DSpace logo

Use este identificador para citar ou linkar para este item: http://repositorioinstitucional.uea.edu.br//handle/riuea/5337
Registro completo de metadados
Campo DCValorIdioma
dc.contributor.authorCastro, Tiane Sena de-
dc.date.available2023-11-08-
dc.date.available2023-11-21T12:59:36Z-
dc.date.issued2023-07-18-
dc.identifier.urihttp://repositorioinstitucional.uea.edu.br//handle/riuea/5337-
dc.description.abstractCovid-19 is an infectious disease caused by the new coronavirus SARS-CoV-2, responsible for causing the biggest pandemic of the century. The disease presents clinical signs of infection at different levels: asymptomatic, mild, moderate, severe and critical, which can lead to death. One of the most affected Brazilian states was Amazonas, with more than 14 thousand deaths until May 2021, highlighted by the health collapse in health services and the emergence of a new variant called Gama (P.1). Objective: To describe the clinical manifestations, epidemiological profile and vaccination schedule of blood donors from Hemocentro do Amazonas who had Covid-19. Methodology: This is a cross-sectional study, in which blood donors were included, previously confirmed positive for anti-SARS-CoV-2 IgG, from January 2020 to December 2021. Results: Of the 247 blood donors, the main results showed the prevalence of males (77.73%), aged between 31 and 50 years old (58.30%), blood type and Rh O+ factor (54.25%), who lived with two to three people (50.20%); the majority (21,86%) in the north of Manaus, with a monthly income of up to two minimum wages (63.56%). The prevalent clinical manifestations of Covid-19 in blood donors were: loss of taste (52.23%), fever (47.77%) and headache (46.15%). The duration of days of clinical symptoms in blood donors was up to ten days in 116 (46.96%); and only three reported having symptoms for more than 50 days. Only 51 (20.64%) blood donors received vaccines against Covid-19, with a prevalence (86.27%) of the CoronaVac vaccine. Conclusion: It was evident that the clinical symptoms of Covid-19 in blood donors were mild to moderatept_BR
dc.languageporpt_BR
dc.publisherUniversidade do Estado do Amazonaspt_BR
dc.rightsAcesso Abertopt_BR
dc.subjectSARS-CoV-2pt_BR
dc.subjectManifestações clínicaspt_BR
dc.subjectCovid-19pt_BR
dc.subjectHemocentro do Amazonaspt_BR
dc.titleCaracterísticas clínicas e epidemiológicas dos doadores de sangue infectados pelo SARS-Cov-2 do Hemocentro do Amazonaspt_BR
dc.title.alternativeClinical and epidemiological characteristics of blood donors infected by SARS-Cov-2 at the Hemocentro do Amazonaspt_BR
dc.typeDissertaçãopt_BR
dc.date.accessioned2023-11-21T12:59:36Z-
dc.contributor.advisor1Crispim, Myuki Alfaia Esashika-
dc.contributor.advisor1Latteshttp://lattes.cnpq.br/8067167439317572pt_BR
dc.contributor.referee1Crispim , Myuki Esashika-
dc.contributor.referee1Latteshttp://lattes.cnpq.br/8067167439317572pt_BR
dc.contributor.referee2Castilho, Marcia da Costa-
dc.contributor.referee2Latteshttp://lattes.cnpq.br/2945789466069728pt_BR
dc.contributor.referee3Marie, Adriana Melheiro Alle-
dc.contributor.referee3Latteshttp://lattes.cnpq.br/2627415957053194pt_BR
