DSpace logo

Use este identificador para citar ou linkar para este item: http://repositorioinstitucional.uea.edu.br//handle/riuea/5343
Registro completo de metadados
Campo DCValorIdioma
dc.contributor.authorMesquita, Éricka Alves de-
dc.date.available2023-11-08-
dc.date.available2023-11-21T13:06:29Z-
dc.date.issued2023-08-30-
dc.identifier.urihttp://repositorioinstitucional.uea.edu.br//handle/riuea/5343-
dc.description.abstractBCR::ABL1 negative myeloproliferative neoplasms are hematological changes with clonal proliferative characteristics that affect one or more lineages of the myeloid group, including essential thrombocythemia and myelofibrosis. Showing proliferative characteristics in the production of megakaryocytes, leukocytes, platelets and with similar clinical evolution and changes in signaling pathways, mainly in the JAK-STAT pathway. The presence of variations in the CALR gene modifies the structural and functional formation of the Calreticulin protein, compromising cell proliferative normalities in essential thrombocythemia and myelofibrosis. CALR gene variants are in the region of exon 09 and are of the fifty-two base pair deletion (type 1) and or five base pair insertion (type 2) type. Modifying the base reading composition and giving rise to the formation of a new structural C-terminus of the protein, which contributes to distinct clinical pictures of essential thrombocythemia and myelofibrosis. Objective: To track changes in exon 09 of the CALR gene in patients with essential thrombocythemia and myelofibrosis. Methodology: 69 individuals clinically diagnosed with essential thrombocythemia (n=61) and myelofibrosis (n=8) were included in the study. Laboratory data were obtained from sample collections during the individuals' follow-up. Molecular evaluation was performed using Polymerase Chain Reaction and Sanger Sequencing to detect variants in the exon 09 region of the CALR gene. Results: in exon 09 of the CALR gene, the variants rs1555760738 (type 1) and rs765476509 (type 2) were identified. Of the patients with TE (n=61), 4 had it (type 1) and 10 had it (type2), while in MF (n=8), 2 variants were identified; one with type 1 and another with type 2. At the distribution level, there was a predominance of TE CALR type 2. In the analysis between TE subtypes, patients with type 2, presenting higher platelet counts and discreet changes in the clinical-laboratory profile in the other investigated. For patients with MF, the analysis was descriptive, consisting of a CALR type 1 individual (heterozygous) and a CALR type 2 individual (homozygous) presenting laboratory behavioral differences in both, mainly in platelet production. Conclusion: In the analysis between TE subtypes, patients with type 2 confirmed the association with the essential thrombocythemia phenotype and the high production of platelets. Regarding individuals with MF, which includes a rarely reported homozygosity, the association with clinical-laboratory behavior should be further evaluated. These findings confirm that frameshift modifications generated by CALR variants alter the structure of the C-domain of the calreticulin protein, which is involved in intermolecular processes and a constitutive activation in megakaryocyte formation.pt_BR
dc.languageporpt_BR
