DSpace logo

Use este identificador para citar ou linkar para este item: http://repositorioinstitucional.uea.edu.br//handle/riuea/5352
Registro completo de metadados
Campo DCValorIdioma
dc.contributor.authorPereira, Daniele de Sá-
dc.date.available2023-11-13-
dc.date.available2023-11-21T13:12:38Z-
dc.date.issued2023-07-20-
dc.identifier.urihttp://repositorioinstitucional.uea.edu.br//handle/riuea/5352-
dc.description.abstractDespite therapeutic advances, 25% of children with acute lymphoblastic leukemia (ALL) relapse during treatment due to various intrinsic cellular switches. Studies report that the high expression of anti-apoptotic genes and resistance to multiple drugs are types associated with therapeutic failures in several neoplasms, including leukemias. However, there is a lack of studies demonstrating the influence of the expression of these genes on the response to induction therapy in patients with B-cell acute lymphoblastic leukemia (B-ALL). Thus, the present study aimed to characterize the expression of multi-drug resistance genes (ABCB1, ABCC1, MVP) and antiapoptotic genes (TP53 and BCL2) in the clinical prognosis of patients with B-ALL projected at Fundação Hospitalar de Hematologia e Hemoterapia do Amazonas (HEMOAM) and compare their expression levels to those of healthy children. A prospective longitudinal study was carried out, in which bone marrow (BM) and peripheral blood (SP) were included in 17 pediatric patients with BALL, of general age group and gender, during induction therapy, being collected at diagnosis (D0) and at the end of therapy (D35). In addition, a SP sample was collected from 17 healthy children, attended at the HEMOAM Foundation outpatient clinic. Detection of gene expression (ABCB1, ABCC1, MVP, TP53, BCL2) was performed using the quantitative real-time PCR (qPCR) technique using Taqman expression probes. It was observed that the anti-apoptotic genes BCL2 and TP53 were more expressed in patients with B-ALL compared to healthy subjects in SP. Furthermore, levels of expression of resistance genes ABCB1, ABCC1 and MVP decreased in the bone marrow at D35 of the induction therapy, counteracting the increase in expression of ABCC1 and MVP at D35 compared to D0 of reference blood from those patients. Finally, we observed that healthy individuals expressed higher levels of MVP compared to patients with ALL. Finally, we observed that the evaluation of the expression of the ABCB1, ABCC1, MVP, BCL2 and TP53 genes can help in the evaluation of the prognosis of these patients, contributing to the detection of possible molecular biomarkers and the creation of targeted therapies in addition to current chemotherapy. However, future investigations are necessary for a better understanding of the impact of the expression of these genes on medullary remission in these patients, generating data that contribute to an increase in the survival rate in A-ALL.pt_BR
dc.languageporpt_BR
dc.publisherUniversidade do Estado do Amazonaspt_BR
dc.rightsAcesso Abertopt_BR
dc.subjectLeucemia linfoblástica agudapt_BR
dc.subjectABCB1pt_BR
dc.subjectABCC1pt_BR
dc.subjectMVPpt_BR
dc.subjectTP53pt_BR
dc.subjectBCL2pt_BR
dc.subjectAcute lymphoblastic leukemiapt_BR
dc.titleCaracterização da expressão de genes antiapoptóticos e de resistência a múltiplas drogas na resposta a terapia de indução em pacientes com leucemia linfoblástica agudapt_BR
dc.title.alternativeCharacterization of the expression of antiapoptotic and multidrug resistance genes in response to induction therapy in patients with acute lymphoblastic leukemiapt_BR
dc.typeDissertaçãopt_BR
dc.date.accessioned2023-11-21T13:12:38Z-
dc.contributor.advisor-co1Marie, Adriana Malheiro Alle-
dc.contributor.advisor-co1Latteshttp://lattes.cnpq.br/2627415957053194pt_BR
dc.contributor.advisor1Costa, Allyson Guimarães da-
dc.contributor.advisor1Latteshttp://lattes.cnpq.br/7531662673281014pt_BR
dc.contributor.referee1Costa, Allyson Guimarães d-
dc.contributor.referee1Latteshttp://lattes.cnpq.br/7531662673281014pt_BR
dc.contributor.referee2Lima, Dhêmerson Souza de-
dc.contributor.referee2Latteshttp://lattes.cnpq.br/3461804562751268pt_BR
