DSpace logo

Use este identificador para citar ou linkar para este item: http://repositorioinstitucional.uea.edu.br//handle/riuea/5522
Registro completo de metadados
Campo DCValorIdioma
dc.contributor.authorAquino, Deborah Canté de-
dc.date.available2024-02-05-
dc.date.available2024-02-07T14:53:47Z-
dc.date.issued2023-08-31-
dc.identifier.urihttp://repositorioinstitucional.uea.edu.br//handle/riuea/5522-
dc.description.abstractEssential thrombocythemia and myelofibrosis are chronic BCR::ABL1 negative myeloproliferative neoplasms characterized by exacerbated megakaryocyte proliferation and reactive deposition of fibrous connective tissue due to granulocyte and megakaryocyte hyperplasia, respectively. There are genetic variants in the coding sequence of the MPL gene (1p34.2) in both hematologic malignancies, identified in 3% of patients with essential thrombocythemia and 8% with myelofibrosis, which compromise the thrombopoietin receptor activity, making it hypersensitive and capable of dimerization independently of ligand interaction to activate the JAK-STAT signaling pathway, stimulating cell proliferation constitutively, leading to the phenotype of essential thrombocythemia and/or myelofibrosis. Objective: To identify genetic variants present in exon 10 of the MPL gene in patients with essential thrombocythemia and myelofibrosis treated at the HEMOAM Foundation. Methodology: The study was descriptive and cross-sectional, with the study population consisting of patients clinically diagnosed with the aforementioned neoplasms, of both sexes, aged 18 years and older, recruited between August 2021 and July 2022. Peripheral blood was collected for genomic DNA extraction from granulocytes. Molecular analysis was performed through Sanger sequencing, with electropherogram analysis conducted in Geneious software, and statistical analysis in Graphpad Prism for demographic and hematological data analysis. Results: 64 patients diagnosed with essential thrombocythemia and myelofibrosis were included. 85.27% of individuals corresponded to the essential thrombocythemia group, and 14.73% to the myelofibrosis group. The median age ranged from the sixth to the seventh decade of life in both groups. There was a higher predominance of women in essential thrombocythemia (78.95%), while myelofibrosis showed a balance between genders. Patients with myelofibrosis presented a higher frequency of splenomegaly (57.14%) compared to essential thrombocythemia (18.18%). Regarding hematological parameters, the myelofibrosis group showed lactate dehydrogenase levels above the reference range, while essential thrombocythemia demonstrated a significant increase in platelet count. In the molecular analysis, no genetic variants in exon 10 of the MPL gene were identified in the study population. Conclusion: The absence of variants in exon 10 of the MPL gene was observed. Further studies should be conducted with a larger population, considering the low frequency of variants in this gene in patients with essential thrombocythemia and myelofibrosispt_BR
dc.languageporpt_BR
dc.publisherUniversidade do Estado do Amazonaspt_BR
dc.rightsAcesso Abertopt_BR
dc.subjectW515Lpt_BR
dc.subjectW515Kpt_BR
dc.subjectReceptor de trombopoietinapt_BR
dc.subjectNeplasias mieloproliferativapt_BR
dc.subjectMyeloproliferative Neplasmspt_BR
dc.titleEstudo molecular do éxon 10 do gene MPL em pacientes com Trobocitemia essencial e mielofibrosept_BR
dc.title.alternativeMolecular study of exon 10 of the MPL gene in patients with Essential Throbocythemia and Myelofibrosispt_BR
dc.typeDissertaçãopt_BR
dc.date.accessioned2024-02-07T14:53:47Z-
dc.contributor.advisor-co1Tarragô, Andréa Monteiro-
dc.contributor.advisor-co1Latteshttp://lattes.cnpq.br/4644326589690231pt_BR
dc.contributor.advisor1Mourão, Lucivana Prata de Souza-
dc.contributor.advisor1Latteshttp://lattes.cnpq.br/1135734404648095pt_BR
dc.contributor.referee1Mourão, Lucivana Prata de Souza-
dc.contributor.referee1Latteshttp://lattes.cnpq.br/1135734404648095pt_BR
dc.contributor.referee2Almeida, Maria Edilene Martins de-
dc.contributor.referee2Latteshttp://lattes.cnpq.br/9637683978812335pt_BR