dc.publisherUniversidade do Estado do Amazonaspt_BR
dc.rightsAcesso Abertopt_BR
dc.subjectNeoplasia mieloproliferativapt_BR
dc.subjectBCR::ABL1 negativopt_BR
dc.subjectCALS tipo 1pt_BR
dc.subjectCALR tipo 2pt_BR
dc.titleIdentficação de variantes no ÉXON 09 do gene calreticulina (CALR) em pacientes com trombocitemia essencial e mielofibrosept_BR
dc.title.alternativeIdentification of variants in EXON 09 of the calreticulin gene (CALR) in patients with essential thrombocythemia and myelofibrosispt_BR
dc.typeDissertaçãopt_BR
dc.date.accessioned2023-11-21T13:06:29Z-
dc.contributor.advisor-co1Tarragô, Arteiro Queiroz-
dc.contributor.advisor-co1Latteshttp://lattes.cnpq.br/4644326589690231pt_BR
dc.contributor.advisor1Mourão, Lucivana Prata de Souza-
dc.contributor.advisor1Latteshttp://lattes.cnpq.br/1135734404648095pt_BR
dc.contributor.referee1Mourão, Lucivana Prata de Souza-
dc.contributor.referee1Latteshttp://lattes.cnpq.br/1135734404648095pt_BR
dc.contributor.referee2Costa, Allysson Guimarães da-
dc.contributor.referee2Latteshttp://lattes.cnpq.br/7531662673281014pt_BR
dc.contributor.referee3Santos, Rafaella Oliveira dos-
dc.contributor.referee3Latteshttp://lattes.cnpq.br/1340016472735687pt_BR
dc.creator.Latteshttp://lattes.cnpq.br/2785370383712196pt_BR
dc.description.resumoAs neoplasias mieloproliferativas BCR::ABL1 negativo são alterações hematológicas de características clonais proliferativas que atingem uma ou mais linhagens do grupo mieloide e incluindo o a trombocitemia essencial e a mielofibrose. Apresentando características proliferativas na produção de células megacariocitária, leucocitárias, plaquetas e com similaridade de evolução clínica e alterações de vias de sinalizações, principalmente na via JAK-STAT. A presença das variações no gene CALR, modifica a formação estrutural e funcional da proteína Calreticulina, comprometendo as normalidades proliferativas celular na trombocitemia essencial e na mielofibrose. As variantes gene CALR estão na região do éxon 09 e são do tipo deleção de cinquenta e dois pares de bases (tipo 1) e ou inserção de cinco pares de bases (tipo 2). Modificando a composição de leitura de bases e dando origem à formação de um novo terminal-C estrutural da proteína, o que contribui para quadros distintos clínicos de trombocitemia essencial e de mielofibrose. Objetivo: Rastrear alterações no éxon 09 do gene CALR em pacientes com trombocitemia essencial e mielofibrose. Metodologia: foram incluídos no estudo 69 indivíduos diagnosticados clinicamente com, trombocitemia essencial (n=61) e mielofibrose (n=8).Dados laboratoriais obtiveram-se de coletas de amostras durante o seguimento dos indivíduos. Realizou-se avaliação molecular em Reação em cadeia de Polimerase e Sequenciamento de Sanger para detecção de variantes na região éxon 09 gene CALR. Resultados: na éxon 09 do gene CALR foram identificadas as variantes rs1555760738 (tipo1) e rs765476509(tipo 2). Dos pacientes com TE (n=61), 4 apresentavam (tipo 1) e 10 com (tipo2), enquanto em MF (n=8), foram identificadas 2 variantes; uma com tipo 1 e outra tipo 2. Ao nível de distribuição, houve uma predominância de TE CALR tipo 2. Na análise entre os subtipos TE, os pacientes com tipo 2, presentando maior contagem de plaquetas e discretas alterações no perfil clínico-laboratorial nos demais