dc.contributor.referee3Mourão, Lucivana Prata de Souza-
dc.contributor.referee3Latteshttp://lattes.cnpq.br/1135734404648095pt_BR
dc.creator.Latteshttp://lattes.cnpq.br/8045746566975978pt_BR
dc.description.resumoApesar dos avanços terapêuticos, 25% das crianças com leucemia linfoblástica aguda (LLA) recaem durante o tratamento devido a diversos mecanismos celulares intrínsecos. Estudos relatam que a alta expressão de genes antiapoptóticos e de resistência a múltiplas drogas estão associados com falhas terapêuticas em vários tipos de neoplasias, incluindo as leucemias. Todavia, há uma carência de estudos que demonstrem a influência da expressão desses genes na resposta a terapia de indução em pacientes com leucemia linfoblástica aguda de células B (LLA-B). Assim, o presente estudo teve como objetivo caracterizar a expressão de genes de resistência a múltiplas drogas (ABCB1, ABCC1, MVP) e genes antiapoptóticos (TP53 e BCL2) no prognóstico clínico de pacientes com LLA-B diagnosticados na Fundação Hospitalar de Hematologia e Hemoterapia do Amazonas (HEMOAM) e comparar seus níveis de expressão aos de crianças saudáveis. Foi realizado um estudo longitudinal do tipo prospectivo, no qual foram incluídos amostras de medula óssea (MO) e sangue periférico (SP) de 17 pacientes pediátricos com LLA-B, de faixa etária geral e ambos os sexos, durante a terapia de indução, sendo coletadas ao diagnóstico (D0) e no final da terapia (D35). Adicionalmente, foi coletado amostras de SP de 17 crianças saudáveis, atendidas no ambulatorial da Fundação HEMOAM. A detecção da expressão dos genes (ABCB1, ABCC1, MVP, TP53, BCL2) ocorreu através da técnica de PCR quantitativa em tempo real (qPCR) utilizando sondas de expressão Taqman. Foi observado que os genes antiapoptóticos BCL2 e TP53 demonstraram serem mais expressos em pacientes com LLA-B em comparação a indivíduos saudáveis no SP. Além disso, níveis de expressão dos genes de resistência ABCB1, ABCC1 e MVP diminuíram na medula óssea ao D35 da terapia de indução, contrapondo o aumento na expressão de ABCC1 e MVP no D35 em comparação com D0 de amostras de sangue periférico desses pacientes. Por fim, observamos que indivíduos saudáveis expressaram níveis mais elevado de MVP em comparação a pacientes com LLA. Ao final do estudo, observamos que a avalição da expressão dos genes ABCB1,ABCC1, MVP, BCL2 e TP53 podem auxiliar na avaliação do prognóstico desses pacientes, contribuindo na detecção de possíveis biomarcadores moleculares e na criação de terapias alvos de forma agregada a quimioterapia atual. No entanto, investigações futuras são necessárias para o melhor entendimento do impacto da expressão desse genes na remissão medular nesses pacientes, gerando dados que contribuam com aumento da taxa de sobrevida na LLA-B.pt_BR
dc.publisher.countryBrasilpt_BR
dc.publisher.programPPGH -PROGRAMA DE PÓS-GRADUAÇÃO EM CIÊNCIAS APLICADAS À HEMATOLOGIApt_BR
dc.relation.references1. Cavalcante MS, Santana Rosa IS, Torres F. Leucemia linfoide aguda e seus principais conceitos. Rev Científica FAEMA. 2017;8(2):151. 2. Ketelut-Carneiro N, Silva GK, Rocha FA, Milanezi CM, Cavalcanti-Neto FF, Zamboni DS, et al. IL-18 Triggered by the Nlrp3 Inflammasome Induces Host Innate Resistance in a Pulmonary Model of Fungal Infection. J Immunol [Internet]. 2015 May 1 [cited 2020 Feb 10];194(9):4507–17. Available from: http://www.ncbi.nlm.nih.gov/pubmed/25825440 3. Silva-Junior AL, Alves FS, Kerr MWA, Xabregas LA, Gama FM, Rodrigues MGA, et al. Acute lymphoid and myeloid leukemia in a Brazilian Amazon population: Epidemiology and predictors of comorbidity and deaths. PLoS One. 2019;14(8):e0221518. 4. Pereira Leite E, Tereza Cartaxo Muniz M, da Cunha Andrade Cirne de Azevedo A, Ribeiro Souto F, Cristina Lopes Maia Â, Marilda da Fonseca Gondim C, et al. Fatores prognósticos em crianças e adolescentes com Leucemia Linfóide Aguda Prognostic factors in children and adolescents with Acute Lymphoblastic Leukemia. Rev Bras Saúde Matern Infant. 2007;7(4):413–21. 