dc.contributor.referee3Santos, Maria da Conceição Freitas dos-
dc.contributor.referee3Latteshttp://lattes.cnpq.br/7618353060771291pt_BR
dc.creator.Latteshttp://lattes.cnpq.br/2902751845968033pt_BR
dc.description.resumoTrombocitemia essencial e mielofibrose são neoplasias mieloproliferativas crônicas BCR::ABL1 negativas caracterizadas por hiperplasia exacerbada de megacariócitos e deposição reativa de tecido conjuntivo fibroso devido a hiperplasia de granulócitos e megacariócitos, respectivamente. Há a presença de variantes genéticas na sequência codificante do gene MPL (1p34.2) em ambas as malignidades hematológicas, identificadas em 3% dos pacientes com TE e 8% com MF, as quais comprometem a atividade do receptor de trombopoietina, tornando-o hipersensível e com dimerização independe da interação com o ligante para ativar a sinalização da via JAK-STAT, estimulando de forma constitutiva a proliferação celular, levando ao fenótipo de TE e/ou MF. Objetivo: identificar variantes genéticas presentes no éxon 10 do gene MPL em pacientes com trombocitemia essencial e mielofibrose atendidos da Fundação HEMOAM. Metodologia: estudo foi do tipo descritivo-transversal, teve como população de estudo os pacientes com diagnóstico clínico para as neoplasias supracitadas, ambos os sexos, a partir de 18 anos, recrutados entre agosto de 2021 a julho de 2022. Foi feita coleta de sangue periférico para extração de DNA de genômico de granulócitos. A análise molecular foi realizada por meio sequenciamento de Sanger, com análise de eletroferogramas realizada no software Geneious e análise estatística no Graphpad Prism para realização das análises de dados demográficos e hematológicos. Resultados: 64 pacientes diagnosticados com trombocitemia essencial e mielofibrose foram incluídos. 85,27% dos indivíduos correspondem ao grupo com TE e 14,73% na população com MF. A mediana de idade ficou entre a sexta e a sétima década de vida em ambos os grupos. Houve maior predominância de mulheres em trombocitemia essencial (78,95%), ao passo que em MF houve um equilíbrio entre os gêneros. Pacientes com mielofibrose apresentaram maior frequência de esplenomegalia (57,14%) em comparação a trombocitemia essencial (18,18%). No que tangem aos parâmetros hematológicos, o grupo mielofibrose apresentou índices de desidrogenase lática acima dos níveis de referência, ao passo que trombocitemia essencial demonstrou aumento significativo na contagem de plaquetas. Na análise molecular, não foram identificadas variantes genéticas no éxon 10 do gene MPL na população de estudo. Conclusão: verificou-se a ausência de variantes no éxon 10 do gene MPL. Estudos posteriores devem ser realizados com uma população maior, tendo em vista a baixa frequência de variantes nesse gene em pacientes com trombocitemia essencial e mielofibrosept_BR
dc.publisher.countryBrasilpt_BR
dc.publisher.programPPGH -PROGRAMA DE PÓS-GRADUAÇÃO EM CIÊNCIAS APLICADAS À HEMATOLOGIApt_BR
dc.relation.references1. Tefferi A.; Vainchenker W. Myeloproliferative neoplasms: molecular pathophysiology, essential clinical understanding and treatment strategies. J. Clin. Oncol. 2011; 29(5): 573-82. 2. Campbell PJ, Green AR. The myeloproliferative disorders. N Engl J Med. 2006;355(23):2452-2504. doi:10.1056/nejmra063728. 3. ARBER, D. A. et al. The 2016 revision to the World Health Organization classification of myeloid neoplasms and acute leukemia. Blood, v. 127, n. 20, p. 2391 – 2406, 2016. 4. Vakil E., Tefferi A., BCR::ABL1-Negative Myeloproliferative Neoplasms: A Review of Molecular Biology, Diagnosis, and Treatment, Clin. Lymphoma, Myeloma & leucemia. 2011; 11:S37-45. 5. Chauffaille, Maria de Lourdes L. F. Neoplasias mieloproliferativas: revisão dos critérios diagnósticos e dos aspectos clínicos. Revista Brasileira de Hematologia e Hemoterapia. 2010, v. 32, n., pp. 308-316. Disponível em: <https://doi.org/10.1590/S1516-84842010005000091>. Epub 20 Ago 2010. ISSN 1806-0870. https://doi.org/10.1590/S1516-84842010005000091. 6. Swerdlow SH., Campo E., Harris NL., Jaffe ES., Pileri SA., Stein H. et al. WHO Classification of Tumors of Haematopoietic and Lymphoid Tissues. Revised Edition. 