DSpace logo

Use este identificador para citar ou linkar para este item: http://repositorioinstitucional.uea.edu.br//handle/riuea/5341
Registro completo de metadados
Campo DCValorIdioma
dc.contributor.authorPaes, Jhemerson Fernandes-
dc.date.available2023-11-08-
dc.date.available2023-11-21T13:03:19Z-
dc.date.issued2023-07-29-
dc.identifier.urihttp://repositorioinstitucional.uea.edu.br//handle/riuea/5341-
dc.description.abstractBCR::ABL1 negative myeloproliferative neoplasms are hematological disorders characterized by hyperplasia of myeloid elements. Essential thrombocythemia, polycythemia vera, and myelofibrosis are the most frequent diseases within this group and can be differentiated by clinical, laboratory, and genetic findings. JAK2V617F is a common genetic alteration in BCR::ABL1- negative myeloproliferative neoplasms and is associated with the 46/1 haplotype, where the rs10974944 (C>G) variant is located in intron 12 of the JAK2 gene and serves as a genetic marker for this haplotype. This haplotype also influences laboratory alterations, allelic frequency of the variants, and correlations with familial myeloproliferative neoplasms. The promoter region also plays a role in the modulation within the etiopathogenic scenario of other neoplasms; however, little is still known about the action of variants in this gene segment in myeloproliferative diseases. Objective: To evaluate the presence of the 46/1 haplotype and the promoter region of the JAK2 gene. Methodology: The study included 108 individuals clinically diagnosed with polycythemia vera (n=39), essential thrombocythemia (n=61), and myelofibrosis (n=8). Clinical, laboratory, and molecular analyses using polymerase chain reaction and Sanger sequencing were important for obtaining the data. Results: In intron 12, in addition to rs10974944 (C>G), the variants rs10119004 (A>G), rs1081515 (G>T), and rs59720809 (A>G) were identified. Individuals with polycythemia vera and carriers of the rs10974944 G allele showed significantly increased mean corpuscular volume and mean corpuscular hemoglobin values (p < 0.05). On the other hand, the essential thrombocythemia group showed elevated levels of red blood cells, hematocrit, and hemoglobin (p < 0.05). An association was observed between the genotypic frequency of rs10974944 (G) and the status of the JAK2V617F variant. Individuals with the G allele and the GG genotype of rs10974944 showed a significant association with a positive status for JAK2V617F (p < 0.05), as well as an increased allelic frequency of the variant. Furthermore, rs10815151 showed an association with a negative status for JAK2V617F. In the promoter region, the variants rs6476933 (C>T), rs189703877 (A>C), rs73389454 (A>C), rs1887428 (G>C), and rs1887429 (G>T) were identified. The G allele of rs1887428 was more frequent in JAK2V617F-positive patients with a VAF≥50%, while the variant allele (C) showed an inverse relationship. rs6476933 (C>T), rs1887428 (G>C), and rs1887429 (G>T) apparently create transcription factor binding sites. Conclusion: rs10974944 (G) was found to be associated with a positive status for JAK2V617F, as well as laboratory alterations and an increase in the allelic frequency of the variant, while rs10815151 was shown to be a protective factor against JAK2V617F in the studied population. Additionally, rs1887428 likely plays a role in the regulation of JAK2, where the creation of a transcription factor binding site alters the gene expression.pt_BR
dc.languageporpt_BR
dc.publisherUniversidade do Estado do Amazonaspt_BR
dc.rightsAcesso Abertopt_BR
dc.subjectJanus quinasept_BR
dc.subjectNeoplasia mieloproliferativapt_BR
dc.subjectHaplótipopt_BR
dc.subjectvariação genéticapt_BR
dc.subjectMyeloproliferative neoplasmpt_BR
dc.titleEstudo do haplótipo 46/1 e promotor do gene JAK2 em pacientes com neoplasias mieloproliferativas BCR:: ABL 1 negativas atendidos na Fundação Hospitalar de Hematologia e Hemoterapia do Amazonaspt_BR
dc.title.alternativeStudy of the 46-1 haplotype and promoter of the JAK2 gene in patients with BCR ABL 1 negative myeloproliferative neoplasms treated at the Fundação Hospitalar de Hematologia e Hemoterapia do Amazonaspt_BR
dc.typeDissertaçãopt_BR
dc.date.accessioned2023-11-21T13:03:19Z-
dc.contributor.advisor-co1Tarragô, Andréa Monteiro-
dc.contributor.advisor-co1Latteshttp://lattes.cnpq.br/4644326589690231pt_BR
dc.contributor.advisor1Mourão, Lucivana Prata de Souza-
dc.contributor.advisor1Latteshttp://lattes.cnpq.br/1135734404648095pt_BR
dc.contributor.referee1Mourão, Lucivana Prata de Souza-
dc.contributor.referee1Latteshttp://lattes.cnpq.br/1135734404648095pt_BR
dc.contributor.referee2Santos, Maria da Conceição Freitas dos-
dc.contributor.referee2Latteshttp://lattes.cnpq.br/7618353060771291pt_BR
dc.contributor.referee3Sadahiro, Aya-
dc.contributor.referee3Latteshttp://lattes.cnpq.br/8658798733544812pt_BR
dc.creator.Latteshttp://lattes.cnpq.br/4827067663630750pt_BR