5. Kuster L, Grausenburger R, Fuka G, Kaindl U, Krapf G, Inthal A, et al. ETV6/RUNX1- positive relapses evolve from an ancestral clone and frequently acquire deletions of genes implicated in glucocorticoid signaling. Blood. 2011 Mar 3;117(9):2658–67. 6. BARBOSA TDC. Identificação de alterações genéticas submicroscópicas em leucemias linfoblásticas pediátricas Ministério da Saúde Instituto Nacional de Câncer Identificação de alterações genéticas submicroscópicas em leucemias linfoblásticas pediátricas. 2014;153. 7. Neves Junior I. Avaliação da expressão do gene MDR1 (Glicoproteína-P) e atividade de efluxo em células do sangue periférico de pacientes sob tratamento da tuberculose multirresistente. 2013;1:56. Available from: http://157.86.8.8/reports/doutorado_bibcb/ivan_junior_ipec_dout_2013.pdf 8. Feyzi AAHP, Hagh MF, Ebadi T, Asanjan KS, Akbari AM, Talebi M, et al. The effect of resveratrol on the expression of MDR1 gene in leukemic lymphoblast’s of acute lymphoblastic leukemia patients. Casp J Intern Med. 2015;6(2):113–5. 9. Chauhan PS, Bhushan B, Singh LC, Mishra AK, Saluja S, Mittal V, et al. Expression of genes related to multiple drug resistance and apoptosis in acute leukemia: Response to induction chemotherapy. Exp Mol Pathol. 2012;92(1):44–9. 10. Kulsoom B, Shamsi TS, Afsar NA. Lung resistance-related protein (LRP) predicts favorable therapeutic outcome in Acute Myeloid Leukemia. Sci Rep [Internet]. 2019;9(1):1–11. Available from: http://dx.doi.org/10.1038/s41598-018-36780-8 11. Hof J, Krentz S, Van Schewick C, Körner G, Shalapour S, Rhein P, et al. Mutations and deletions of the TP53 gene predict nonresponse to treatment and poor outcome in first relapse of childhood acute lymphoblastic leukemia. J Clin Oncol. 2011 Aug 10;29(23):3185–93. 61 12. Tognon R, Nunes N de S, Castro FA de. Desregulação da apoptose em neoplasias mieloproliferativas crônicas. Einstein (São Paulo). 2013;11(4):540–4. 13. Hersh EM, Whitecar JP, Mccredie KB, Bodey GP, Freireich EJ. Chemotherapy, Immunocompetence, Immunosuppression and Prognosis in Acute Leukemia. N Engl J Med. 1971 Nov 25;285(22):1211–6. 14. Elman I, Silva MEMP e. Crianças Portadoras de Leucemia Linfóide Aguda : Análise dos Limiares de Detecção dos Gostos Básicos Acute Lymphocytic Leukemia in Children : Analysis of Detection Thresholds. Rev Bras Cancerol. 2007;53(3):297–303. 15. Zhang J, Ding L, Holmfeldt L, Wu G, Heatley SL, Payne-Turner D, et al. The genetic basis of early T-cell precursor acute lymphoblastic leukaemia. Nature. 2012 Jan 12;481(7380):157–63. 16. Brandalise SR, Pinheiro VR, Aguiar SS, Matsuda EI, Otubo R, Yunes JA, et al. Benefits of the intermittent use of 6-mercaptopurine and methotrexate in maintenance treatment for low-risk acute lymphoblastic leukemia in children: Randomized trial from the Brazilian childhood cooperative group - Protocol ALL-99. J Clin Oncol. 2010;28(11):1911–8. 17. Lyengar V, Shimanovsky A. Leukemia [Internet]. StatPearls. StatPearls Publishing; 2021 [cited 2021 Jul 17]. Available from: https://www.ncbi.nlm.nih.gov/books/NBK560490/ 18. Szczepański T, Van Der Velden VHJ, Waanders E, Kuiper RP, Van Vlierberghe P, Gruhn B, et al. Late recurrence of childhood T-cell acute lymphoblastic leukemia frequently represents a second leukemia rather than a relapse: First evidence for genetic predisposition. J Clin Oncol. 2011 Apr 20;29(12):1643–9. 19. Silva FF da, Latorre M do RD de O. Sobrevida das leucemias linfoides agudas em crianças no Município de São Paulo, Brasil. Cad Saude Publica [Internet]. 2020 Mar 23 [cited 2021 Jul 16];36(3). Available from: http://www.scielo.br/j/csp/a/kXGjvjz6fFzrwv5JXxqsvbw/?lang=pt 20. Navarrete-Meneses M del P, Pérez-Vera P. Alteraciones epigenéticas en leucemia linfoblástica aguda. Bol Med Hosp Infant Mex. 2017 Jul 1;74(4):243–64. 21. Kinlen L. Childhood leukaemia and ordnance factories in west Cumbria during the Second World War. Br J Cancer. 2006;95(1):102–6. 22. Follini E, Marchesini M, Roti G. Strategies to overcome resistance mechanisms in t-cell acute lymphoblastic leukemia. Int J Mol Sci. 2019;20(12):1–28. 