investigados. Aos pacientes com MF, a análise seguiu de forma descritivas, composto por um indivíduo CALR tipo1 (heterozigose) e um indivíduo CALR tipo 2 (homozigose) apresentado diferenças comportamentais laboratoriais em ambas principalmente em produção de plaquetas. Conclusão: Na análise entre os subtipos TE, os pacientes com tipo 2 confirmam a associação ao fenótipo de trombocitemia essencial e à elevada produção de plaquetas. Em relação aos indivíduos de MF, que inclui uma homozigose raramente relatada, a associação ao comportamento clínico-laboratorial deve ser melhor mais avaliada. Esses achados confirmam que modificações frameshift gerada por variantes no CALR altera a estrutura do domínio-C da proteína calreticulina, o que está envolvido em processos intermoleculares e uma ativação constitutiva na formação de megacariócitospt_BR
dc.publisher.countryBrasilpt_BR
dc.publisher.programPPGH -PROGRAMA DE PÓS-GRADUAÇÃO EM CIÊNCIAS APLICADAS À HEMATOLOGIApt_BR
dc.relation.references1. Nangalia J, Green AR. Review Article Myeloproliferative neoplasms : from origins to outcomes. 2017;130(23):2475–83. 2. Swerdlow SH, Campo E, Harris NL, Jaffe ES, Leri SAP, Stein H, et al. World Health Organization Classification of Tumours. Revised 4t. World Health Organization. 2017. 3. Vainchenker W, Kralovics R. Genetic basis and molecular pathophysiology of classical myeloproliferative neoplasms. Blood. 2017;129(6):667–79. 4. Berti E, Busque L, Chan JKC, Chen W, Chen X, Chng W joo, et al. The 5th edition of the World Health Organization Classi fi cation of Haematolymphoid Tumours : Myeloid and Histiocytic / Dendritic Neoplasms. 2022;(June). 5. Choi MAJ and CW. Recent insights regarding the molecular basis of myeloproliferative neoplasms. Vol. 35, The Korean Journal of Internal Medicine. 2020. 6. Marneth AE, Mullally A. The Molecular Genetics of Myeloproliferative Neoplasms. Cold Spring Harbor Laboratory Press. 2020; 7. Tefferi A. The history of myeloproliferative disorders: before and after Dameshek. Leukemia. 2008;3–13. 8. Dameshek W. Some speculations on the myeloproliferative syndromes. The Economics of Population Growth. 1951;6(4):486–92. 9. Dale M, Abraham E, Editor A, Wagner PD, Spivak JL. Thrombocytosis, Polycythemia Vera, and JAK2 Mutations: The Phenotypic Mimicry of Chronic Myeloproliferation. PHYSIOLOGY IN MEDICINE: A SERIES OF ARTICLES LINKING MEDICINE WITH SCIENCE. 2010;152:301. 10. Szybinski J, Meyer SC. Genetics of Myeloproliferative Neoplasms. Hematology/Oncology Clinics of NA [Internet]. 2021;35(2):217–36. Available from: https://doi.org/10.1016/j.hoc.2020.12.002 11. Stanley RF, Steidl U. Molecular mechanism of mutant CALR–Mediated transformation. Cancer Discov. 2016;6(4):344–6. 12. Torres DG, Paes J, Costa AG, Malheiro A, Silva G V, Souza LP De, et al. JAK2 Variant Signaling : Genetic , Hematologic and Immune Implication in Chronic Myeloproliferative Neoplasms. 2022; 13. Spivak JL. Mutated CALR: Tails from the crypt. Blood [Internet]. 2019;133(25):2630–1. Available from: http://dx.doi.org/10.1182/blood-2019-04-901132 14. Rao S, Carlson K. Mutant CALR ’ s “ sweet tooth .” 2022;140(11):1187–9. 15. Araki M, Komatsu N. The role of calreticulin mutations in myeloproliferative neoplasms. Int J Hematol [Internet]. 