dc.description.resumoNeoplasias mieloproliferativas BCR::ABL1 negativas são doenças hematológicas caracterizadas por hiperplasia dos elementos mieloides. Trombocitemia essencial, policitemia vera e mielofibrose são as mais frequentes dentro desse grupo de doenças e podem ser diferenciadas por achados clínicos, laboratoriais e genéticos. JAK2V617F é uma alteração genética comum em neoplasias mieloproliferativas BCR::ABL1 negativas e está associado ao haplótipo 46/1, onde localiza-se rs10974944 (C>G), variante localizada no íntron 12 do gene JAK2 e marcador genético deste haplótipo. Esse haplótipo também influencia as alterações laboratoriais, frequência alélica das variantes e correlações com neoplasias mieloproliferativas familiares. A região promotora também exerce papel na modulação dentro do cenário etiopatogênico de outras neoplasias, todavia, nas mieloproliferativas ainda pouco se conhece sobre a ação de variantes nessa porção gênica. Objetivo: avaliar a presença do haplótipo 46/1 e a região promotora do gene JAK2. Metodologia: foram incluídos no estudo 108 indivíduos diagnosticados clinicamente com policitemia vera (n=39), trombocitemia essencial (n=61) e mielofibrose (n=8). Dados clínicos, laboratoriais e análises moleculares por reação em cadeia da polimerase e sequenciamento de Sanger foram importantes para obtenção dos dados. Resultados: No íntron 12 foram identificadas, além de rs10974944 (C>G), as variantes rs10119004 (A>G), rs1081515 (G>T) e rs59720809 (A>G). Indivíduos com policitemia vera e portadores do alelo G de rs10974944 apresentaram valores significativamente aumentados de volume corpuscular médio e hemoglobina corpuscular média (p < 0,05). Por outro lado, no grupo de trombocitemia essencial, foram observados níveis elevados de glóbulos vermelhos, hematócrito e hemoglobina (p < 0,05). Foi observada uma associação entre a frequência genotípica de rs10974944 (G) e o status da variante JAK2V617F. Indivíduos com o alelo G e o genótipo GG de rs10974944 apresentaram uma associação significativa com o status positivo para JAK2V617F (p < 0,05), assim como um aumento na frequência alélica da variante. Além disso, rs10815151 demonstrou uma associação com o status negativo para JAK2V617F. Na região promotora foram identificadas rs6476933 (C>T), rs189703877 (A>C), rs73389454 (A>C), rs1887428 (G>C) e rs1887429 (G>T). O alelo G de rs1887428 demonstrou-se mais frequente em pacientes JAK2V617F positivo VAF≥50%, ao passo que o alelo variante (C) apresentou relação inversa. rs6476933 (C>T), rs1887428 (G>C) rs1887429 (G>T) aparentemente criam sítios de fatores de transcrição. Conclusão: rs10974944 (G) demonstrou-se associada ao status positivo para JAK2V617F, bem como alterações laboratoriais e um aumento na frequência alélica da variante ao passo que rs10815151 demonstrou-se como um fator protetor a JAK2V617F na população estudada. Já rs1887428 apresentou provável papel na regulação de JAK2, onde a criação de sítio de fatores de transcrição altera a expressão do genept_BR
dc.publisher.countryBrasilpt_BR
dc.publisher.programPPGH -PROGRAMA DE PÓS-GRADUAÇÃO EM CIÊNCIAS APLICADAS À HEMATOLOGIApt_BR
dc.relation.references1. Tremblay, D.; Yacoub, A.; Hoffman, R. Overview of Myeloproliferative Neoplasms: History, Pathogenesis, Diagnostic Criteria, and Complications. Hematol. Oncol. Clin. North Am. 2021, 35, 159–176, doi: 10.1016/j.hoc.2020.12.001. 2. Chauffaille, M. Neoplasias mieloproliferativas: Revisão dos critérios diagnósticos e dos aspectos clínicos. Rev. Bras. Hematol. Hemoter. 2010, 32, 308–316, doi: 10.1590/S1516-84842010005000091. 3. Nangalia, J.; Green, A.R. Myeloproliferative neoplasms: From origins to outcomes. Hematology. 2017, 1, 470–479, doi: 10.1182/asheducation-2017.1.470. 4. Tefferi, A. The history of myeloproliferative disorders: Before and after Dameshek. Leukemia. 2008, 22, 3–13, doi: :10.1038/sj.leu.2404946. 5. Tefferi, A. Myeloproliferative neoplasms: A decade of discoveries and treatment advances. Am. J. Hematol. 2016, 91, 50–58, doi: 10.1002/ajh.24221. 6. Means, R.T. JAK2 V617F and the evolving paradigm of polycythemia vera. Korean, J. Hematol. 2010, 45, 90, doi: 10.5045/kjh.2010.45.2.90. 7. Bortolheiro, T.C.; Chiattone, C.S. Leucemia mielóide crônica: História natural e classificação. Rev. Bras. Hematol. Hemoter. 2008, 30, 3–7, doi: 10.1590/S1516- 84842008000500003. 8. Rowley, J.D. A story of swapped ends. Science. 2013, 340, 1412–1413, doi: 10.1126/science.1241318. 9. Arber, D.A.; Orazi, A.; Hasserjian, R.; Thiele, J.; Borowitz, M.; Le Beau, M.; Bloomfield, C.; Cazzola, M.; Vardiman, J. The 2016 revision to the World Health Organization classification of myeloid neoplasms and acute leukemia. Blood. 2016, 127, 2391–2405, doi: 10.1182/blood-2016-03-643544. 