23. Juárez-Avendaño G, Méndez-Ramírez N, Luna-Silva NC, Gómez-Almaguer D, Pelayo R, Balandrán JC. Molecular and cellular markers for measurable residual disease in acute lymphoblastic leukemia. Bol Med Hosp Infant Mex. 2021 Jun 21;78(3). 24. Estimativa 2020 - Leucemias (taxas ajustadas) | INCA - Instituto Nacional de Câncer [Internet]. [cited 2020 Mar 30]. Available from: https://www.inca.gov.br/estimativa/taxasajustadas/ leucemias 62 25. Miranda-Filho A, Piñeros M, Ferlay J, Soerjomataram I, Monnereau A, Bray F. Epidemiological patterns of leukaemia in 184 countries: a population-based study. Lancet Haematol. 2018 Jan;5(1):e14–24. 26. Severson C. Hematologic Malignancies in Adults. Can Oncol Nurs J. 2016;26(2):177. 27. Da Rocha Paiva Maia R, Filho VW. Infection and childhood leukemia: Review of evidence. Rev Saude Publica. 2013;47(6):1172–85. 28. Malouf C, Ottersbach K. Molecular processes involved in B cell acute lymphoblastic leukaemia. Cell Mol Life Sci [Internet]. 2018 Feb 17;75(3):417–46. Available from: http://link.springer.com/10.1007/s00018-017-2620-z 29. Chessells JM, Swansbury GJ, Reeves B, Bailey CC, Richards SM. Cytogenetics and prognosis in childhood lymphoblastic leukaemia: Results of MRC UKALL X. Br J Haematol. 1997;99(1):93–100. 30. Malouf C, Ottersbach K. Molecular processes involved in B cell acute lymphoblastic leukaemia. Cell Mol Life Sci. 2018;75(3):417–46. 31. Iacobucci I, Mullighan CG. Genetic Basis of Acute Lymphoblastic Leukemia. J Clin Oncol [Internet]. 2017 Mar 20;35(9):975–83. Available from: https://ascopubs.org/doi/10.1200/JCO.2016.70.7836 32. Mullighan CG. Molecular genetics of B-precursor acute lymphoblastic leukemia [Internet]. Vol. 122, Journal of Clinical Investigation. American Society for Clinical Investigation; 2012 [cited 2021 Jun 28]. p. 3407–15. Available from: /pmc/articles/PMC3461902/ 33. Chiaretti S, Zini G, Bassan R. Diagnosis and subclassification of acute lymphoblastic leukemia. Mediterr J Hematol Infect Dis [Internet]. 2014;6(1):e2014073. Available from: http://www.ncbi.nlm.nih.gov/pubmed/25408859 34. Attarbaschi A, Mann G, Panzer-Grümayer R, Röttgers S, Steiner M, König M, et al. Minimal residual disease values discriminate between low and high relapse risk in children with B-cell precursor acute lymphoblastic leukemia and an intrachromosomal amplification of chromosome 21: The Austrian and German Acute Lymphoblastic Leukemia Berl. J Clin Oncol. 2008;26(18):3046–50. 35. Lamkanfi M, Dixit VM. Mechanisms and functions of inflammasomes. Vol. 157, Cell. Cell Press; 2014. p. 1013–22. 36. Ritter JM, Frcp D, Fmedsci F. Rang & Dale: Farmacologia. 37. TD S, YA F, EB A, CM F, EV DP, MT M, et al. Role of peripheral blood minimum residual disease at day 8 of induction therapy in high-risk pediatric patients with acute lymphocytic leukemia. Sci Rep [Internet]. 2016 Aug 16 [cited 2021 Jul 18];6. Available from: https://pubmed.ncbi.nlm.nih.gov/27526794/ 38. Crump C, Sundquist J, Sieh W, Winkleby MA, Sundquist K. Perinatal and familial risk factors for acute lymphoblastic leukemia in a Swedish national cohort. Cancer. 2015;121(7):1040–7. 63 39. Terci Valera E, Scrideli CA, Gomes de Paula Queiroz R, Ortelli Mori BM, Gonzaga Tone L. Multiple drug resistance protein (MDR-1), multidrug resistance-related protein (MRP) and lung resistance protein (LRP) gene expression in childhood acute lymphoblastic leukemia. Sao Paulo Med J [Internet]. 2004 Jul 1 [cited 2022 May 25];122(4):166–71. Available from: https://pubmed.ncbi.nlm.nih.gov/15543372/ 40. Fojo AT, Ueda K, Slamon DJ, Poplack DG, Gottesman MM, Pastan I. Expression of a multidrug-resistance gene in human tumors and tissues. Proc Natl Acad Sci. 1987 Jan;84(1):265–9. 41. Huh HJ, Park C, Jang S, Seo E, Chi H, Lee J, et al. Prognostic Significance of Multidrug Resistance Gene 1 ( MDR1 ), Multidrug Resistance-related Protein ( MRP ) and Lung Resistance Protein ( LRP ) mRNA Expression in Acute Leukemia. 2006;1(8):253–8. 42. Rahgozar S, Moafi A, Abedi M, Entezar-E-Ghaem M, Moshtaghian J, Ghaedi K, et al. mRNA expression profile of multidrug-resistant genes in acute lymphoblastic leukemia of children, a prognostic value for ABCA3 and ABCA2. Cancer Biol Ther [Internet]. 