dc.description.resumoA covid-19 é uma doença infecciosa causada pelo novo coronavírus SARS-CoV-2, responsável por causar a maior pandemia do século. A doença apresenta quadros clínicos de infecção de diferentes níveis: assintomático, leve, moderado, grave e crítico, podendo evoluir para óbito. Um dos estados brasileiros mais atingidos foi o Amazonas, com mais de 14 mil mortes até maio de 2021, destacando-se pelo colapso sanitário nos serviços de saúde e com o surgimento de uma nova variante denominada Gama (P.1). Objetivo: Descrever as manifestações clínicas, o perfil epidemiológico e o esquema vacinal dos doadores de sangue do Hemocentro do Amazonas que tiveram covid-19. Metodologia: Trata-se de um estudo estudo transversal, no qual foram incluídos doadores de sangue, previamente confirmados positivos para anti-SARS-CoV-2 IgG, no período de janeiro 2020 a dezembro de 2021. Resultados: Dos 247 doadores de sangue, os principais resultados evidenciaram a prevalência do sexo masculino (77,73%), na faixa etária entre 31 e 50 anos de idade (58,30%), tipagem sanguínea e fator Rh O+ (54,25%), que residiam com duas a três pessoas (50,20%); a maior parte (21,86%) na zona norte de Manaus, com renda mensal de até dois salários-mínimos (63,56%). As manifestações clínicas prevalentes da covid-19 nos doadores de sangue foram: perda de paladar (52,23%), febre (47,77%) e dor de cabeça (46,15%). A duração de dias dos sintomas clínicos dos doadores de sangue foram de até dez dias em 116 (46,96%); e somente três relataram ter sintomas acima de 50 dias. Apenas 51 (20,64%) doadores de sangue receberam vacinas contra a covid-19, com prevalência (86,27%) da vacina CoronaVac. Conclusão: Evidenciou- se que os sintomas clínicos da covid-19 em doadores de sangue foram na forma leve a moderada.pt_BR
dc.publisher.countryBrasilpt_BR
dc.publisher.programPPGH -PROGRAMA DE PÓS-GRADUAÇÃO EM CIÊNCIAS APLICADAS À HEMATOLOGIApt_BR
dc.relation.references1. Mulabbi EN, Tweyongyere R, Byarugaba DK. The history of the emergence and transmission of human Coronaviruses. Onderstepoort J Vet Res. 2021;88(1):1–8. 2. Cui J, Li F, Shi Z-L. Origin and evolution of pathogenic coronaviruses. Nat Rev Microbiol [Internet]. 2019 Mar 10;17(3):181–92. Available from: http://www.nature.com/articles/s41579-018-0118-9 3. Hasöksüz M, Kiliç S, Saraç F. Coronaviruses and sars-cov-2. Turkish J Med Sci. 2020;50(SI-1):549–56. 4. Li J, Huang DQ, Zou B, Yang H, Hui WZ, Rui F, et al. Epidemiology of COVID-19: A systematic review and meta-analysis of clinical characteristics, risk factors, and outcomes. J Med Virol. 2021;93(3):1449–58. 5. Bauch CT, Oraby T. Assessing the pandemic potential of MERS-CoV. Lancet [Internet]. 2013 Aug;382(9893):662–4. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0140673613615044 6. Machhi J, Herskovitz J, Senan AM, Dutta D, Nath B, Oleynikov MD, et al. The Natural History, Pathobiology, and Clinical Manifestations of SARS-CoV-2 Infections. J Neuroimmune Pharmacol. 2020;15(3):359–86. 7. Rastogi M, Pandey N, Shukla A, Singh SK. SARS coronavirus 2: from genome to infectome. Respir Res. 2020;21(1). 8. Atzrodt CL, Maknojia I, McCarthy RDP, Oldfield TM, Po J, Ta KTL, et al. A Guide to COVID-19: a global pandemic caused by the novel coronavirus SARS-CoV-2. FEBS J. 2020;287(17):3633–50. 