10. Barbui, T.; Thiele, J.; Gisslenger, H.; Kvasnicka, H.M.; Vannucchi, A.; Guglielmelli, P.; Orazi, A.; Tefferi, A. The 2016 WHO classification and diagnostic criteria for myeloproliferative neoplasms: Document summary and in-depth discussion. Blood Cancer, J. 2018, 8, 1–11, doi: 10.1038/s41408-018-0054-y. 11. Ortmann, C.A.; Kent, D.G.; Nangalia, J.; Silber, Y.; Wedge, D.C.; Grinfeld, J.; Baxter, E.J.; Massie, C.E.; Papaemmanuil, E.; Menon, S.; Godfrey, A.L.; Dimitropoulou, D.; Guglielmelli, P.; Bellosillo, B.; Besses, C.; Döhner , K.; Harrison, C.N.; Vassiliou, G.S.; Vannucchi, A.; Campbell, P.J.; Green, A.R. Effect of mutation order on myeloproliferative neoplasms. N. Engl. J. Med. 2015, 372, 601–612, doi: 10.1056/NEJMoa1412098. 12. Campbell, P.J.; Green, A.R. The myeloproliferative disorders. N. Engl. J. Med. 2006, 57, 428–435, doi: 10.1177/003693306501000606. 13. Grinfeld, J.; Nangalia, J.; Baxter, E.J.; Wedge, D.C.; Angelopoulos, N.; Cantrill, J.; Godfrey, A.L.; Papaemmanuil, E.; Gundem, G.; MacLean, C.; Cook, J.; O’Neil, L.; O’Meara, S.; Teague, J.W.; Butler, A.P.; Massie, C.E.; Williams, N.; Nice, F.L.; Andersen, C.L.; Hasselbalch, H.C.; Guglielmelli, P.; Mullin, M.F.; Vannucchi, A.M.; Harrison, C.N.; Gerstung, M.; Green, A.R.; Campbell, P.J. Classification and Personalized Prognosis in Myeloproliferative Neoplasms. N. Engl. J. Med. 2018, 379, 1416–1430, doi: 10.1056/NEJMoa1716614. 14. Szuber, N.; Vallapureddy, R.; Penna, D.; Lasho, T.L.; Finke, C.; Hanson, C.A.; Ketterling, R.P.; Pardanni, A.; Gangat, N.; Tefferi, A. Myeloproliferative neoplasms in the young: Mayo Clinic experience with 361 patients age 40 years or younger. Am. J. Hematol. 2018, 93, 1474–1484, doi: 10.1002/ajh.25270. 15. Harrison, C.N.; Koschmieder, S.; Foltz, L.; Guglielmelli, P.; Flindt, T.; Koehler, M.; Mathias, J.; Komatsu, N.; Boothroyd, R.N.; Spierer, A.; Perez, J.; Taylor-Stokes, G.; Waller, J.; Mesa, R.A. The impact of myeloproliferative neoplasms (MPNs) on patient quality of life and productivity: Results from the international MPN Landmark survey. Ann. Hematol. 2017, 96, 1653–1665, doi: 10.1007/s00277-017- 3082-y. 16. Tefferi, A.; Pardanani, A. Myeloproliferative Neoplasms: A Contemporary Review. JAMA Oncol. 2015, 1, 97–105, doi: 10.1001/jamaoncol.2015.89. 17. Meyer, S.; Levine, R.S. Molecular Pathways: Molecular Basis for Sensitivity and Resistance to JAK Kinase Inhibitors. Clin Cancer Res. 2014, 15, 2051–2059, doi:10.1158/1078-0432.CCR-13-0279. 18. Lundberg, P.; Karow, A.; Nienhold, R.; Looser, R.; Hao-Shen, H.; Nissen, I.; Girsberger, S.; Lehmann, T.; Passweg, J.; Stern, M.; Beisel, C.; Kralovics, R.; Skoda, R.C. Clonal evolution and clinical correlates of somatic mutations in myeloproliferative neoplasms. Blood, 2014, 123, 2220–2228, doi: 10.1182/blood- 2013-11-537167. 19. Papaemmanuil, E.; Gerstung, M.; Malcovati, L.; Tauro, S.; Gundem, G.; Van Loo, P.; Yoon, C.J.; Ellis, P.; Wedge, D.C.; Pellagatti, A.; Shlien, A.; Groves, M.J.; Forbes, S.A.; Raine, K.; Hinton, J.; Mudie, L.J.; McLaren, S.; Hardy, C.; Latimer, C.; Della Porta, M.G., O’Meara, S.; Ambaglio, I.; Galli, A.; Butler, A.P.; Walldin, G.; Teague, J.W.; Quek, L.; Sternberg, A.; Gambacorti-Passerini, C.; Cross, N.C.P.; Green, A.R.; Boultwood, J.; Vyas, P.; Hellstrom-Lindberg, E.; Bowen, D.; Cazzola, M.; Stratton, M.R.; Campbell, P.J. Clinical and biological implications of driver mutations in myelodysplastic syndromes. Blood, 2013, 122, 3616–3627, doi: 10.1182/blood-2013-08-518886. 80 20. Guglielmelli, P.; Lasho, T.L.; Rotunno, G.; Score, J.; Mannarelli, C.; Pancrazzi, A.; Biamonte, F.; Pardanani, A.; Zoi, K.; Reiter, A.; Duncombe, A.; Fanelli, T.; Pietra, D.; Rumi, E.; Finke, C.; Gangat, N.; Ketterling, R.P.; Knudson, R.A.; Hanson, C.A.; Bosi, A.; Pereira, A.; Manfredini, R.; Cervantes, F.; Barosi, G.; Cazzola, M.; Cross, N.C.P.; Vannucchi, A.M.; Tefferi, A. The number of prognostically detrimental mutations and prognosis in primary myelofibrosis: An international study of 797 patients. Leukemia, 2014, 28, 1804–1810, doi: 10.1038/leu.2014.76. 21. Kralovics, R.; Stockton, D.W.; Prchal, J.T. Clonal hematopoiesis in familial polycythemia vera suggests the involvement of multiple mutational events in the early pathogenesis of the disease. Blood. 2003, 102, 3793–3796, doi: 10.1182/blood- 2003-03-0885. 22. Rumi, E.; Harutyunyan, A.S.; Pietra, D.; Milosevic, J.D.; Casetti, I.C.; Bellini, M.; Them, N.C.C.; Cavalloni, C.; Ferretti, V.V.; Milanesi, C.; Berg, T.; Sant’Antonio, E.; Boveri, E.; Pascutto, C.; Astori, C.; Kralovics, R.; Cazzola, M. CALR exon 9 mutations are somatically acquired events in familial cases of essential thrombocythemia or primary myelofibrosis. Blood. 2014, 123, 2416–2419, doi: 10.1182/blood-2014-01-550434. 23. Landgren, O.; Goldin, L.R.; Kristinsson, S.Y.; Helgadottir, E.A.; Samuelsson, J.; Björkholm, M. Increased risks of polycythemia vera, essential thrombocythemia, and myelofibrosis among 24,577 first-degree relatives of 11,039 patients with myeloproliferative neoplasms in Sweden. Blood. 2008, 112, 2199–2204, doi: 10.1182/blood-2008-03-143602. 