2014 Jan [cited 2022 Feb 20];15(1):35. Available from: /pmc/articles/PMC3938522/ 43. Robey RW, Pluchino KM, Hall MD, Fojo AT, Bates SE, Gottesman MM. Revisiting the role of efflux pumps in multidrug-resistant cancer. 2019;18(7):452–64. Available from: file:///C:/Users/ASUS/Desktop/Rujukan PhD/Pgp/nihms-1034842.pdf 44. Cole SPC. Multidrug resistance protein 1 (mrp1, abcc1), a “multitasking” atp-binding cassette (abc,) transporter. J Biol Chem. 2014;289(45):30880–8. 45. Nakanishi T, Ross DD. Breast cancer resistance protein (BCRP/ABCG2): Its role in multidrug resistance and regulation of its gene expression. Chin J Cancer. 2012;31(2):73– 99. 46. Seo J, Lee C, Paeng JC, Kwon HW, Lee D, Kim S, et al. Biallelic mutations in ABCB1 display recurrent reversible encephalopathy. Ann Clin Transl Neurol. 2020 Aug 5;7(8):1443–9. 47. Juliano RL, Ling V. A surface glycoprotein modulating drug permeability in Chinese hamster ovary cell mutants. Biochim Biophys Acta - Biomembr. 1976 Nov;455(1):152– 62. 48. Ueda K, Pastan I, Gottesman MM. Isolation and sequence of the promoter region of the human multidrug-resistance (P-glycoprotein) gene. J Biol Chem. 1987 Dec 25;262(36):17432–6. 49. Leschziner GD, Andrew T, Pirmohamed M, Johnson MR. ABCB1 genotype and PGP expression, function and therapeutic drug response: A critical review and recommendations for future research. Pharmacogenomics J. 2007;7(3):154–79. 50. Abraham EH, Prat AG, Gerweck L, Seneveratne T, Arceci RJ, Kramer R, et al. The multidrug resistance (mdr1) gene product functions as an ATP channel. Proc Natl Acad Sci U S A. 1993;90(1):312–6. 64 51. Marchetti S, Mazzanti R, Beijnen JH, Schellens JHM. Concise Review: Clinical Relevance of Drug–Drug and Herb–Drug Interactions Mediated by the ABC Transporter ABCB1 (MDR1, P-glycoprotein). Oncologist. 2007;12(8):927–41. 52. El-Sharnouby JA, Abou El-Enein AM, El Ghannam DM, El-Shanshory MR, Hagag AA, Yahia S, et al. Expression of lung resistance protein and multidrug resistance-related protein (MRP1) in pediatric acute lymphoblastic leukemia. J Oncol Pharm Pract [Internet]. 2010 Sep [cited 2022 May 25];16(3):179–88. Available from: https://pubmed.ncbi.nlm.nih.gov/19969624/ 53. Drach J, Zhao S, Drach D, Körbling M, Engel H, Andreeff M. Expression of MDR1 by Normal Bone Marrow Cells and its Implication for Leukemic Hematopoiesis. https://doi.org/103109/10428199509054428 [Internet]. 2009 [cited 2022 May 25];16(5– 6):419–24. Available from: https://www.tandfonline.com/doi/abs/10.3109/10428199509054428 54. Li M, Mei L, He C, Chen H, Cai X, Liu Y, et al. Extrusion pump ABCC1 was first linked with nonsyndromic hearing loss in humans by stepwise genetic analysis. Genet Med [Internet]. 2019 Dec;21(12):2744–54. Available from: https://linkinghub.elsevier.com/retrieve/pii/S1098360021012284 55. Riganti C, Giampietro R, Kopecka J, Costamagna C, Abatematteo FS, Contino M, et al. Mrp1-collateral sensitizers as a novel therapeutic approach in resistant cancer therapy: An in vitro and in vivo study in lung resistant tumor. Int J Mol Sci. 2020;21(9). 56. Yi YJ, Jia XH, Zhu C, Wang JY, Chen JR, Wang H, et al. Solanine reverses multidrug resistance in human myelogenous leukemia K562/ADM cells by downregulating mrp1 expression. Oncol Lett. 2018;15(6):10070–6. 57. Mahjoubi F, Akbari S. Multidrug resistance-associated protein 1 predicts relapse in Iranian childhood acute lymphoblastic leukemia. Asian Pac J Cancer Prev [Internet]. 2012;13(5):2285–9. Available from: http://www.ncbi.nlm.nih.gov/pubmed/22901208 58. Mehrvar N, Abolghasemi H, Rezvany MR, Esmaeil Akbari M, Saberynejad J, Mehrvar A, et al. Pattern of ABCC Transporter Gene Expression in Pediatric Patients with Relapsed Acute Lymphoblastic Leukemia. Reports Biochem Mol Biol [Internet]. 2019 Jul;8(2):184– 93. Available from: http://www.ncbi.nlm.nih.gov/pubmed/31832444 59. da Silveira Júnior LS, Soares V de L, Jardim da Silva AS, Gil EA, Pereira de Araújo M das G, Merces Gonçalves CA, et al. P-glycoprotein and multidrug resistance-associated protein-1 expression in acute myeloid leukemia: Biological and prognosis implications. Int J Lab Hematol [Internet]. 