9. Buss LF, Buss LF, Jr CAP, Abrahim CMM, Jr AM, Salomon T, et al. Three-quarters attack rate of SARS-CoV-2 in the Brazilian Amazon during a largely unmitigated epidemic. Science (80- ). 2020;9728(December):1–9. 10. Crook H, Raza S, Nowell J, Young M, Edison P. Long covid - Mechanisms, risk factors, and management. BMJ. 2021;374:1–18. 11. Menni C, Valdes AM, Polidori L, Antonelli M, Penamakuri S, Nogal A, et al. Symptom prevalence, duration, and risk of hospital admission in individuals infected with SARS-CoV-2 during periods of omicron and delta variant dominance: a prospective observational study from the ZOE COVID Study. Lancet (London, England). 2022;399(10335):1618–24. 58 12. Cunningham; JDADMBCH, McIntosh; DHMSHLMK, Tyrrell. DAJ. Histones-Animal and Vegetable. Nature. 1968;220:1968. 13. Virology: Coronaviruses. Nature. 1968;220(5168):650. 14. Corman VM, Lienau J, Witzenrath M. Coronaviruses as the cause of respiratory infections. Internist. 2019;60(11):1136–45. 15. Van Der Hoek L, Pyrc K, Jebbink MF, Vermeulen-Oost W, Berkhout RJM, Wolthers KC, et al. Identification of a new human coronavirus. Nat Med. 2004;10(4):368–73. 16. Chen B, Tian E-K, He B, Tian L, Han R, Wang S, et al. Overview of lethal human coronaviruses. Signal Transduct Target Ther [Internet]. 2020 Dec 10;5(1):89. Available from: http://www.nature.com/articles/s41392-020-0190-2 17. Sharma A, Farouk IA, Lal SK. COVID-19 : A Review on the Novel Coronavirus Disease. Viruses [Internet]. 2021;13(2):1–25. Available from: https://www.mdpi.com/1999-4915/13/2/202 18. Khalil OAK, Khalil S da S. SARS-CoV-2: taxonomia, origem e constituição. Rev Med [Internet]. 2020 Dec 10;99(5):473–9. Available from: https://www.revistas.usp.br/revistadc/article/view/169595 19. Peiris JSM, Lai ST, Poon LLM, Guan Y, Yam LYC, Lim W, et al. Coronavirus as a possible cause of severe acute respiratory syndrome. Lancet. 2003;361(9366):1319–25. 20. Zhong NS, Wong GWK. Epidemiology of severe acute respiratory syndrome (SARS): Adults and children. Paediatr Respir Rev [Internet]. 2004 Dec;5(4):270–4. Available from: https://linkinghub.elsevier.com/retrieve/pii/S1526054204000806 21. Yang Y, Peng F, Wang R, Guan K, Jiang T, Xu G, et al. The deadly coronaviruses: The 2003 SARS pandemic and the 2020 novel coronavirus epidemic in China. J Autoimmun [Internet]. 2020;109(March):102434. Available from: https://doi.org/10.1016/j.jaut.2020.102434 22. Hon KL, Leung KKY, Leung AKC, Sridhar S, Qian S, Lee SL, et al. Overview: The history and pediatric perspectives of severe acute respiratory syndromes: Novel or just like SARS. Pediatr Pulmonol. 2020;55(7):1584–91. 23. Kraaij-Dirkzwager M, Timen A, Dirksen K, Gelinck L, Leyten E, Groeneveld P, et al. Middle east respiratory syndrome coronavirus (MERS-CoV) infections in two returning travellers in the Netherlands, May 2014. Eurosurveillance. 2014;19(21). 24. Chafekar A, Fielding BC. MERS-CoV: Understanding the latest human coronavirus threat. Viruses. 2018;10(2). 59 25. Muralidar S, Ambi SV, Sekaran S, Krishnan UM. The emergence of COVID-19 as a global pandemic: Understanding the epidemiology, immune response and potential therapeutic targets of SARS-CoV-2. Biochimie. 2020;179:85–100. 