24. Langabeer, S.E.; Haslam, K.; Linders, J.; Percy, M.J.; Conneally, E.; Hayat, A.; Hennessy, B.; Leahy, M.; Murphy, K.; Murray, M.; Ni Ainle, F.; Thornton, P.; Sargent, J. Molecular heterogeneity of familial myeloproliferative neoplasms revealed by analysis of the commonly acquired JAK2, CALR and MPL mutations. Fam. Cancer. 2014, 13, 659–663, doi: 10.1007/s10689-014-9743-2. 25. Higgs, J.R.; Sadek, I.; Neumann, P.E.; Ing, V.W.; Renault, N.K.; Berman, J.N.; Greer, W.L. Familial essential thrombocythemia with spontaneous megakaryocyte colony formation and acquired JAK2 mutations. Leukemia. 2008, 22, 1551–1556, doi: 10.1038/leu.2008.115. 26. Aljabry, M. Primary familial and congenital polycythemia; The forgotten entity. J. Appl. Hematol. 2018, 9, 39–43, doi: 10.4103/joah.joah_30_18. 27. Mounier, N. Malignant hematology. Oncologie. 2008, 10, 512–514, doi: 10.1007/s10269-008-0922-3. 28. Milosevic, J.D.; Nivarthi, H.; Gisslinger, H.; Leroy, E.; Rumi, E.; Chachoua, I.; Bagienski, K.; Kubesova, B.; Pietra, D.; Gisslinger, B.; Milanesi, C.; Jäger, R.; Chen, D.; Berg, T.; Schalling, M.; Schuster, M.; Bock, C.; Constantinescu, S.N.; Cazzola, M.; Kralovics, R. Whole-exome sequencing identifies novel MPL and JAK2 mutations in triple-negative myeloproliferative neoplasms. Blood. 2016, 127, 325– 332, doi: 10.1182/blood-2015-07-661835. 29. de Freitas, R.M.; da Costa Maranduba, C.M. Myeloproliferative neoplasms and the JAK/STAT signaling pathway: An overview. Rev. Bras. Hematol. Hemot. 2015, 37, 348–353, doi: 10.1016/j.bjhh.2014.10.001. 30. Tefferi, A.; Barbui, T. Polycythemia vera and essential thrombocythemia: 2019 update on diagnosis , risk-stratification and management. Am. J. Hematol. 2019, 2, 133–143, doi: 10.1002/ajh.25303. 31. Vainchenker, W.; Kralovics, R. Genetic basis and molecular pathophysiology of classical myeloproliferative neoplasms. Blood. 2017, 129, 667–679, doi: 10.1182/blood-2016-10-695940.subtypes. 32. Bousoik, E.; Aliabadi, H.M. Do We Know Jack2 About JAK ? A Closer Look at JAK/STAT Signaling Pathway. Front. Oncol. 2018, 8, 1–20, doi: 10.3389/fonc.2018.00287. 33. Milosevic, J.D., Schischlik, F.; Jäger, R.; Ivanov, D.; Eisenwort, G.; Keller, A.; Schuster, M.; Hadzijusufovic, E.; Krauth, M.; Spörk, R.; Gisslinger, B.; Koller, E.; Fillitz, M.; Pfeilstocker, M.; Sliwa, T.; Keil, F.; Bock, C.; Gisslinger, H.; Kralovics, R.; Valent, P. Overexpression of PD-L1 Correlates with JAK2-V617F Mutational Burden and Is Associated with Chromosome 9p Uniparental Disomy in MPN. Blood. 2020, 136, doi: 10.1182/blood-2020-137447. 34. Koschmieder, S.; Mughal, T.; Hasselbalch, H.C.; Barosi, G.; Valent, P.; Kiladjian, J.; Jeryczynski,G.; Gisslinger, H.; Jutzi, J.S.; Pahl, H.L.; Hehlmann, R.; Vannucchi, A.M.; Cervantes, F.; Silver. R.T.; Barbui, T. Myeloproliferative neoplasms and inflammation: Whether to target the malignant clone or the inflammatory process or both. Leukemia. 2016, 30, 1018–1024, doi: 10.1038/leu.2016.12. 35. Gleitz, H.; Dugourd, A.J.F.; Leimkuhler, N.B.; Snoeren, I.A.M.; Fuchs, S.N.; Menzel, S.; Ziegler, S.; Kroger, N.; Triviai, I.; Busche, G.; Kreipe, H.; Banjanin, B.; Pritchard, J.E.; Hoogenboezem, R.; Bindels, E.M.; Schumacher, N.; Rose-John, S.; Elf, S.; Saez-Rodriguez, J.; Kramann, R.; Schneider, R.K. Increased CXCL4 expression in hematopoietic cells links inflammation and progression of bone marrow fibrosis in MPN. Blood. 2020, 136, 2051–2064, doi: 10.1182/blood.2019004095. 81 36. Verstovsek, S.; Manshouri, T.; Pilling, D.; Bueso-Ramos, C.E.; Newberry, K.J.; Prijic, S.; Knez, L.; Bozinovic, K.; Harris, D.M.; Spaeth, E.L.; Post, S.M.; Multani, A.S.; Rampal, R.K.; Ahn, J.; Levine, R.L.; Creighton, C.J.; Kantarjian, H.M.; Estrov, E. Role of neoplastic monocyte-derived fibrocytes in primary myelofibrosis. J. Exp. Med. 2016, 213, 1723–1740, doi: 10.1084/jem.20160283. 37. Baxter, E.J.; Scott, L.M.; Campbell, P.J.; East, C.; Fourouclas, N.; Swanton, S.; Vassiliou, G.S.; Bench, A.J.; Boyd, E.M.; Curtin, N.; Scott, M.A.; Erber, W.N.; Green, A.R. Acquired mutation of the tyrosine kinase JAK2 in human myeloproliferative disorders. Lancet. 2005, 365, 1054–1061, doi: 10.1016/S0140- 6736(05)74230-6. 38. Levine, R.L.; Wadleigh, M.; Cools, J.; Ebert, B.L.; Wernig, G.; Huntly, B.J.P.; Boggon, T.J.; Wlodarska, I.; Clark, J.J.; Moore, S.; Adelsperger, J.; Koo, S.; Lee, J.C.; Gabriel, S.; Mercher, T.; D’Andrea, A.; Fröhling, S.; Döhner, K.; Marynen, P.; Vandenberghe, P.; Mesa, R.A.; Tefferi, A.; Griffin, J.D.; Eck, M.J.; Sellers, W.R.; Meyerson, M.; Golubb, T.D.; Lee, S.J.; Gilliland, D.G. Activating mutation in the tyrosine kinase JAK2 in polycythemia vera, essential thrombocythemia, and myeloid metaplasia with myelofibrosis. Cancer Cell. 2005, 7, 387–397, doi: 10.1016/j.ccr.2005.03.023. 39. Kralovics, R.; Passamonti, F.; Buser, A.S.; Teo, S.-S.; Tiedt, R.; Passweg, J.R.; Tichelli, A.; Cazzola, M.; Skoda, R.C. A Gain-of-Function Mutation of JAK2 in Myeloproliferative Disorders. N Engl J Med. 2005, 352, 1779–1790, doi: 10.1056/NEJMoa051113. 