2017. 44(6): 53-4. 7. Macedo LC, Silva DM. Aplicação das Técnicas Moleculares no Diagnóstico das Neoplasias Mieloproliferativas. SaBios. 2018;12(1):57-65. https://revista2.grupo integrado.br/revista/index.php/sabios/article/view/2224 8. Deininger MWN, Goldman JM, Melo J V, et al. The molecular biology of chronic myeloid leukemia. Blood. 2000;96(10):3343-3356. 9. Ross L. Levine, Mark Heaney; New Advances in the Pathogenesis and Therapy of Essential Thrombocythemia. Hematology Am Soc Hematol Educ Program 2008; 2008 (1): 76–82. doi: https://doi.org/10.1182/asheducation-2008.1.76 10. Pereira, M. L. L., Furtado, A. L. R., Pinto, F. C. R., Flor, A. C., Teixeira, A. B., & Maia Filho, P. A. (2020). Trombose essencial: uma revisão da literatura. Rev. bras. anal. clin, 27-31. 11. Rumi E, Pietra D, Pascutto C, et al. Clinical effect of driver mutations of JAK2, CALR, or MPL in primary myelofibrosis. Blood. 2014;124:1062-9. 12. Mead AJ, Mullally A. Myeloproliferative neoplasm stem cells. Blood. 2017;129(12):1607–16. 46 13. Nielsen C, Bojesen SE, Nordestgaard BG, Kofoed KF, Birgens HS. JAK2V617F somatic mutation in the general population: Myeloproliferative neoplasm development and progression rate. Haematologica. 2014;99(9):1448–55. 14. Grando CA; Wagner SC. Avaliação Laboratorial da Doença Residual Mínima na Leucemia Mielóide Crônica por Real-Time PCR. Journal Brasileiro de Patologia e Medicina Laboratorial.2008; 44(6): 433-440. 15. Monte-Mor BCR; Costa FF. A mutação JAK2 V617F e as síndromes mieloproliferativas. Revista Brasileira de Hematologia e Hemoterapia. 2008; 30(3): 241–248. 16. Cleyrat C, Darehshouri A, Steinkamp MP, Vilaine M, Boassa D, Ellisman MH, Hermouet S, Wilson BS. Mpl traffics to the cell surface through conventional and unconventional routes. Traffic. 2014 Sep;15(9):961-82. doi: 10.1111/tra.12185. Epub 2014 Jul 18. PMID: 24931576; PMCID: PMC4141020. 17. Stockklausner C, Klotter AC, Dickemann N, Kuhlee IN, Duffert CM, Kerber C, Gehring NH, Kulozik AE. A mutação P106L do receptor trombopoietina separa funcionalmente a atividade de sinalização do receptor da homeostase trombopoietina. Sangue. 12.125 de fevereiro de 2015(7):1159-69. doi: 10.1182/sangue-2014-07-587170. Epub 2014 Dez 23. 25538044. 18. Vainchenker W, Kralovics R. Genetic basis and molecular pathophysiology of classical myeloproliferative neoplasms. 2016;129(6):667–79. 19. Grinfeld J, Nangalia J, Green AR. Molecular determinants of pathogenesis and clinical phenotype in myeloproliferative neoplasms. Haematologica. 2017;102(1):7–17. 20. Shuai K, Liu B. Regulation of JAK-STAT signalling in the immune system. Nat Rev Immunol. 2003;3(11):900–11. 21. Barbui T, Barosi G, Birgegard G, et al. Philadelphia-negative classical myeloproliferative neoplasms: critical concepts and management recommendations from European leukemiaNet. J Clin Oncol. 2011;29(6):761-770. doi:10.1200/JCO.2010.31.8436. 22. Rumi E, Cazzola M. Diagnosis, risk stratification, and response evaluation in classical myeloproliferative neoplasms. Blood. 2017;129(6):680-693. doi:10.1182/blood-2016- 10-695957.referred. 23. Randi ML, Putti MC. Essential thrombocytaemia in children: is a treatment needed? Expert Opin Pharmacother. 2004;5(5): 1009-14. 24. Tefferi A., Thiele J., Orazi A., Kvasnicka HM., Barbui T., Hanson CA. et al. Proposals and rationale for revision of the World Health Organization diagnostic criteria for polycythemia 47 vera, essential thrombocytemia, and primary mielofibrosis: recommendations from and ad hoc international expert panel. Blood. 2007; 110(4):1092-7. 25. Giordon F., Bonicelli G., Schaeffer C., Mounier M., CArillo S., Lafon I. et al. Significant increase in the apparent incidence of essential thrombocytemia related to the new WHO diagnostic criteria: a population-based study. Haematologica. 2009; 94(6): 865-9. 26. Ramirez G., García-Sanchez R., Plaza S. Tratamiento del paciente con trombocitemia essencial. Medicina Clinica. 2013;140(6): 278-282. 27. Barbui T., Thiele J., Passamonti F., Rumi E., Boveri E. et al. Survival and disease progression in Essential Thrombocythemia are significantly influenced by accurate morphologic diagnosis: na international study. Journal of Clinical Oncology. 