2020;111(2):200–5. Available from: https://doi.org/10.1007/s12185-019-02800-0 16. Tremblay D, Yacoub A, Hoffman R. Overview of MPNs: History, Pathogenesis, Diagnostic Criteria, and Complications. Hematol Oncol Clin North Am. 2022;35(2):159–76. 17. Klampfl T, Gisslinger H, Harutyunyan AS, Nivarthi H, Rumi E, Milosevic JD, et al. Somatic Mutations of Calreticulin in Myeloproliferative Neoplasms. New England Journal of Medicine. 2013;369(25):2379–90. 18. Nangalia J, Massie CE, Baxter EJ, Nice FL, Gundem G, Wedge DC, et al. Somatic CALR Mutations in Myeloproliferative Neoplasms with Nonmutated JAK2 . New England Journal of Medicine. 2013;369(25):2391–405. 19. Wang WA, Groenendyk J, Michalak M. Calreticulin signaling in health and disease. Int J Biochem Cell Biol. 2012;44(6):842–6. 20. Agellon LB, Michalak M. Cellular Biology of the Endoplasmic Reticulum. 2021. 21. Wilkins BS. Myeloproliferative neoplasms. Diagn Histopathol. 2021;2168–81. 22. Michalak M, Groenendyk J, Szabo E, Gold LI, Opas M. Calreticulin, a multi-process calcium-buffering chaperone of the endoplasmic reticulum. Biochemical Journal. 2009;417(3):651–66. 23. Fucikova J, Spisek R, Kroemer G. Calreticulin and cancer. Cell Res [Internet]. 2020;(April):1–12. 78 Available from: http://dx.doi.org/10.1038/s41422-020-0383-9 24. Cazzola M. Mutant calreticulin : when a chaperone becomes intrusive. Blood. 2016;127(10):1219–21. 25. Grinfeld J, Nangalia J, Green AR. Molecular determinants of pathogenesis and clinical phenotype in myeloproliferative neoplasms. Haematologica. 2017;102(1):7–17. 26. Vargas-parada L, Mendlovic PF, Medicina MS, Nacional U, Anahuac U, Conconi M, et al. Calreticulina : uma proteína multifacetada. 2021;(i):2–5. 27. KanduÅa Z, Lewandowski K. Calreticulin- A multifaced protein. Postepy Hig Med Dosw. 2021;75:328–36. 28. Kim HY, Han Y, Jang JH, Jung CW, Kim SH, Kim HJ. Effects of CALR-Mutant Type and Burden on the Phenotype of Myeloproliferative Neoplasms. Diagnostics. 2022;12(11):2570. 29. Cazzola M, Kralovics R. From Janus kinase 2 to calreticulin: The clinically relevant genomic landscape of myeloproliferative neoplasms. Blood. 2014;123(24):3714–9. 30. Masubuchi N, Araki M, Yang Y, Hayashi E, Imai M, Edahiro Y, et al. Mutant calreticulin interacts with MPL in the secretion pathway for activation on the cell surface. Leukemia [Internet]. Available from: http://dx.doi.org/10.1038/s41375-019-0564-z 31. Prins D, Green AR. Mutant CALR functions : gains and losses. Blood [Internet]. 2020;136(1):6–7. Available from: http://dx.doi.org/10.1182/blood.2020005805 32. Pietra D, Rumi E, Ferretti V V., Di Buduo CA, Milanesi C, Cavalloni C, et al. Differential clinical effects of different mutation subtypes in CALR-mutant myeloproliferative neoplasms. Leukemia. 2016;30(2):431–8. 33. Estey E. Differential association of calreticulin type 1 and type 2 mutations with myelo fi brosis and essential thrombocytemia : relevance for disease evolution. 2015;(September 2014):2013–6. 34. Paithankar KR, Prasad KSN. Precipitation of DNA by polyethylene glycol and ethanol. Nucleic Acids Res. 1991;19(6):1346. 35. Silva GAV, Naveca FG, Ramasawmy R, Boechat AL. Association between the IFNG +874A/T gene polymorphism and leprosy resistance: A meta-analysis. Cytokine [Internet]. 