2020 Oct 1 [cited 2022 May 25];42(5):594–603. Available from: https://onlinelibrary.wiley.com/doi/full/10.1111/ijlh.13241 60. Gurbuxani S, Singh Arya L, Raina V, Sazawal S, Khattar A, Magrath I, et al. Significance of MDR1, MRP1, GSTpi and GSTmu mRNA expression in acute lymphoblastic leukemia in Indian patients. Cancer Lett [Internet]. 2001 Jun 10 [cited 2022 May 25];167(1):73–83. Available from: https://pubmed.ncbi.nlm.nih.gov/11323101/ 65 61. Taheri M, Motalebzadeh J, Mahjoubi F. Expression of LRP gene in breast cancer patients correlated with MRP1 as two independent predictive biomarkers in breast cancer. Asian Pacific J Cancer Prev. 2018;19(11):3111–5. 62. Bhatia P, Masih S, Varma N, Bansal D, Trehan A. High expression of lung resistance protein mRNA at diagnosis predicts poor early response to induction chemotherapy in childhood acute lymphoblastic leukemia. Asian Pacific J Cancer Prev. 2015;16(15):6663– 8. 63. Schneider J, Gonzalez-Roces S, Pollán M, Lucas R, Tejerina A, Martin M, et al. Expression of LRP and MDR1 in locally advances breast cancer predicts axillary node invasion at the time of rescue mastectomy after induction chemotherapy. Breast Cancer Res. 2001;3(3):183–91. 64. Izquierdo MA, Scheffer GL, Flens MJ, Giaccone G, Broxterman HJ, Meijer CJ, et al. Broad distribution of the multidrug resistance-related vault lung resistance protein in normal human tissues and tumors. Am J Pathol [Internet]. 1996 Mar;148(3):877–87. Available from: http://www.ncbi.nlm.nih.gov/pubmed/8774142 65. Chetty C, Khumalo T, Da Costa Dias B, Reusch U, Knackmuss S, Little M, et al. Anti- LRP/LR specific antibody IgG1-iS18 impedes adhesion and invasion of liver cancer cells. PLoS One. 2014;9(5):1–10. 66. Terci Valera E, Scrideli CA, Gomes de Paula Queiroz R, Ortelli Mori BM, Gonzaga Tone L. Multiple drug resistance protein (MDR-1), multidrug resistance-related protein (MRP) and lung resistance protein (LRP) gene expression in childhood acute lymphoblastic leukemia. Sao Paulo Med J. 2004;122(4):166–71. 67. Siddiqui WA, Ahad A, Ahsan H. The mystery of BCL2 family: Bcl-2 proteins and apoptosis: an update. Arch Toxicol [Internet]. 2015 Mar;89(3):289–317. Available from: http://www.ncbi.nlm.nih.gov/pubmed/25618543 68. Zörnig M, Evan GI. Cell cycle: On target with Myc. Vol. 6, Current Biology. Cell Press; 1996. p. 1553–6. 69. Fink SL, Cookson BT. Apoptosis, pyroptosis, and necrosis: Mechanistic description of dead and dying eukaryotic cells. Vol. 73, Infection and Immunity. 2005. p. 1907–16. 70. Wei Y, Cao Y, Sun R, Cheng L, Xiong X, Jin X, et al. Targeting Bcl-2 Proteins in Acute Myeloid Leukemia. Front Oncol. 2020;10(November):1–11. 71. Quintás-Cardama A, Hu C, Qutub A, Qiu YH, Zhang X, Post SM, et al. P53 pathway dysfunction is highly prevalent in acute myeloid leukemia independent of TP53 mutational status. Leukemia. 2017;31(6):1296–305. 72. Ribeiro-Silva A, Zucoloto S. A família do p53: aspectos estruturais e funcionais do p73 e do p63. J Bras Patol e Med Lab. 2003;39(2). 73. Barabutis N, Schally A V., Siejka A. P53, GHRH, inflammation and cancer. EBioMedicine. 2018;37:557–62. 66 74. Mattsson K, Honkaniemi E, Ramme K, Barbany G, Sander BM, Gustafsson BM. Strong expression of p53 protein in bone marrow samples after hematopoietic stem cell transplantation indicates risk of relapse in pediatric acute lymphoblastic leukemia patients. Pediatr Transplant [Internet]. 2019 Jun 1 [cited 2022 May 25];23(4). Available from: https://pubmed.ncbi.nlm.nih.gov/30955249/ 75. Nagla dr madhu, Melissa A. Furlong, PhDa, Dana Boyd Barr, PhDb, Mary S. Wolff, PhDc, and Stephanie M. Engel P, Cross, Sarah J. Linker, Kay E. Leslie FM. 乳鼠心肌提 取 HHS Public Access. Physiol Behav. 2016;176(1):100–106. 76. Ahn IE, Tian X, Wiestner A. Ibrutinib for Chronic Lymphocytic Leukemia with TP53 Alterations . N Engl J Med. 2020;383(5):498–500. 77. Ngan B-Y, Chen-Levy Z, Weiss LM, Warnke RA, Cleary ML. Expression in Non- Hodgkin’s Lymphoma of the bcl -2 Protein Associated with the t(14;18) Chromosomal Translocation. N Engl J Med [Internet]. 