2011; 29(23): 3179-3184. 28. Tokgoz H., Caliskan U., Yuksekkaya HA., Kucukkaya R. Essential Thrombocythemia with MPL W515K mutation in child presenting with Budd-Chiari syndrome. 2015; 26(8):805-8. doi:10.3109/09537104.2015.1041900. 29. Vannucchi AM. Management of myelofibrosis. Amer. Socie. Hematol. 2011; 222-30. 30. Bittencourt RI., Vassallo J., Chaffaille L., Xavier SG., Pagnano KB., Nascimento AC., et al. Philadelphia-negative chronic myeloproliferative neoplasms. Rev. Bras. Hematol. Hemoter. 2012; 34(2): 140-9. 31. Tavares RS, Nonino A, Pagnano KBB, Nascimento ACKV do, Conchon M, Fogliatto LM, et al. Guideline on myeloproliferative neoplasms: Associacão Brasileira de Hematologia, Hemoterapia e Terapia Cellular: Project guidelines: Associação Médica Brasileira – 2019. Hematol Transfus Cell Ther [Internet]. 1 de julho de 2019 [citado 23 de março de 2020];41:1–73. Available at: http://www.ncbi.nlm.nih.gov/pubmed/31248788 32. Hoffbrand, A. V., and P. A. H. Moss. Fundamentos em hematologia de Hoffbrand. Artmed Editora, 2018. 33. Passamonti F., Mora B., Barraco D., Maffioli M. Post-ET and Post-PV Myelofibrosis: Updates on a distinct prognosis from primary myelofibrosis. Curr Hematol Malig Rep. 2018 Jun;13(3):173-182. doi: 10.1007/s11899-018-0453-y. PMID: 29713873. 34. Carobbio A, Finazzi G, Thiele J, Kvasnicka HM, Passamonti F, Rumi E, Ruggeri M, Rodeghiero F, Luigia Randi M, Bertozzi I, Vannucchi AM, Antonioli E, Gisslinger H, Buxhofer-Ausch V, Gangat N, Rambaldi A, Tefferi A, Barbui T. Blood tests may predict early primary myelofibrosis in patients presenting with essential thrombocythemia. Am J Hematol. 2012 Feb;87(2):203-4. doi: 10.1002/ajh.22241. Epub 2012 Jan 11. PMID: 22237692. 35. Xin H., Zhigang C., Yangyan J., Xi Q., Xiaoying Z. Different mutations of the human c-MPL gene indicate distinct haematopoietic diseases. J. Hemat. Oncol. 2013; 6(1): 11-9. 48 36. Bridgford JL, Lee SM., Lee CMM., Guglielmelli P., Rumi E., et al. Novel drivers and modifiers of MPL-dependent oncogenic transformation identified by deep mutational scanning. Blood. 2020. 135(4): 287-292. 37. Plo I., Chantelot CB., Mosca M., Mazzi S., Marty C., Vainchenker W. Genetic alterations of the thrombopoietin/MPL/JAK2 Axis impacting megakaryopoiesis. Journal Frontiers in Endocrinology. 2017. 8:234. 38. Staerk J, Lacout C, Sato T, Smith SO, Vainchenker W, Constantinescu SN. An amphipathic motif at the transmembrane cytoplasmatic juntion prevents autonomous activation of the thrombopoietin recptor. Blood. 2006; 107(5):1864-71. 39. Lee TS, Kantarjian H, Ma W, Yeh CH, Giles F, Albitar M. Effects of clinically relevant MIS no domínio transmembrano revelados a nível atômico através da modelagem computacional. PLos Um. 2011;6(8):e23396. doi: 10.1371/journal.pone.0023396. Epub 2011 Ago 17. PMID: 21858098; PMCID: PMC3157383. 40. Chaligné R, Tonetti C, Besancenot R, Roy L, Marty C, Mossuz P et al. New mutations of MPL in primitive myelofibrosis: only the MPL W515 mutations promote a G1/S-phase transition. Leukemia. 2008; 22(8): 1557-66. 41. Silvennoinen O, Ungureanu D, Niranjan Y, Hammaren H, Bandaranayake R, Hubbard SR. New insights into the structure and function of the pseudokinase domain in JAK2. Biochem Soc Trans. 2013 Aug 1;41(4):1002–7. 42. Chou F-S, Mulloy JC. The Thrombopoietin/MPL pathway in hematopoiesis and leukemogenesis. J Cell Biochem. 2011 Jun;112(6):1491–8. 43. Pikman Y, Lee BH, Mercher T, McDowell E, Ebert BL, Gozo M, et al. MPLW515L is a novel somatic activating mutation in myelofibrosis with myeloid metaplasia. PLoS Med. 2006;3(7):1140–51. 44. Xie J, Chen X, Gao F, Hou R, Tian T, Zhang Y, Fan L, Hu J, Zhu G, Yang W, Wang H. Two activating mutations of MPL in triple-negative myeloproliferative neoplasms. Cancer Med. 2019 Sep;8(11):5254-5263. doi: 10.1002/cam4.2387. Epub 2019 Jul 11. PMID: 31294534; PMCID: PMC6718619. 45. Pardanani AD, Levine RL, Lasho T, Pikman Y, Mesa RA, Wadleigh M, Steensma DP, Elliott MA, Wolanskyj AP, Hogan WJ, McClure RF, Litzow MR, Gilliland DG, Tefferi A. MPL515 mutations in myeloproliferative and other myeloid disorders: a study of 1182 patients. Blood. 