QUEIROZ, J. H. DE. Screening and decolorizing potential of enzymes from spent mushroom composts of six different mushrooms. Biocatalysis and Agricultural Biotechnology, v. 13, p. 58–61, 1 jan. 2018. NGHI, D. H. et al. The wood rot ascomycete Xylaria polymorpha produces a novel GH78 glycoside hydrolase that exhibits α-L-rhamnosidase and feruloyl esterase activities and releases hydroxycinnamic acids from lignocelluloses. Applied and Environmental Microbiology, v. 78, n. 14, p. 4893–4901, jul. 2012. NWOGU, N. Capability of selected mushrooms to biodegrade polyethylene. Mycosphere, v. 3, n. 4, p. 455–462, 2012. OKAL, E. J. et al. Insights into the mechanisms involved in the fungal degradation of plastics. Ecotoxicology and Environmental Safety, Academic Press, 1 set. 2023. OLIVEIRA, A. M. et al. Current knowledge on the presence, biodegradation, and toxicity of discarded face masks in the environment. Journal of Environmental Chemical Engineering, v. 11, n. 2, 1 abr. 2023. PATRÍCIO, A. S. et al. Levantamento de macrofungos na Reserva Natural de Palmari, Atalaia do Norte, Amazonas. Revista Biodiversidade, v. 20, n. 3, 2021. PERERA, T. W. N. K. et al. Biodeterioration of low-density polyethylene by mangrove-associated endolichenic fungi and their enzymatic regimes. Letters in Applied Microbiology, v. 75, n. 6, p. 1526–1537, 1 dez. 2022. QUEIROZ, L. G et al. Microplásticos: Há impacto potencial para a biota? Ensaios de toxicidade com modelos aquáticos. Metais no sedimento em reservatorios . Disponível em: http://ecologia.ib.usp.br/microplastico/.2022. QUEIROZ, L. G et al. Microplásticos: Há impacto potencial para a biota? Ensaios de toxicidade com modelos aquáticos. Metais no sedimento em reservatorios . Disponível em: http://ecologia.ib.usp.br/microplastico/.2022. REN, X. et al. Effects of microplastics on greenhouse gas emissions and the microbial community in fertilized soil. Environmental Pollution, v. 256, 1 jan. 2020. 89 RIBEIRO-BRASIL, Daniele Regina Góes; TORRES, Nathane Rodrigues; PICANÇO, Ana Bruna; SOUSA, Daniele dos Santos; RIBEIRO, Victor Santos; BRASIL, Luciana dos Santos; MONTAG, Luciano Fernandes de Almeida. Contamination of stream fish by plastic waste in the Brazilian Amazon. Environmental Pollution, v. 266, Pt 1, p. 115241, nov. 2020. SÁENZ, M. et al. Minimal conditions to degrade low density polyethylene by Aspergillus terreus and niger. Journal of Ecological Engineering, v. 20, n. 6, p. 44–51, 2019. SALES, J. C. S. et al. A critical view on the technology readiness level (TRL) of microbial plastics biodegradation. World Journal of Microbiology and Biotechnology, Springer Science and Business Media B.V., 1 jul. 2021. SÁNCHEZ, C. Fungal potential for the degradation of petroleum-based polymers: An overview of macro- and microplastics biodegradation. Biotechnology Advances, Elsevier Inc., 1 maio 2020. SANGALE, M. K.; SHAHNAWAZ, M.; ADE, A. B. Potential of fungi isolated from the dumping sites mangrove rhizosphere soil to degrade polythene. Scientific Reports, v. 9, n. 1, 1 dez. 2019. SANTACRUZ-JUÁREZ, E. et al. Fungal enzymes for the degradation of polyethylene: Molecular docking simulation and biodegradation pathway proposal. Journal of Hazardous Materials, v. 411, 5 jun. 2021. SHAHNAWAZ, MOHD.; SANGALE, M. K.; ADE, A. B. Case Studies and Recent Update of Plastic Waste Degradation. Em: Bioremediation Technology for Plastic Waste. [s.l.] Springer Singapore, 2019. p. 31–43. SHANKAR, S. et al. Microbial Degradation of Polyethylene: Recent Progress and Challenges. p. 245–262, 2019. SHARMA, S. R. Bioremediation of Polythenes and Plastics: A Microbial Approach. Em: Nanotechnology in the Life Sciences. [s.l.] Springer Science and Business Media B.V., 2018. p. 97–114. SHRESTHA, J. K. et al. Isolation and Identification of Low Density Polyethylene (LDPE) Degrading Bacillus spp. from a Soil of Landfill Site. 2. 30-34.. ACTA SCIENTIFIC MICROBIOLOGY.Disponível em: https://www.researchgate.net/publication/331702789. 