40. James, C.; Ugo,V.; Le Couédic, J.P.; Staerk, J.; Delhommeau, F.; Lacout, C.; Garçon, L.; Raslova, H.; Berger, R.; Bennaceur-Griscelli, A.; Villeval, J.L.; Constantinescu, S.N.; Casadevall, N.; Vainchenker, W. A unique clonal JAK2 mutation leading to constitutive signalling causes polycythaemia vera. Nature. 2005, 434, 1144–1148, doi: 10.1038/nature03546. 41. Abdulqader, A.; Saeed, B.; Getta, H.A.; Khoshnaw, N.; Abdulqader, G.; Mohammed, A. Prevalence of JAK2 V617F, CALR, and MPL W515L Gene Mutations in Patients with Essential Thrombocythemia in Kurdistan Region of Iraq. Korean, J. Clin. Lab. Sci. 2021, 53, 41–48, doi: 10.15324/kjcls.2021.53.1.41. 42. Staerk, J.; Constantinescu, S.N. The JAK-STAT pathway and hematopoietic stem cells from the JAK2 V617F perspective. JAK-STAT. 2012, 1, 184—190, doi: 10.4161/jkst.22071. 43. Hermouet, S.; Vilaine, M. The JAK2 46/1 haplotype: A marker of inappropriate myelomonocytic response to cytokine stimulation, leading to increased risk of inflammation, myeloid neoplasm, and impaired defense against infection?. Haematologica. 2011, 96, 1575–1579, doi: 10.3324/haematol.2011.055392. 44. Olcaydu, D.; Rumi, E.; Harutyunyan, A.; Passamonti, F.; Pietra, D.; Pascutto, C.; Berg, T.; Jäger, R.; Hammond, E.; Cazzola, M.; Kralovics, R. The role of the JAK2 GGCC haplotype and the TET2 gene in familial myeloproliferative neoplasms. Haematologica. 2011, 96, 367–374, doi: 10.3324/haematol.2010.034488. 45. Jones, A.V.; Cross, N.C.P. Inherited predisposition to myeloproliferative neoplasms. Ther. Adv. Hematol. 2013, 4, 237–253, doi: 10.1177/2040620713489144. 46. Tashi, T.; Swierczek, S.; Prchal, J.T. Familial MPN Predisposition.. Curr. Hematol. Malig. Rep. 2017, 12, 442–447, doi: 10.1007/s11899-017-0414-x. 47. Koh, S.P.; Yip, S.P.; Lee, K.K.; Chan, C.C.; Lau, S.M.; Kho, C.S.; Lau, C.K.; Lin, S.Y.; Lau, Y.M.; Wong, L.G.; Au, K.L.; Wong, K.F.; Chu, R.W.; Yu, P.H.; Chow, E.Y.; Leung, K.F.; Tsoi., W.C.; Yung, B. Genetic association between germline JAK2polymorphisms and myeloproliferative neoplasms in Hong Kong Chinese population: A case–control study. BMC Genet. 2014, 15, 1–12, doi: 10.1186/s12863- 014-0147-y. 48. Hinds, D.A.; Barnholt, K.E.; Mesa, R.A.; Kiefer, A.K.; Do, C.B.; Eriksson, N.; Mountain, J.L.; Francke, U.; Tung, J.Y.; Nguyen, H.; Zhang, H.; Gojenola, L.; Zehnder, J.L.; Gotlib, J. Germ line variants predispose to both JAK2 V617F clonal hematopoiesis and myeloproliferative neoplasms. Blood. 2016, 128, 1121–1128, doi: 10.1182/blood-2015-06-652941. 49. Owen, K.L.; Brockwell, N.K.; ParkerImmune, B.S. JAK-STAT Signaling: A Double-Edged Sword of Immune Regulation and Cancer Progression. Cancers. 2019, 11, 1–26, doi:10.3390/cancers11122002. 50. Ferrer-Marín, F.; Cuenca-Zamora, E.J.; Guijarro-Carrillo, P.J.; Teruel-Montoya, R. Emerging role of neutrophils in the thrombosis of chronic myeloproliferative neoplasms. Int. J. Mol. Sci. 2021, 22, 1–14, doi: 10.3390/ijms22031143. 51. Landolfi, R.; Di Gennaro, L. Pathophysiology of thrombosis in myeloproliferative neoplasms. Haematologica. 2011, 96, 183–186, doi: 10.3324/haematol.2010.038299. 52. Wang, W.; Liu, W.; Fidler, T.; Wang, Y.; Tang, Y.; Woods, B.; Welch, C.; Cai, B.; Silvestre-Roig, C.; Ai, D.; Yang, Y.G.; Hidalgo, A.; Soehnlein, O.; Tabas, I.; Levine, R.L.; Tall, A.R.; Wang, N. Macrophage inflammation, 82 erythrophagocytosis, and accelerated atherosclerosis in JAK2V617F mice. Circ. Res. 2018, 123, 35–47, doi: 10.1161/CIRCRESAHA.118.313283. 53. Marin Oyarzún, C.P.; Heller, P.G. Platelets as mediators of thromboinflammation in chronic myeloproliferative neoplasms. Front. Immunol. 2019, 10, 1–9, doi: 10.3389/fimmu.2019.01373. 54. Vannucchi, A.M.; Guglielmelli, P. What are the current treatment approaches for patients with polycythemia vera and essential thrombocythemia?. Hematology. 2017, 1, 480–488, doi: 10.1182/asheducation-2017.1.480. 55. Wolach, O.; Abulafia, A.S. Can Novel Insights into the Pathogenesis of Myeloproliferative Neoplasm-Related Thrombosis Inform Novel Treatment Approaches?. Hemato. 2021, 2, 305–328, doi: 10.3390/hemato2020018. 56. Marín, C.P.; Glembotsky, A.C.; Goette, N.P.; Lev, P.R.; de Luca, G.; Baroni, M.C.; Moiraghi, B.; Castro, M.A.; Vicente, A.; Marta, R.F.; Schattner, M.; Heller, P.G. Platelet Toll-Like Receptors Mediate Thromboinflammatory Responses in Patients With Essential Thrombocythemia. Front. Immunol. 2020, 11, 1–12, doi: 10.3389/fimmu.2020.00705. 57. Di Rosa, M.; Giallongo, C.; Romano, A.; Li Volti, G.; Musumeci, G.; Barbagallo, I.; Castrogiovanni, P.; Palumbo, G.A. Immunoproteasome genes are modulated in CD34+ JAK2V617F mutated cells from primary myelofibrosis patients. Int. J. Mol. Sci. 2020, 21, 1–19, doi: 10.3390/ijms21082926. 58. Davis, Z.; Felices, M.; Lenvik, T.; Badal, S.; Walker, J.T.; Hinderlie, P.; Riley, J.L.; Vallera, D.A.; Blazar, B.R.; Miller, J.S. Low-density PD-1 expression on resting human natural killer cells is functional and upregulated after transplantation. Blood adv. 2021, 5, 1069–1080, doi: 10.1182/bloodadvances.2019001110. 