2006 Nov 15;108(10):3472-6. doi: 10.1182/blood-2006-04-018879. Epub 2006 Jul 25. PMID: 16868251. 49 46. Boyd EM, Bench AJ, Goday-Fernández A, Anand S, Vaghela KJ, Beer P, Scott MA, Bareford D, Green AR, Huntly B, Erber WN. Clinical utility of routine MPL exon 10 analysis in the diagnosis of essential thrombocythaemia and primary myelofibrosis. Br J Haematol. 2010 Apr;149(2):250-7. doi: 10.1111/j.1365-2141.2010.08083.x. Epub 2010 Feb 11. PMID: 20151976. 47. Villarouco da Silva GA, Barletta Naveca RH. Haplotype of the Promoter Region of TNF Gene May Mark Resistance to Tuberculosis in the Amazonas State, Brazil. J Clin Cell Immunol. 2016;7(3). 48. The International HapMap Consortium, 2005. A haplotype map of the human genome. Nature, pp. 1299- 1320. 49. The 1000 Genomes Project Consortium, 2010. A map of human genome variation from population-scale sequencing. Nature, Volume 467, pp. 1061-1073. 50. The 1000 Genomes Project Consortium, 2015a. A global reference for human genetic variation. Nature, pp. 68-74. 51. The 1000 Genomes Project Consortium, 2015b. An integrated map of structural variation in 2504 human genomes. Nature, pp. 75-81. 52. Li, J. Z. et al., 2008. Worldwide human relationships inferred from genome-wide patterns of variation. Science, pp. 1100-1104. 53. Jakobsson, M. et al., 2008. Genotype, haplotype and copy-number variation in worldwide human populations. Nature, pp. 998-1003. 54. Garrigan, D. et al., 2007. Inferring human population sizes, divergence times and rates of gene flow from mitochondrial, X and Y chromosome resequencing data. Genetics, Volume 177, pp. 2195-2207. 55. Silva GAV, Naveca FG, Ramasawmy R, Boechat AL. Association between the IFNG +874A/T gene polymorphism and leprosy resistance: A meta-analysis. Cytokine [Internet]. 2014;65(2):130–3. DOI: 10.1016/j.cyto.2013.12.002 56. Paithankar KR, Prasad KS. Precipitation of DNA by polyethylene glycol and ethanol. Nucleic Acids Res. 1991 Mar 25;19(6):1346. doi: 10.1093/nar/19.6.1346. PMID: 2030954; PMCID: PMC333871. 57. Lis JT. Fractionation of DNA fragments by polyethylene glycol induced precipitation. Methods Enzymol. 1980;65(1):347-53. doi: 10.1016/s0076-6879(80)65044-7. PMID: 6246357. 50 58. Himmelstein MS, Sanchez DT. Masculinity impediments: internalized masculinity contributes to healthcare avoidance in men and women. J Health Psychol. 2016;21(7):1283–92. 59. Gomes R, Nascimento EF do, Araújo FC. Por que os homens buscam menos os serviços de saúde do que as mulheres? As explicações de homens com baixa escolaridade e homens com ensino superior Why do men use health services less than women? Explanations by men with low versus higher education. Cad Saúde Publica - Rio Janeiro. 2007;23(3):565–74. 60. Lucena R. Os homens (ainda) não vão ao médico [Internet]. Diário de Pernabunco. 2019. Available at: https://www.diariodepernambuco.com.br/noticia/opiniao/2019/10/os-homens-ainda-nao-vao-ao-medico.html 61. Kim SY, Im K, Park SN, Kwon J, Kim JA, Lee DS. CALR, JAK2, and MPL mutation profiles in patients with four different subtypes of myeloproliferative neoplasms: primary myelofibrosis, essential thrombocythemia, polycythemia vera, and myeloproliferative neoplasm, unclassifiable. Am J Clin Pathol. 2015 May;143(5):635-44. doi: 10.1309/AJCPUAAC16LIWZMM. PMID: 25873496. 62. Mesa R, Miller CB, Thyne M, Mangan J, Goldberger S, Fazal S, Ma X, Wilson W, Paranagama DC, Dubinski DG, Boyle J, Mascarenhas JO. Myeloproliferative neoplasms (MPNs) have a significant impact on patients' overall health and productivity: the MPN Landmark survey. BMC Cancer. 2016 Feb 27;16:167. doi: 10.1186/s12885-016-2208-2. PMID: 26922064; PMCID: PMC4769833. 63. Tefferi A. Mielofibrose primária: atualização de 2021 sobre diagnóstico, estratificação de risco e manejo. Sou J Hematol. 2021 Jan;96(1):145-162. DOI: 10.1002/ajh.26050. EPub 2020 2 de dezembro. PMID: 33197049. 64. Mudireddy, M., Shah, S., Lasho, T., Barraco, D., Hanson, C.A., Ketterling, R.P., Gangat, N., Pardanani, A. and Tefferi, A. (2018), Prefibrotic versus overtly fibrotic primary myelofibrosis: clinical, cytogenetic, molecular and prognostic comparisons. Br J Haematol, 182: 594-597. https://doi.org/10.1111/bjh.14838. 