2019 SIMÕES, G. S.; CAVALCANTE, F. S.; LIMA, J. P. S. Contribuição aos conhecimentos da diversidade de fungos Basidiomycota no sul do Amazonas, Brasil. Revista Gestão e Sustentabilidade Ambiental, v. 10, n. 4, p. 203-217, dez. 2021. SINGH, J.; GUPTA, K. C. 2014. Screening and Identification of Low density Polyethylene (LDPE) Degrading Soil Fungi Isolated from Polythene Polluted Sites around Gwalior city (M.P.). International Journal of Current Microbiology and Applies Sciences, v. 3, n. 6, p. 443-448, 2014. SOUZA, G. R. ; SILVA, N. M. ;; OLIVEIRA, D. P. Distribuição longitudinal, vertical e temporal de microplásticos no Igarapé do Mindu em Manaus, Amazonas..Eng Sanit Ambient v. 28, e20220234.2023. 90 SOUZA, João Vicente Braga de. Seleção de fungos para tratamento de um efluente de deslignificação da indústria de nitrocelulose – Lorena. 2004. 97 f. Tese (Doutorado em Biotecnologia) - Faculdade de Engenharia Química de Lorena, Universidade Estadual de São Paulo (USP). SOUZA, L. A. "Polietileno"; Brasil Escola. Disponível em: https://brasilescola.uol.com.br/quimica/polietileno.htm. Acesso em 10 de dezembro de 2023. SOWMYA, H. V. et al. Degradation of polyethylene by Trichoderma harzianum—SEM, FTIR, and NMR analyses. Environmental Monitoring and Assessment, v. 186, n. 10, p. 6577–6586, 1 out. 2014. SPINA, F. et al. Low density polyethylene degradation by filamentous fungi. Environmental Pollution, v. 274, 1 abr. 2021. SRIKANTH, M. et al. Biodegradation of plastic polymers by fungi: a brief review. Bioresources and Bioprocessing, Springer Science and Business Media Deutschland GmbH, 1 dez. 2022. STAPLETON, P. A. Microplastic and nanoplastic transfer, accumulation, and toxicity in humans. Current Opinion in Toxicology Elsevier B.V., 1 dez. 2021. SZKLARZ, G. D. et al. Production of Phenol Oxidases and Peroxidases by Wood-Rotting Fungi. Mycologia, v. 81, n. 2, p. 234–240, mar. 1989. TAGHAVI, N. et al. Challenges in biodegradation of non-degradable thermoplastic waste: From environmental impact to operational readiness. Biotechnology Advances, Elsevier Inc., 1 jul. 2021. TEDERSOO, L. et al. High-level classification of the Fungi and a tool for evolutionary ecological analyses. Fungal Diversity, v. 90, n. 1, p. 135–159, 1 maio 2018. TEKPINAR, A. D.; KALMER, A. Utility of various molecular markers in fungal identification and phylogeny. Nova Hedwigia, v. 109, n. 1, p. 187–224, 2019. TEMPORITI, M. E. E. et al. Fungal Enzymes Involved in Plastics Biodegradation. Microorganisms, MDPI, 1 jun. 2022. VENKATESH, S. et al. Microbial degradation of plastics: Sustainable approach to tackling environmental threats facing big cities of the future. Journal of King Saud University - Science, Elsevier B.V., 1 maio 2021. WHITE, T. D. et al. Amplification and direct sequencing of fungal ribosomal RNA Genes for phylogenetics Forensic DNA technology Evolution of Gene Expression. 1990. Disponível em: https://www.researchgate.net/publication/223397588. YANG, Y. et al. Detection of Various Microplastics in Patients Undergoing Cardiac Surgery. Environmental Science and Technology, v. 57, n. 30, p. 10911–10918, 1 ago. 2023. YASIN, N.; AKKERMANS, S.; VAN IMPE, J. F. M. Enhancing the biodegradation of (bio)plastic through pretreatments: A critical review. Waste Management Elsevier Ltd, , 1 ago. 2022. 91 YUAN, J. et al. Microbial degradation and other environmental aspects of microplastics/plastics. Science of the Total Environment, v. 715, 1 maio 2020 ZHANG, C. et al. Assembly strategies for polyethylene-degrading microbial consortia based on the combination of omics tools and the “Plastisphere”. Frontiers in Microbiology Frontiers Media S.A., 2023. ZHANG, J.; GAO, D.; LI, Q.; ZHAO, Y.; LI, L.; LIN, H.; BI, Q.; ZHAO, Y. Biodegradação de partículas microplásticas de polietileno pelo fungo Aspergillus flavus proveniente dos intestinos da traça Galleria mellonella. Science of The Total Environment, v. 704, p. 135931, 2020. ZHU, L. et al. Identification of microplastics in human placenta using laser direct infrared spectroscopy. Science of the Total Environment, v. 856, 15 jan. 2023.pt_BR
dc.publisher.initialsUEApt_BR
Aparece nas coleções:DISSERTAÇÃO - MBT Programa de Pós-Graduação em Biotecnologia e Recursos Naturais da Amazônia



Os itens no repositório estão protegidos por copyright, com todos os direitos reservados, salvo quando é indicado o contrário.