59. Perner, F.; Perner, C.; Ernst, T.; Heidel, F.H. Roles of JAK2 in Aging, Inflammation, Hematopoiesis and Malignant Transformation. Cells. 2019, 8, 1–19, doi:10.3390/cells8080854. 60. Prestipino, A.; Emhardt, A.J.; Aumann, K.; O’Sullivan, D.; Gorantla, S.P.; Duquesne, S.; Melchinger, W.; Braun, L.; Vuckovic, S.; Boerries, M.; Busch, H.; Halbach, S.; Pennisi, S.; Poggio, T.; Apostolova, P.; Veratti, P.; Hettich, M.; Niedermann, G.; Bartholomä, M.; Shoumariyeh, K.; Jutzi, J.S.; Wehrle, J.; Dierks, C.; Becker, H.; Schmitt-Graeff, A.; Follo, M.; Pfeifer, D.; Rohr, J.; Fuchs, S.; Ehl, S.; Hartl, F.A.; Minguet, S.; Miething, C.; Heidel, F.H.; Kröger, N.; Triviai, I.; Brummer, T.; Finke, J.; Illert, A.L.; Ruggiero, E. Oncogenic JAK2V617F causes PD- L1 expression, mediating immune escape in myeloproliferative neoplasms. Sci Transl Med. 2019, 10, 1–25, doi: 10.1126/scitranslmed.aam7729.Oncogenic. 61. Ginzburg, Y.Z.; Feola, M.; Zimran, E.; Varkonyi, J.; Ganz, T.; Hoffman, R. Dysregulated iron metabolism in polycythemia vera : Etiology and consequences. Leukemia. 2018, 32, 2105–2116, doi: 10.1038/s41375-018-0207-9. 62. Allain-Maillet, S.; Bosseboeuf, A.; Mennesson, N.; Bostoën, M.; Dufeu, L.; Choi, E.H.; Cleyrat, C.; Mansier, O.; Lippert, E.; Le Bris, J.; Gombert, J.M.; Girodon, F.; Pettazzoni, M.; Bigot-Corbel, E.; Hermouet, S. Anti-Glucosylsphingosine Autoimmunity, JAK2V617F-Dependent Interleukin-1β and JAK2V617F- Independent Cytokines in Myeloproliferative Neoplasms. Cancers. 2020, 12, 1–24, doi:10.3390/cancers12092446. 63. Hermouet, S.; Bigot-Corbel, E.; Gardie, B. Pathogenesis of Myeloproliferative Neoplasms: Role and Mechanisms of Chronic Inflammation. Mediators Inflamm. 2015, 1-16, doi: 10.1155/2015/145293. 64. Oyarzún, C.; Carestia, A.; Lev, P.R.; Glembotsky, A.C.; Castro, M.A.; Moiraghi, B.; Molinas, F.C.; Marta, R.F.; Schattner, M.; Heller, P.G. Neutrophil extracellular trap formation and circulating nucleosomes in patients with chronic myeloproliferative neoplasms. Sci. Rep. 2016, 6, 1–13, doi: 10.1038/srep38738. 65. Wolach, O.; Sellar, R.S.; Martinod, K.; Cherpokova, D.; McConkey, M.; Chappell, R.J.; Silver, A.J.; Adams, D.; Castellano, C.A.; Schneider, R.K.; Padera, R.F.; DeAngelo, D.J.; Wadleigh, M.; Steensma, D.P.; Galinsky, I.; Stone, R.M.; Genovese, G.; McCarroll, G.A.; Iliadou, B.; Hultman, C.; Neuberg, D.; Mullally, A.; Wagner, D.D.; Ebert1, B.L. Increased neutrophil extracellular trap formation promotes thrombosis in myeloproliferative neoplasms. Sci. Transl. Med. 2018, 10, 1–11, doi: 10.1126/scitranslmed.aan8292. 66. Oh, S.T. Neutralize the neutrophils! Neutrophil β1/β2 integrin activation contributes to JAK2-V617F–driven thrombosis. J. Clin. Invest. 2018, 128, 4248–4250, doi: 10.1172/JCI123388. 67. Gupta, N.; Edelmann, B.; Schnoeder, T.M.; Saalfeld, F.C.; Wolleschak, D.; Kliche, S.; Schraven, B.; Heidel, F.H.; Fischer, T. JAK2-V617F activates β1-integrin- mediated adhesion of granulocytes to vascular cell adhesion molecule. Leukemia. 2017, 31, 1223–1226, doi: 10.1038/leu.2017.26. 68. Edelmann, B.; Gupta, N.; Schnoeder, T.M.; Oelschlegel, A.M.; Shahzad, K.; Goldschmidt, J.; Philipsen, L.; Weinert, S.; Ghosh, A.; Saalfeld, F.C.; Nimmagadda, S.C.; Müller, P.; Braun-Dullaeus, R.; Mohr, J.; Wolleschak, D.; Kliche, S.; Amthauer, H.; Heidel, F.H.; Schraven, B.; Isermann, B.; Müller, A.J.; Fischer, T. JAK2-V617F promotes venous thrombosis through β1/β2 integrin activation. J. Clin. Invest. 2018, 128, 4359–4371, doi: 10.1172/JCI90312. 69. Haage, T.R.; Müller, A..J.; Arunachalam, P.; Fischer, T. Reveal the Neutrophil: Elucidating the Role of a Neutrophil-Specific JAK2-V617F Mutation. Blood. 2019, 134, 2965, doi: 10.1182/blood-2019-122660. 83 70. Gaertner, F.; Massberg, S. Blood coagulation in immunothrombosis—At the frontline of intravascular immunity. Semin. Immunol. 2016, 28, 561–569, doi: 10.1016/j.smim.2016.10.010. 71. Shi, C.; Yang, L.; Braun, A.; Anders, H.J. Extracellular DNA—A Danger Signal Triggering Immunothrombosis. Front. Immunol. 2020, 11, 1–15, doi: 10.3389/fimmu.2020.568513. 72. Yang, J.; Wu, Z.; Long, Q.; Huang, J.; Hong, T.; Liu, W.; Lin, J. Insights Into Immunothrombosis: The Interplay Among Neutrophil Extracellular Trap, von Willebrand Factor, and ADAMTS13. Front. Immunol. 2020, 11, 1–16, doi: 10.3389/fimmu.2020.610696. 73. McKenna, E.; Mhaonaigh, A.U.; Wubben, R.; Dwivedi, A.; Hurley, T.; Kelly, L.A.; Stevenson, N.J.; Little, M.A.; Molloy, E.J. Neutrophils: Need for Standardized Nomenclature. Front. Immunol. 2021, 12, 1–14, doi: 10.3389/fimmu.2021.602963. 74. Shaul, M.E.; Fridlender, Z.G. Cancer-related circulating and tumor-associated neutrophils – subtypes, sources and function. FEBS J. 2018, 285, 4316–4342, doi: 10.1111/febs.14524. 75. Giese, M.A.; Hind, L.E.; Huttenlocher, A. Neutrophil plasticity in the tumor microenvironment. Blood. 2019, 133, 2159–2167, doi: 10.1182/blood-2018-11- 844548. 76. Masucci, M.T.; Minopoli, M.; Carriero, M.V. Tumor Associated Neutrophils. Their Role in Tumorigenesis, Metastasis, Prognosis and Therapy. Front. Oncol. 