65. Tefferi A, Alkhateeb H, Gangat N. Blast phase myeloproliferative neoplasm: contemporary review and 2024 treatment algorithm. Blood Cancer J. 2023 Jul 18;13(1):108. doi: 10.1038/s41408-023-00878-8. PMID: 37460550; PMCID: PMC10352315. 66. Jadad AR, Moore RA, Carroll D, Jenkinson C, Reynolds DJ, Gavaghan DJ, et al. Assessing the quality of reports of randomized clinical trials: is blinding necessary? Control Clin Trials 1996; 17:1-12. 51 67. De Stefano V, Za T, Rossi E, Vannucchi AM, Ruggeri M, Elli E, et al. Recurrent thrombosis in patients with polycythemia vera and essential thrombocythemia: Incidence, risk factors, and effect of treatments. Haematologica. 2008;93(3):372–80. 68. Alvarez-Larrán A, Pereira A, Arellano-Rodrigo E, Hernández-Boluda JC, Cervantes F, Besses C. Cytoreduction plus low-dose aspirin versus cytoreduction alone as primary prophylaxis of thrombosis in patients with high-risk essential thrombocythaemia: an observational study. Br J Haematol. 2013 Jun;161(6):865-71. PubMed PMID: 23577924 69. Hernández-Boluda JC, et al. Observation versus antiplatelet therapy as primary prophylaxis for thrombosis in low-risk essential thrombocythemia. Blood. 2010 Aug 26;116(8):1205-10; quiz 1387.PMID: 20508163 70. Gugliotta L, Besses C, Griesshammer M, Harrison C, Kiladjian JJ, Coll R, ,et al. Combination therapy of hydroxycarbamide with anagrelide in patients with essential thrombocythemia in the evaluation of Xagrid(R) efficacy and long-term safety study. Haematologica. 2014 Apr;99(4):679-87. PMID: 24334294 71. Barosi G1, Besses C, Birgegard G, Briere J, Cervantes F, Finazzi G, Gisslinger H, Griesshammer M, Gugliotta L, Harrison C, Hasselbalch H, Lengfelder E, Reilly JT, Michiels JJ, Barbui T. A unified definition of clinical resistance/intolerance to hydroxyurea in essential thrombocythemia: results of a consensus process by an international working group. Leukemia. 2007 Feb;21(2):277-80. 72. Claire N. Harrison, et al. Ruxolitinib vs best available therapy for ET intolerant or resistant to hydroxycarbamide. Blood 2017 130:1889-1897 73. Quintás-Cardama A, Kantarjian H, Manshouri T, Luthra R, Estrov Z, Pierce S, Et al. Pegylated interferon alfa-2a yields high rates of hematologic and molecular response in patients with advanced essential thrombocythemia and polycythemia vera. J Clin Oncol. 2009 Nov 10;27(32):5418-24. PMID: 19826111 74. Wells G, Shea B, O’Connell D, Robertson J, Peterson J, Welch V, et al. The Newcastle-Ottawa Scale (NOS) for assessing the quality of nonrandomised studies in meta-analyses. Disponível em: http://www.ohri.ca/programs/clinical_epidemiology/oxford.asp 75. Petti MC, Latagliata R, Spadea T, Spadea A, Montefusco E, Aloe Spiriti MA, Avvisati G, Breccia M, Pescarmona E, Mandelli F. Melphalan treatment in patients with myelofibrosis with myeloid metaplasia. Br J Haematol. 2002;116(3):576-81. Erratum in: Br J Haematol 2002;117(4):1002. PubMed PMID: 11849213. 52 76. Tefferi A, Jiménez T, Gray LA, Mesa RA, Chen MG. Radiation therapy for symptomatic hepatomegaly in myelofibrosis with myeloid metaplasia. Eur J Haematol. 2001;66(1):37-42. PubMed PMID: 11168506. 77. Wagner H Jr, McKeough PG, Desforges J, Madoc-Jones H. Splenic irradiation in the treatment of patients with chronic myelogenous leukemia or myelofibrosis with myeloid metaplasia. Results of daily and intermittent fractionation with and without concomitant hydroxyurea. Cancer. 1986;58(6):1204-7. PubMed PMID: 2427184. 78. Bachleitner-Hofmann T, Gisslinger H. The role of interferon-alpha in the treatment of idiopathic myelofibrosis. Ann Hematol. 1999;78(12):533-8. Review. PubMed PMID: 10647876. 79. Löfvenberg E, Wahlin A. Management of polycythaemia vera, essential thrombocythaemia and myelofibrosis with hydroxyurea. Eur J Haematol. 1988;41(4):375-81. PubMed PMID: 3197824. 80. Martínez-Trillos A, Gaya A, Maffioli M, Arellano-Rodrigo E, Calvo X, Díaz-Beyá M, Cervantes F. Efficacy and tolerability of hydroxyurea in the treatment of the hyperproliferative manifestations of myelofibrosis: results in 40 patients. Ann Hematol. 