1988 Jun 23;318(25):1638–44. Available from: http://www.nejm.org/doi/abs/10.1056/NEJM198806233182502 78. Hockenbery D, Nuñez G, Milliman C, Schreiber RD, Korsmeyer SJ. Bcl-2 is an inner mitochondrial membrane protein that blocks programmed cell death. Nature [Internet]. 1990 Nov;348(6299):334–6. Available from: https://www.nature.com/articles/348334a0 79. Korsmeyer SJ. Bcl-2: an antidote to programmed cell death. Cancer Surv [Internet]. 1992;15:105–18. Available from: http://www.ncbi.nlm.nih.gov/pubmed/1451107 80. Reed JC. Bcl-2 family proteins: regulators of apoptosis and chemoresistance in hematologic malignancies. Semin Hematol [Internet]. 1997 Oct;34(4 Suppl 5):9–19. Available from: http://www.ncbi.nlm.nih.gov/pubmed/9408956 81. Bilbao-Sieyro C, Rodríguez-Medina C, Florido Y, Stuckey R, Sáez MN, Sánchez-Sosa S, et al. BCL2 Expression at Post-Induction and Complete Remission Impact Outcome in Acute Myeloid Leukemia. Diagnostics [Internet]. 2020 Dec 4;10(12):1048. Available from: https://www.mdpi.com/2075-4418/10/12/1048 82. Warren CFA, Wong-Brown MW, Bowden NA. BCL-2 family isoforms in apoptosis and cancer. Cell Death Dis [Internet]. 2019;10(3). Available from: http://dx.doi.org/10.1038/s41419-019-1407-6 83. Van Delft MF, Huang DCS. How the Bcl-2 family of proteins interact to regulate apoptosis. Cell Res. 2006;16(2):203–13. 84. Shman T V., Fedasenka UU, Savitski VP, Aleinikova O V. CD34+ leukemic subpopulation predominantly displays lower spontaneous apoptosis and has higher expression levels of Bcl-2 and MDR1 genes than CD34- cells in childhood AML. Ann Hematol [Internet]. 2008 May [cited 2022 May 25];87(5):353–60. Available from: https://pubmed.ncbi.nlm.nih.gov/18228020/ 85. Mofidi M, Rahgozar S, Pouyanrad S. Increased level of long non coding RNA H19 is correlated with the downregulation of miR-326 and BCL-2 genes in pediatric acute lymphoblastic leukemia, a possible hallmark for leukemogenesis. Mol Biol Rep [Internet]. 67 2021 Feb 1 [cited 2022 May 25];48(2):1531–8. Available from: https://pubmed.ncbi.nlm.nih.gov/33580459/ 86. Findley HW, Gu L, Yeager AM, Zhou M. Expression and regulation of Bcl-2, Bcl-xl, and Bax correlate with p53 status and sensitivity to apoptosis in childhood acute lymphoblastic leukemia. Blood [Internet]. 1997 Apr 15 [cited 2022 May 25];89(8):2986–93. Available from: https://pubmed.ncbi.nlm.nih.gov/9108419/ 87. Ashkenazi A, Fairbrother WJ, Leverson JD, Souers AJ. From basic apoptosis discoveries to advanced selective BCL-2 family inhibitors. Nat Rev Drug Discov [Internet]. 2017 Apr;16(4):273–84. Available from: http://www.ncbi.nlm.nih.gov/pubmed/28209992 88. Pravdic Z, Vukovic NS, Gasic V, Marjanovic I, Karan-Djurasevic T, Pavlovic S, et al. The influence of BCL2, BAX, and ABCB1 gene expression on prognosis of adult de novo acute myeloid leukemia with normal karyotype patients. Radiol Oncol [Internet]. 2023 Jun 1;57(2):239–48. Available from: https://www.sciendo.com/article/10.2478/raon-2023- 0017 89. Cahyadi A, Ugrasena IDG, Andarsini MR, Larasati MCS, Aryati A, Arumsari DK. Relationship between Bax and Bcl-2 Protein Expression and Outcome of Induction Phase Chemotherapy in Pediatric Acute Lymphoblastic Leukemia. Asian Pac J Cancer Prev [Internet]. 2022 May 1;23(5):1679–85. Available from: http://www.ncbi.nlm.nih.gov/pubmed/35633553 90. Tiribelli M, Michelutti A, Cavallin M, Di Giusto S, Fanin R, Damiani D. Impact of Concomitant Aberrant CD200 and BCL2 Overexpression on Outcome of Acute Myeloid Leukemia: A Cohort Study from a Single Center. Turkish J Haematol Off J Turkish Soc Haematol [Internet]. 2021 Jun 1;38(2):119–25. Available from: http://www.ncbi.nlm.nih.gov/pubmed/33596632 91. Zhou J-D, Zhang T-J, Xu Z-J, Gu Y, Ma J-C, Li X-X, et al. BCL2 overexpression: clinical implication and biological insights in acute myeloid leukemia. Diagn Pathol [Internet]. 2019 Jun 29;14(1):68. Available from: http://www.ncbi.nlm.nih.gov/pubmed/31253168 92. Bilbao-Sieyro C, Rodríguez-Medina C, Florido Y, Stuckey R, Sáez MN, Sánchez-Sosa S, et al. BCL2 Expression at Post-Induction and Complete Remission Impact Outcome in Acute Myeloid Leukemia. Diagnostics (Basel, Switzerland) [Internet]. 