2019, 9, 1–16, doi: 10.3389/fonc.2019.01146. 77. Piccard, H.; Muschel, R.J.; Opdenakker, G. On the dual roles and polarized phenotypes of neutrophils in tumor development and progression. Crit. Rev. Oncol. Hematol. 2012, 82, 296–309, doi: 10.1016/j.critrevonc.2011.06.004. 78. Podaza, E.; Risnik, D. Neglected players: Tumor associated neutrophils involvement in chronic lymphocytic leukemia progression. Oncotarget. 2019, 10, 1862–1863, doi: 10.18632/oncotarget.26716. 79. Castiglione, M.; Jiang, Y.P.; Mazzeo, C.; Lee, S.; Chen, J.S.; Kaushansky, K.; Yin, W.; Lin, R.Z.; Zheng, H.; Zhan, H. Endothelial JAK2V617F mutation leads to thrombosis, vasculopathy, and cardiomyopathy in a murine model of myeloproliferative neoplasm,” J. Thromb. Haemost., 2020, 18, 3359–3370, doi: 10.1111/jth.15095. 80. Conran, N.; de Paula, E.V. Thromboinflammatory mechanisms in sickle cell disease – challenging the hemostatic balance. Haematologica. 2020, 105, 2380–2390, doi: 10.3324/haematol.2019.239343. 81. Poisson, J.; Tanguy, M.; Davy, H.; Camara, F.; El Mdawar, M.B.; Kheloufi, M.; Dagher, T.; Devue, C.; Plessier, J.A.; Merchant, S.; Blanc-Brude, O.; Souyri, M.; Mougenot, N.; Dingli, F.; Loew, D.; Hatem, S.N.; James, C.; Villeval, J.L.; Boulanger, C.M.; Rautou, P.E. Erythrocyte-derived microvesicles induce arterial spasms in JAK2V617F myeloproliferative neoplasm. J. Clin. Invest. 2020, 130, 2630–2643, doi: https://www.jci.org/articles/view/124566. 82. Murata, M. Inflammation and cancer. Environ. Health Prev. Med. 2018, 23, 1–8, doi: 10.1186/s12199-018-0740-1. 83. Lussana, F.; Rambaldi, A. Inflammation and myeloproliferative neoplasms. J. Autoimmun. 2017, 85, 1–6, doi: 10.1016/j.jaut.2017.06.010. 84. Arellano-Rodrigo, E.; Alvarez-Larra, A.; Reverter, J.C.; Colomer, D.; Villamor, N.; Bellosillo, B.; Cervantes, F. Platelet turnover, coagulation factors, and soluble markers of platelet and endothelial activation in essential thrombocythemia : Relationship with thrombosis occurrence and JAK 2 V617F allele burden. Am. J. Hematol. 2008, 84, 102–108, doi: 10.1002/ajh.21338. 85. Kaifie, A.; Kirschner, M.; Wolf, D.; Maintz, C.; Hänel, M.; Gattermann, N.; Gökkurt, E.; Platzbecker, U.; Hollburg, W.; Göthert, J.R.; Parmentier, S.; Lang, F.; Hansen, R.; Isfort, S.; Schmitt, K.; Jost, E.; Serve, H.; Ehninger, G.; Berdel, W.E.; Brümmendorf, T.H.; Koschmieder, S. Bleeding, thrombosis, and anticoagulation in myeloproliferative neoplasms (MPN): Analysis from the German SAL-MPN- registry. J. Hematol. Oncol. 2016, 9, 1–11, doi: 10.1186/s13045-016-0242-9. 86. Yonal-Hindilerden, I.; Daglar-Aday, A.; Akadam-Teker, B.; Yilmaz, C.; Nalcaci, M.; Yavuz, A.S.; Dargin, D. Mutations and JAK2V617F allele burden in Philadelphia-negative myeloproliferative neoplasms. J. Blood Med. 2015, 6, 157– 176, doi: 10.2147/JBM.S78826. 87. Matsuura, S.; Thompson, C.R.; Belghasem, M.E.; Bekendam, R.H.; Piasecki, A.; Leiva, O.; Ray, A.; Italiano, J.; Yang, M.; Merill-Skoloff, G.; Chitalia, V.C.; Flaumenhaft, R.; Ravid, K. Platelet dysfunction and thrombosis in JAK2V617F-mutated primary myelofibrotic mice. Arterioscler. Thromb. Vasc. Biol. 2020, 40, 262–272, doi: 10.1161/ATVBAHA.120.314760. 88. Greenfield, G.; McMullin, M.F.; Mills, K. Molecular pathogenesis of the myeloproliferative neoplasms. J Hematol Oncol. 2021, 14, 1–18, doi: 10.1186/s13045-021-01116-z. 89. Leimk€uhler, N.B.; Gleitz, H.F.E.; Ronghui, L.; Snoeren, I.A.M.; Fuchs, S.N.R.; Nagai, J.S.; Banjanin, B.; Lam, K.H.; Vogl, T.; Kuppe, C.; Stalmann, U.S.A., Busche, G.; Kreipe, H.; Gutgemann, I.; Krebs, P.; Banz, Y.; 84 Boor, P.; Wing-Yin Tai, E.; Brummendorf, T.H.; Koschmieder, S.; Crysandt, M.; Bindels, E.; Kramann, R.; Costa, I.G.; Schneider, R.K. Heterogeneous bone-marrow stromal progenitors drive myelofibrosis via a druggable alarmin axis. Cell Stem Cell. 2021, 28, 637–652, doi: 10.1016/j.stem.2020.11.004. 90. Goette, N.P.; Lev, P.R.; Heller, P.G.; Kornblihtt, L.I.; Korin, L.; Molinas, F.C.; Marta, R.F. Monocyte IL-2Rα expression is associated with thrombosis and the JAK2V617F mutation in myeloproliferative neoplasms. Cytokine. 2010, 51, 67–72, doi: 10.1016/j.cyto.2010.04.011. 91. Margraf, A.; Zarbock, A. Platelets in Inflammation and Resolution. J. Immunol. 2019, 203, 2357–2367, doi: 10.4049/jimmunol.1900899. 92. Brostjan, C.; Oehler, R. The role of neutrophil death in chronic inflammation and cancer. Cell Death Discov. 2020, 6, 1–8, doi: 10.1038/s41420-020-0255-6. 93. xun Wang, L.; xi Zhang, S.; Wu, H.J.; lu Rong, X.; Guo, J. M2b macrophage polarization and its roles in diseases. J. Leukoc. Biol. 2019, 106, 345–358, doi: 10.1002/JLB.3RU1018-378RR. 94. Molitor, D.C.; Boor, P.; Buness, A.; Schneider, R.K.; Teichmann, L.L.; Körber, R.M.; Horvath, G.L.; Koschmieder, S.; Gütgemann, I. Macrophage frequency in the bone marrow correlates with morphologic subtype of myeloproliferative neoplasm. Ann. Hematol. 