2010;89(12):1233-7. PubMed PMID: 20567824. 81. Manoharan A. Management of myelofibrosis with intermittent hydroxyurea. Br J Haematol. 1991;77(2):252-4. PubMed PMID: 2004030. 82. Engström KG, Löfvenberg E. Treatment of myeloproliferative disorders with hydroxyurea: effects on red blood cell geometry and deformability. Blood. 1998;91(10):3986-91. PubMed PMID: 9573039. 83. Sirhan S, Lasho TL, Hanson CA, Mesa RA, Pardanani A, Tefferi A. The presence of JAK2V617F in primary myelofibrosis or its allele burden in polycythemia vera predicts chemosensitivity to hydroxyurea. Am J Hematol. 2008;83(5):363-5. PubMed PMID: 18266209. 84. Nand S, Stock W, Godwin J, Fisher SG. Leukemogenic risk of hydroxyurea therapy in polycythemia vera, essential thrombocythemia, and myeloid metaplasia with myelofibrosis. Am J Hematol. 1996;52(1):42-6. PubMed PMID: 8638610. 85. Nielsen I, Hasselbalch HC. Acute leukemia and myelodysplasia in patients with a Philadelphia chromosome negative chronic myeloproliferative disorder treated with hydroxyurea alone or with hydroxyurea after busulphan. Am J Hematol. 2003;74(1):26-31. PubMed PMID: 12949887. 53 86. Levels of Evidence and Grades of Recommendations - Oxford Centre for Evidence Based Medicine. Disponível em URL: http://cebm.jr2.ox.ac.uk/docs/ old_levels. Htm 87. Jadad AR, Moore RA, Carroll D, Jenkinson C, Reynolds DJ, Gavaghan DJ, et al. Assessing the quality of reports of randomized clinical trials: is blinding necessary? Control Clin Trials 1996; 17:1-12. 88. Wells G, Shea B, O’Connell D, Robertson J, Peterson J, Welch V, et al. The Newcastle-Ottawa Scale (NOS) for assessing the quality of nonrandomised studies in meta-analyses. Disponível em: http://www.ohri.ca/programs/clinical_epidemiology/oxford.asp 89. Goldet G, Howick J. Understanding GRADE: an introduction. J Evid Based Med 2013; 6:50-4. 90. Rumi E, Pietra D, Guglielmelli P, Bordoni R, Casetti I, Milanesi C, Sant'Antonio E, Ferretti V, Pancrazzi A, Rotunno G, Severgnini M, Pietrelli A, Astori C, Fugazza E, Pascutto C, Boveri E, Passamonti F, De Bellis G, Vannucchi A, Cazzola M; Associazione Italiana per la Ricerca sul Cancro Gruppo Italiano Malattie Mieloproliferative. Acquired copy-neutral loss of heterozygosity of chromosome 1p as a molecular event associated with marrow fibrosis in MPL-mutated myeloproliferative neoplasms. Blood. 2013 May 23;121(21):4388-95. doi: 10.1182/blood-2013-02-486050. Epub 2013 Apr 10. PMID: 23575445; PMCID: PMC3663431. 91. Pietra D, Brisci A, Rumi E, Boggi S, Elena C, Pietrelli A, Bordoni R, Ferrari M, Passamonti F, De Bellis G, Cremonesi L, Cazzola M. Deep sequencing reveals double mutations in cis of MPL exon 10 in myeloproliferative neoplasms. Haematologica. 2011 Apr;96(4):607-11. doi: 10.3324/haematol.2010.034793. Epub 2011 Jan 12. PMID: 21228032; PMCID: PMC3069239. 92. Boyd EM, Bench AJ, Goday-Fernández A, Anand S, Vaghela KJ, Beer P, Scott MA, Bareford D, Green AR, Huntly B, Erber WN. Clinical utility of routine MPL exon 10 analysis in the diagnosis of essential thrombocythaemia and primary myelofibrosis. Br J Haematol. 2010 Apr;149(2):250-7. doi: 10.1111/j.1365-2141.2010.08083.x. Epub 2010 Feb 11. PMID: 20151976. 93. Brisci A, Damin F, Pietra D, Galbiati S, Boggi S, Casetti I, Rumi E, Chiari M, Cazzola M, Ferrari M, Cremonesi L. COLD-PCR and innovative microarray substrates for detecting and genotyping MPL exon 10 W515 substitutions. Clin Chem. 2012 Dec;58(12):1692-702. doi: 10.1373/clinchem.2012.192708. Epub 2012 Oct 11. PMID: 23065476. 54 94. Lee Tokar L, Kearney L, Langabeer SE. MPL exon 10 mutations in Irish patients with a suspected myeloproliferative neoplasm. EXCLI J. 2021 Feb 1; 20:197-198. doi: 10.17179/excli2021-3454. PMID: 33628158; PMCID: PMC7898040. 95. Chen X, Qi X, Tan Y, Xu Z, Xu A, Zhang L, Wang H. Detection of MPL exon10 mutations in 103 Chinese patients with JAK2V617F-negative myeloproliferative neoplasms. Blood Cells Mol Dis. 2011 Jun 15;47(1):67-71. doi: 10.1016/j.bcmd.2011.04.004. Epub 2011 May 8. PMID: 21555228. 