2014;65(2):130–3. Available from: http://dx.doi.org/10.1016/j.cyto.2013.12.002 36. Lis JT. Thus, we believe this peak splitting is not due to heterogeneity in the DNA fragments but is due to a column artifact. [42] F r a c t i o n a t i o n o f D N A F r a g m e n t s b y P o l y e t h y l e n e G l y c o l Induced Precipitation. Methods. 1980;65(1974):347–53. 37. Landrum MJ, Lee JM, Benson M, Brown GR, Chao C, Chitipiralla S, et al. ClinVar: Improving access to variant interpretations and supporting evidence. Nucleic Acids Res. 2018;46(D1):D1062–7. 38. Kopanos C, Tsiolkas V, Kouris A, Chapple CE, Albarca Aguilera M, Meyer R, et al. VarSome: the human genomic variant search engine. Bioinformatics. 2019;35(11):1978–80. 39. Constantinescu SN, Pecquet C. CALR Mutations in MPN. 2020;4:102–4. 40. Mex RH, Morales-herrej R, Cort C. Mutaciones en el gen CALR y su papel en el diagnóstico y pronóstico de las neoplasias mieloproliferativas crónicas Mutations in CALR gene and its role in the diagnosis and prognosis of chronic. 2021;22(2):88–96. 41. Varricchio L, Falchi M, Dall’Ora M, De Benedittis C, Ruggeri A, Uversky VN, et al. Calreticulin: Challenges posed by the intrinsically disordered nature of calreticulin to the study of its function. Front Cell Dev Biol. 2017;5(NOV):1–19. 42. Jaiswal A, Wang Z, Zhu X, Ju Z. Unraveling the Connections between Calreticulin and Myeloproliferative Neoplasms via Calcium Signalling Keywords. 2021;1–44. 43. Guglielmelli P, Nangalia J, Green AR, Vannucchi AM. CALR mutations in myeloproliferative neoplasms: Hidden behind the reticulum. Am J Hematol. 2014;89(5):453–6. 44. Schürch PM, Malinovska L, Hleihil M, Losa M, Hofstetter MC, Wildschut MHE, et al. Calreticulin mutations affect its chaperone function and perturb the glycoproteome. Cell Rep. 2022;41(8). 45. Shide K, Shide K. Calreticulin mutations in myeloproliferative neoplasms. Int Rev Cell Mol Biol. 2021;1–53. 46. Constantinescu SN, Vainchenker W, Levy G, Papadopoulos N, Stefanconstantinescubrulicrorg 79 CSNC. Functional Consequences of Mutations in Myeloproliferative Neoplasms. 47. Pereira MLL, Furtado ALR, Pinto FCR, Flor AC, Teixeira AB, Maia Filho PA. Trombose essencial: uma revisão da literatura. Revista Brasileira de Análises Clínicas. 2020;52(1):27–31. 48. Zaidi U, Sufaida G, Rashid M, Kaleem B, Maqsood S, Mukry SN, et al. A distinct molecular mutational profile and its clinical impact in essential thrombocythemia and primary myelofibrosis patients. BMC Cancer. 2020;20(1):1–10. 49. Gulbay G, Bag HG, Yesilada E, Erkurt MA. Calreticulin Mutations in Philadelphia Chromosome Negative Myeloproliferative Neoplasms. UHOD - Uluslararasi Hematoloji-Onkoloji Dergisi. 2022;32(2):075–80. 50. Loghavi S, Bueso-ramos CE, Kanagal-shamanna R, Ok CY, Salim AA, Routbort MJ, et al. Myeloproliferative Neoplasms With Calreticulin Mutations Exhibit Distinctive Morphologic Features. 2016;418–27. 51. Tefferi A, Wassie EA, Guglielmelli P, Gangat N, Belachew AA, Lasho TL, et al. Type 1 versus Type 2 calreticulin mutations in essential thrombocythemia: A collaborative study of 1027 patients. Am J Hematol. 2014;89(8):121–4. 52. Cabagnols X, Defour JP, Ugo V, Ianotto JC, Mossuz P, Mondet J, et al. Differential association of calreticulin type 1 and type 2 mutations with myelofibrosis and essential thrombocytemia: Relevance for disease evolution. Leukemia. 2015;29(1):249–52. 