2021, 100, 97–104, doi: 10.1007/s00277-020-04304-y. 95. Larsen, T.S.; Christensen, J.H.; Hasselbalch, H.C.; Pallisgaard, N. The JAK2 V617F mutation involves B- and T-lymphocyte lineages in a subgroup of patients with Philadelphia-chromosome negative chronic myeloproliferative disorders. Br. J. Haematol. 2007, 36, 745–751, doi: 10.1111/j.1365-2141.2007.06497.x. 96. Nicolosi, M.; Mudireddy, M.; Gangat, N.; Pardanani, A.; Hanson, C.A.; Ketterling, R.P.; Tefferi, A. Normal karyotype in myelofibrosis: Is prognostic integrity affected by the number of metaphases analyzed?. Blood Cancer J. 2018, 8, 1–5 , 2018, doi: 10.1038/s41408-017-0046-3. 97. Tefferi, A.; Nicolosi, M.; Mudireddy, M.; Lasho, T.L.; Gangat, N.; Begna, K.H.; Hanson, C.A.; Ketterling, R.P.; Pardanani, A. Revised cytogenetic risk stratification in primary myelofibrosis: Analysis based on 1002 informative patients. Leukemia. 2018, 32, 1189–1199, doi: 10.1038/s41375-018-0018-z. 98. Gonzalez-Rodriguez, A.P.; Villa-Álvarez, M.; Sordo-Bahamonde, C.; Lorenzo- Herrero, S.; Gonzalez, S. NK Cells in the Treatment of Hematological Malignancies. J. Clin. Med. 2019, 8, 1–23, doi: 10.3390/jcm8101557. 99. Arantes, A.; Leal, C.; Araújo, C.; Santos, P.; Bergamo, A.; Welner, R.S.; Tenen, D.G.; Mullally, A.; Kobayashi, S.; Magalhaes, E.; Lobo, L. Decreased Activity of NK Cells in Myeloproliferative Neoplasms. Blood. 2015, 126, 1637, doi: 10.1182/blood.V126.23.1637.1637. 100. Palumbo, G.A.; Stella, S.; Pennisi, M.S.; Pirosa, C.; Fermo, E.; Fabris, S.; Cattaneo, D.; Iurlo, A. The Role of New Technologies in Myeloproliferative Neoplasms. Front. Oncol. 2019, 9, 1–10, doi: 10.3389/fonc.2019.00321. 101. Helbig , G. Classical Philadelphia-negative myeloproliferative neoplasms: Focus on mutations and JAK2 inhibitors. Med. Oncol. 2018, 35, 1–7, doi: 10.1007/s12032- 018-1187-3. 102. Skov, V. Next Generation Sequencing in MPNs. Lessons from the Past and Prospects for Use as Predictors of Prognosis and Treatment Responses. Cancers. 2021, 12, 1– 38, doi:10.3390/cancers12082194. 103. Patnaik, M.M.; Lasho, T.L. Genomics of myelodysplastic syndrome/myeloproliferative neoplasm overlap syndromes. Hematology. 2020, 20, 450–459, doi: 10.1182/HEMATOLOGY.2020000130. 104. Luque Paz, D.; Jouanneau-Courville, R.; Riou, J.; Ianotto, J.C.; Boyer, F.; Chauveau, A.; Renard, M.; Chomel, J.C.; Cayssials, E.; Gallego-Hernanz, M.P.; Pastoret, C.; Murati, A.; Courtier, F.; Rousselet, M.C.; Quintin-Roue, I.; Cottin, L.; Orvain, C.; Thepot, S.; Chretien, J.M.; Delneste, Y.; Ifrah, N.; Blanchet, O.; Hunault-Berger, M.; Lippert, E.; Ugo, V. Leukemic evolution ofpolycythemia vera and essential thrombocythemia: Genomic profiles predict time to transformation. Blood adv. 2020, 4, 4887–4897, doi: 10.1182/bloodadvances.2020002271. 105. Vannucchi, A.M. From leeches to personalized medicine: Evolving concepts in the management of polycythemia vera. Haematologica. 2017, 102, 18–29, doi: 10.3324/haematol.2015.129155. 106. Moliterno, A.; Kaizer, H. Applied genomics in MPN presentation. Hematology. 2020, 2020, 434–439, doi: 10.1182/hematology.2020000128. 107. Downes, C.E.J.; McClure, B.J.; Rehn, J.; Breen, J.; Bruning, J.B.; Yeung, D.T.; White, D.L. Acquired Mutations within the JAK2 Kinase Domain Confer Resistance to JAK Inhibitors in an in Vitro model of a High-Risk Acute Lymphoblastic Leukemia. Blood. 2020, 136, 5–6, doi: 10.1182/blood-2020-133491. 108. Helbig, G.; Wichary, R.; Torba, K.; Kyrcz-Krzemien, S. Resolution of thrombocytopenia, but not polycythemia after ruxolitinib for polycythemia vera with detectable mutation in the exon 12 of the JAK2 gene. Med. Oncol. 2017, 34, 31. [CrossRef] 85 109. Habbel, J.; Arnold, L.; Chen, Y.; M.¨ollmann, M.; Bruderek, K.; Brandau, S.; D.¨uhrsen, U.; Hanoun, M. Inflammation-driven activation of JAK/STAT signaling reversibly accelerates acute myeloid leukemia in vitro. Blood adv. 2020, 4, 3000– 3010, doi: 10.1182/bloodadvances.2019001292. 110. Forte, D.; Barone, M.; Palandri, F.; Catani, L. The “Vesicular Intelligence” Strategy of Blood Cancers. Genes. 2021, 12, 1–29, doi: 10.3390/genes12030416. 111. Garcia-Gisbert, N.; Fernandez-Ibarrondo, L.; Fernandez-Rodrıguez, C.; Gibert, J.; Andrade- Campos, M.; Arenillas, L.; Camacho, L.; Angona, A.; Longaron, R.; Salar, A.; Calvo, X.; Besses, C.; Bellosillo, B. Circulating cell-free DNA improves the molecular characterisa- tion of Ph-negative myeloproliferative neoplasms. Br. J. Haematol. 2021, 192, 300–309, doi: 10.1111/bjh.17087. 112. Găman, M.A.; Cozma, M.A.; Dobrică, E.C.; Cretoiu, S.M.; Găman, A.M.; Diaconu, C.C. Liquid Biopsy and Potential Liquid Biopsy-Based Biomarkers in Philadelphia- Negative Classical Myeloproliferative Neoplasms: A Systematic Review. Life. 2021, 11, 1–23, doi: 10.3390/life11070677pt_BR
dc.publisher.initialsUEApt_BR
Aparece nas coleções:DISSERTAÇÃO - PPCAH Programa de Pós-Graduação em Ciências Aplicadas à Hematologia



Os itens no repositório estão protegidos por copyright, com todos os direitos reservados, salvo quando é indicado o contrário.