96. Ivanova MI, Shivarov VS, Hadjiev EA, Naumova EJ. Novel multiplex bead-based assay with LNA-modified probes for detection of MPL exon 10 mutations. Leuk Res. 2011 Aug;35(8):1120-3. doi: 10.1016/j.leukres.2011.04.012. Epub 2011 May 12. PMID: 21570117. 97. Sugimoto Y, Nagaharu K, Ohishi K, Nakamura M, Ikejiri M, Nakatani K, Mizutani M, Tamaki S, Ikeda T, Tawara I, Katayama N. MPL exon 10 mutations other than canonical MPL W515L/K mutations identified by in-house MPL exon 10 direct sequencing in essential thrombocythemia. Int J Hematol. 2021 May;113(5):618-621. doi: 10.1007/s12185-021-03134-6. Epub 2021 Mar 26. PMID: 33770389. 98. Moncada A, Pancrazzi A. Lab tests for MPN. Int Rev Cell Mol Biol. 2022; 366:187-220. doi: 10.1016/bs.ircmb.2021.02.010. Epub 2021 Apr 5. PMID: 35153004. 99. Baumforth KR, Nelson PN, Digby JE, O'Neil JD, Murray PG. Demystified ... the polymerase chain reaction. Mol Pathol. 1999 Feb;52(1):1-10. doi: 10.1136/mp.52.1.1. PMID: 10439832; PMCID: PMC395663. 100. Waters DL, Shapter FM. The polymerase chain reaction (PCR): general methods. Methods Mol Biol. 2014; 1099:65-75. doi: 10.1007/978-1-62703-715-0_7. PMID: 24243196. 101. Green MR, Sambrook J. The Basic Polymerase Chain Reaction (PCR). Cold Spring Harb Protoc. 2018 May 1;2018(5). doi: 10.1101/pdb. prot095117. PMID: 29717051. 102. Lorenz TC. Polymerase chain reaction: basic protocol plus troubleshooting and optimization strategies. J Vis Exp. 2012 May 22;(63):e3998. doi: 10.3791/3998. PMID: 22664923; PMCID: PMC4846334. 103. Frawley T, O'Brien CP, Conneally E, Vandenberghe E, Percy M, Langabeer SE, Haslam K. Development of a Targeted Next-Generation Sequencing Assay to Detect Diagnostically Relevant Mutations of JAK2, CALR, and MPL in Myeloproliferative Neoplasms. Genet Test Mol Biomarkers. 2018 Feb;22(2):98-103. doi: 10.1089/gtmb.2017.0203. Epub 2018 Jan 11. PMID: 29323541. 55 104. Smith CJ, Osborn AM. Advantages and limitations of quantitative PCR (Q-PCR)-based approaches in microbial ecology. FEMS Microbiol Ecol. 2009 Jan;67(1):6-20. doi: 10.1111/j.1574-6941.2008.00629. x. PMID: 19120456. 105. Akpınar TS, Hançer VS, Nalçacı M, Diz-Küçükkaya R. MPL W515L/K Mutations in Chronic Myeloproliferative Neoplasms. Turk J Haematol. 2013 Mar;30(1):8-12. doi: 10.4274/tjh.65807. Epub 2013 Mar 5. PMID: 24385746; PMCID: PMC3781658. 106. Labastida-Mercado N, Galindo-Becerra S, Garcés-Eisele J, Colunga-Pedraza P, Guzman-Olvera V, Reyes-Nuñez V, Ruiz-Delgado GJ, Ruiz-Argüelles GJ. The mutation profile of JAK2, MPL and CALR in Mexican patients with Philadelphia chromosome-negative myeloproliferative neoplasms. Hematol Oncol Stem Cell Ther. 2015 Mar;8(1):16-21. doi: 10.1016/j.hemonc.2014.12.002. Epub 2015 Jan 21. PMID: 25637689. 107. Rozovski U, Verstovsek S, Manshouri T, Dembitz V, Bozinovic K, Newberry K, Zhang Y, Bove JE 4th, Pierce S, Kantarjian H, Estrov Z. An accurate, simple prognostic model consisting of age, JAK2, CALR, and MPL mutation status for patients with primary myelofibrosis. Haematologica. 2017 Jan;102(1):79-84. doi: 10.3324/haematol.2016.149765. Epub 2016 Sep 29. PMID: 27686378; PMCID: PMC5210235. 108. Vu HA, Thao TT, Dong CV, Vuong NL, Chuong HQ, Van PNT, Nghia H, Binh NT, Dung PC, Xinh PT. Clinical and Hematological Relevance of JAK2V617F, CALR, and MPL Mutations in Vietnamese Patients with Essential Thrombocythemia. Asian Pac J Cancer Prev. 2019 Sep 1;20(9):2775-2780. doi: 10.31557/APJCP.2019.20.9.2775. PMID: 31554376; PMCID: PMC6976857. 109. Ojeda MJ, Bragós IM, Calvo KL, Williams GM, Carbonell MM, Pratti AF. CALR, JAK2 and MPL mutation status in Argentinean patients with BCR::ABL1- negative myeloproliferative neoplasms. Hematology. 2018 May;23(4):208-211. doi: 10.1080/10245332.2017.1385891. Epub 2017 Oct 9. PMID: 28990497pt_BR
dc.publisher.initialsUEApt_BR
Aparece nas coleções:DISSERTAÇÃO - PPCAH Programa de Pós-Graduação em Ciências Aplicadas à Hematologia

Arquivos associados a este item:
Arquivo Descrição TamanhoFormato 
Estudo molecular do éxon 10 do gene MPL em pacientes com Trobocitemia essencial e mielofibrose.pdf8,12 MBAdobe PDFVisualizar/Abrir


Os itens no repositório estão protegidos por copyright, com todos os direitos reservados, salvo quando é indicado o contrário.