53. Andrikovics H, Krahling T, Balassa K, Halm G, Bors A, Koszarska M, et al. Distinct clinical characteristics of myeloproliferative neoplasms with calreticulin mutations. 2014;99(7):1184–90. 54. Chauffaille M de LLF. Neoplasias mieloproliferativas: Revisão dos critérios diagnósticos e dos aspectos clínicos. Rev Bras Hematol Hemoter. 2010;32(4):308–16. 55. Rumi E, Pietra D, Ferretti V, Klampfl T, Harutyunyan AS, Milosevic JD, et al. JAK2 or CALR mutation status de fi nes subtypes of essential thrombocythemia with substantially different clinical course and outcomes. 2014;123(10):1544–51. 56. Bittencourt RI, Fogliato L, Paz A, Souza MP, Lerner D. Trombocitose essencial: o que é essencial saber. Rev Bras Hematol Hemoter. 2010;32(SUPPL. 1):97–105. 57. Torres BRS, Lins SR de O. Relações Genéticas Da Trombocitemia Essencial: Uma Revisão Narrativa Da Literatura / Genetic Relationships of Essential Thrombocytemia: a Narrative Literature Review. Brazilian Journal of Development. 2020;6(12):94154–64. 58. Barbui T, Thiele J, Passamonti F, Rumi E, Boveri E, Ruggeri M, et al. Survival and Disease Progression in Essential Thrombocythemia Are Significantly Influenced by Accurate Morphologic Diagnosis : An International Study. JOURNAL OF CLINICAL ONCOLOGY ORIGINAL. 2011;29(23):3179–84. 59. Zagaria A, Tarantini F, Orsini P, Anelli L, Cumbo C, Coccaro N, et al. The genomic analysis brings a new piece to the molecular jigsaw of idiopathic erythrocytosis. Exp Hematol Oncol [Internet]. 2022;10–3. Available from: https://doi.org/10.1186/s40164-022-00301-1 60. Anelli L, Orsini P, Zagaria A, Minervini A, Coccaro N, Parciante E, et al. Erythrocytosis with JAK2 GGCC_46/1 haplotype and without JAK2 V617F mutation is associated with CALR rs1049481_G allele. Leukemia [Internet]. 2021;35(2):619–22. Available from: http://dx.doi.org/10.1038/s41375-020-0847-4 61. Sun C, Zhou X, Zou ZJ, Guo HF, Li JY, Qiao C. Clinical Manifestation of Calreticulin Gene Mutations in Essential Thrombocythemia without Janus Kinase 2 and MPL Mutations : A Chinese Cohort Clinical Study. 2016;129(15):11–6. 62. Li N, Yao QM, Gale RP, Li JL, Li L Di, Zhao XS, et al. Frequency and allele burden of CALR mutations in Chinese with essential thrombocythemia and primary myelofibrosis without JAK2V617F or MPL mutations. Leuk Res [Internet]. 2015;39(5):510–4. Available from: http://dx.doi.org/10.1016/j.leukres.2015.02.006 63. Safavi M, Monabati A, Safaei A, Mirtalebi MS, Faghih M. JAK2, CALR, and MPL mutation profiles in BCR-ABL negative myeloproliferative neoplasms, a referral center experience in the middle east. Iran J Pathol. 2021;16(2):190–4. 64. Nonino A, Campregher PV, de Souza Santos FP, Mazzeu JF, Pereira RW. Genomic characterization and prognostication applied to a Brazilian cohort of patients with 80 myelofibrosis. Int J Hematol [Internet]. 2020;112(3):361–8. Available from: https://doi.org/10.1007/s12185-020-02906-w 65. Rattarittamrong E, Tantiworawit A, Kumpunya N, Wongtagan O, Tongphung R, Phusua A, et al. Calreticulin mutation analysis in non-mutated Janus kinase 2 essential thrombocythemia patients in Chiang Mai University: analysis of three methods and clinical correlations. Hematology [Internet]. 