2020 Dec 4;10(12). Available from: http://www.ncbi.nlm.nih.gov/pubmed/33291851 93. Aubrey BJ, Strasser A, Kelly GL. Tumor-Suppressor Functions of the TP53 Pathway. Cold Spring Harb Perspect Med [Internet]. 2016 May 2;6(5). Available from: http://www.ncbi.nlm.nih.gov/pubmed/27141080 94. Stengel A, Schnittger S, Weissmann S, Kuznia S, Kern W, Kohlmann A, et al. TP53 mutations occur in 15.7% of ALL and are associated with MYC-rearrangement, low hypodiploidy, and a poor prognosis. Blood [Internet]. 2014 Jul 10;124(2):251–8. Available from: http://www.ncbi.nlm.nih.gov/pubmed/24829203 95. Weng W, Zhang P, Ruan J, Zhang Y, Ba D, Tang Y. Prognostic significance of the tumor suppressor protein p53 gene in childhood acute lymphoblastic leukemia. Oncol Lett 68 [Internet]. 2019 Nov 7; Available from: http://www.spandidospublications. com/10.3892/ol.2019.11064 96. Tashakori M, Kadia T, Loghavi S, Daver N, Kanagal-Shamanna R, Pierce S, et al. TP53 copy number and protein expression inform mutation status across risk categories in acute myeloid leukemia. Blood [Internet]. 2022 Jul 7;140(1):58–72. Available from: http://www.ncbi.nlm.nih.gov/pubmed/35390143 97. Welch JS, Petti AA, Miller CA, Fronick CC, O’Laughlin M, Fulton RS, et al. TP53 and Decitabine in Acute Myeloid Leukemia and Myelodysplastic Syndromes. N Engl J Med [Internet]. 2016 Nov 24;375(21):2023–36. Available from: http://www.ncbi.nlm.nih.gov/pubmed/27959731 98. Robey RW, Pluchino KM, Hall MD, Fojo AT, Bates SE, Gottesman MM. Revisiting the role of ABC transporters in multidrug-resistant cancer. Nat Rev Cancer [Internet]. 2018 Jul 11;18(7):452–64. Available from: https://www.nature.com/articles/s41568-018-0005-8 99. Organista‑Nava J, Gomez Y, del Moral‑Hernandez O, Illades‑Aguiar B, Gomez‑Santamaria J, Ramarez A, et al. Deregulation of folate pathway gene expression correlates with poor prognosis in acute leukemia. Oncol Lett [Internet]. 2019 Jul 22; Available from: http://www.spandidos-publications.com/10.3892/ol.2019.10650 100. Ho MM, Hogge DE, Ling V. MDR1 and BCRP1 expression in leukemic progenitors correlates with chemotherapy response in acute myeloid leukemia. Exp Hematol [Internet]. 2008 Apr;36(4):433–42. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0301472X07006893 101. Gurbuxani S, Singh Arya L, Raina V, Sazawal S, Khattar A, Magrath I, et al. Significance of MDR1, MRP1, GSTπ and GSTμ mRNA expression in acute lymphoblastic leukemia in Indian patients. Cancer Lett [Internet]. 2001 Jun;167(1):73–83. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0304383500006844 102. Leith CP, Kopecky KJ, Chen IM, Eijdems L, Slovak ML, McConnell TS, et al. Frequency and clinical significance of the expression of the multidrug resistance proteins MDR1/Pglycoprotein, MRP1, and LRP in acute myeloid leukemia. A Southwest Oncology Group study. Blood [Internet]. 1999;94(3):1086–99. Available from: http://dx.doi.org/10.1182/blood.V94.3.1086.415k32_1086_1099 103. Hee JH, Park CJ, Jang S, Seo EJ, Chi HS, Lee JH, et al. Prognostic significance of multidrug resistance gene 1 (MDR1), multidrug resistance-related protein (MRP) and lung resistance protein (LRP) mRNA expression in acute leukemia. J Korean Med Sci [Internet]. 2006 [cited 2022 May 25];21(2):253–8. Available from: https://pubmed.ncbi.nlm.nih.gov/16614510/ 104. Ryan CE, Davids MS. BCL-2 Inhibitors, Present and Future. Cancer J [Internet]. 2019 Nov;25(6):401–9. Available from: https://journals.lww.com/10.1097/PPO.0000000000000408 105. Bueno M, Artico L, Santos A, Bastos A, Yunes J, Saad S, et al. INIBIDORES DE PROTEÍNAS DA FAMÍLIA BCL-2 CONTRA NEOPLASIAS HEMATOLÓGICAS E SEUS EFEITOS NA COMBINAÇÃO COM CITARABINA, VENETOCLAX E 69 DOXORRUBICINA. Hematol Transfus Cell Ther [Internet]. 2022 Oct;44:S144–5. Available from: https://linkinghub.elsevier.com/retrieve/pii/S2531137922003583pt_BR
dc.publisher.initialsUEApt_BR
Aparece nas coleções:DISSERTAÇÃO - PPCAH Programa de Pós-Graduação em Ciências Aplicadas à Hematologia



Os itens no repositório estão protegidos por copyright, com todos os direitos reservados, salvo quando é indicado o contrário.