2018;23(9):613–9. Available from: https://doi.org/10.1080/10245332.2018.1448699 66. Witold Prejzner, Andrzej Mital, Maria Bieniaszewska, Aleksandra Leszczyńska, Agata Szymańska, Michał Czarnogórski AH, Department. Clinical characteristics of essential thrombocythemia patients depend on the mutation status. 2020;51(December):230–5. 67. Neto PL de F. Caracterização clínica e molecular de pacientes com neoplasia mieloproliferativa crônica – cromossomo Ph- negativo [Internet]. Vol. 106, Bulletin of the Seismological Society of America. 2016. Available from: http://www.bssaonline.org/content/95/6/2373%5Cnhttp://www.bssaonline.org/content/95/6/2373.short%0Ahttp://www.bssaonline.org/cgi/doi/10.1785/0120110286%0Ahttp://gji.oxfordjournals.org/cgi/doi/10.1093/gji/ggv142%0Ahttp://link.springer.com/10.1007/s00024-01 68. Monte-Mor B da CR, Ayres-Silva J de P, Correia WD, Coelho AC, Solza C, Daumas AH, et al. Clinical features of JAK2V617F- or CALR-mutated essential thrombocythemia and primary myelofibrosis. Blood Cells Mol Dis. 2016;60:74–7. 69. Pan Y, Wang X, Wen S, Liu X, Yang L, Luo J. The different variant allele frequencies of type I/type II mutations and the distinct molecular landscapes in CALR-mutant essential thrombocythaemia and primary myelofibrosis. Hematology (United Kingdom). 2022;27(1):902–8. 70. Terra L. Lasho, Christy M. Finke, Alexander Tischer, Animesh Pardanani AT. Mayo CALR mutation type classification guide using alpha helix propensity Predictive value of the new renal response criteria in AL amyloidosis treated with high dose melphalan and stem cell transplantation. 2018;2(February):128–9. 71. Rizvi Q, Zaidi U, Shahid S, Ahmed S, Shamsi T. Homozygous CALR Mutation in Primary Myelofibrosis and Its Effect on Disease Phenotype : A Case Report and Review of the Literature. 2019;2019. 72. Tefferi A, Lasho TL, Finke C, Belachew AA, Wassie EA, Ketterling RP, et al. Type 1 vs type 2 calreticulin mutations in primary myelofibrosis: Differences in phenotype and prognostic impact. Leukemia [Internet]. 2014;28(7):1568–70. Available from: http://dx.doi.org/10.1038/leu.2014.83 73. Tefferi A, Lasho TL, Tischer A, Wassie EA, Finke C, Belachew AA, et al. The prognostic advantage of calreticulin mutations in myelofibrosis might be confined to type 1 or type 1-like CALR variants. Leukemia. 2014;28(10):2106–9. 74. Li B, Xu J, Wang J, Gale RP, Xu Z, Cui Y, et al. Calreticulin mutations in Chinese with primary myelofibrosis. Haematologica. 2014;99(11):1697–700. 75. Tanja B, Pajic T, Matjaz S. OPEN CALR mutations in a cohort of JAK2 V617F negative patients with suspected myeloproliferative neoplasms. 2019;1–9. 76. Lee JS, Kim HY, Kim M, Lee YK. A Novel Pathogenic CALR Exon 9 Mutation in a Patient with EssentialThrombocythemia. Lab Medicine. 2021;51(3):306–9. 77. Iurlo A, Cattaneo D, Orofino N, Bucelli C, Fabris S, Cortelezzi A. Anagrelide and Mutational Status in Essential Thrombocythemia. BioDrugs. 2016; 78. Verger E, Cassinat B, Dosquet C, Giraudier S. Clinical and molecular response to interferon- a therapy in essential thrombocythemia patients with CALR mutations. Blood. 2016;126(24):2585–92.pt_BR
dc.publisher.initialsUEApt_BR
Aparece nas coleções:DISSERTAÇÃO - PPCAH Programa de Pós-Graduação em Ciências Aplicadas à Hematologia



Os itens no repositório estão protegidos por copyright, com todos os direitos reservados, salvo quando é indicado o contrário.