26. Lu R, Zhao X, Li J, Niu P, Yang B, Wu H, et al. Genomic characterisation and epidemiology of 2019 novel coronavirus: implications for virus origins and receptor binding. Lancet. 2020;395(10224):565–74. 27. Wang M-Y, Zhao R, Gao L-J, Gao X-F, Wang D-P, Cao J-M. SARS-CoV-2: Structure, Biology, and Structure-Based Therapeutics Development. Front Cell Infect Microbiol [Internet]. 2020;10(November):587269. Available from: http://www.ncbi.nlm.nih.gov/pubmed/33324574 28. Andersen KG, Rambaut A, Lipkin WI, Holmes EC, Garry RF. The proximal origin of SARS-CoV-2. Nat Med. 2020;26(4):450–2. 29. Nogueira JVD, Silva CM da. Conhecendo a Origem Do Sars-Cov-2 ( Covid 19 ). Rev Saaúde e Meio Ambient - RESMA. 2020;2(Covid 19):115–24. 30. Zhou P, Yang X Lou, Wang XG, Hu B, Zhang L, Zhang W, et al. A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature. 2020;579(7798):270–3. 31. Fan Y, Zhao K, Shi ZL, Zhou P. Bat coronaviruses in China. Viruses. 2019;11(3). 32. Pereira A, Tomé da Cruz KA, Sousa Lima P. PRINCIPAIS ASPECTOS DO NOVO CORONAVÍRUS SARS-CoV-2: UMA AMPLA REVISÃO. Arq do Mudi. 2021;25(1):73–90. 33. Mathieu E, Ritchie H, Rodés-guirao L, Appel C, Gavrilov D, Hasell J, et al. Coronavirus Pandemic ( COVID-19 ). 2023;1–6. 34. Pollard CA, Morran MP, Nestor-Kalinoski AL. The covid-19 pandemic: A global health crisis. Physiol Genomics. 2020;52(11):549–57. 35. The Lancet. India under COVID-19 lockdown. Lancet. 2020;395(10233):1315. 36. Amawi H, Abu Deiab GI, A Aljabali AA, Dua K, Tambuwala MM. COVID-19 pandemic: An overview of epidemiology, pathogenesis, diagnostics and potential vaccines and therapeutics. Ther Deliv. 2020;11(4):245–68. 37. de Souza WV, Martelli CMT, de Santana Cabral Silva AP, de Souza Maia LT, Braga MC, Bezerra LCA, et al. The first hundred days of COVID-19 in PernambucoState, Brazil: Epidemiology in historical context. Cad Saude Publica. 2020;36(11). 38. Barros Neiva M, Carvalho I, Filho SC, Barbosa-Junior F, Andrade Bernardi F, Lara T, 60 et al. Revista da Sociedade Brasileira de Medicina Tropical Brazil: the emerging epicenter of COVID-19 pandemic. J Brazilian Soc Trop Med [Internet]. 2020;2020. Available from: www.scielo.br/rsbmtIwww.rsbmt.org.br 39. Neiva MB, Carvalho I, Filho EDSC, Barbosa-Junior F, Bernardi FA, Sanches TLM, et al. Brazil: The emerging epicenter of COVID-19 pandemic. Rev Soc Bras Med Trop. 2020;53:1–8. 40. Orellana JDY, da Cunha GM, Marrero L, Horta BL, da Costa Leite I. Explosion in mortality in the Amazonian epicenter of the COVID-19 epidemic. Cad Saude Publica. 2020;36(7):1–8. 41. Constant B. Boletim diário covid-19 no amazonas 6/5/2022. 2022; 42. Monteiro Xavier, Daniel Salgado, Mazzari, Alan Sérgio TR. Epidemiologia da COVID-19 no Amazonas, Brasil. BEPA, Bol epidemiol paul [Internet]. 2020;17(201):2–19. Available from: https://search.bvsalud.org/global-literature-on-novel-coronavirus-2019-ncov/resource/en/covidwho-881993 43. Hallal PC, Hartwig FP, Horta BL, Silveira MF, Struchiner CJ, Vidaletti LP, et al. SARS-CoV-2 antibody prevalence in Brazil: results from two successive nationwide serological household surveys. Lancet Glob Heal. 2020;8(11):e1390–8. 44. Ramanathan K, Antognini D, Combes A, Paden M, Zakhary B, Ogino M, et al. Genomic characterisation and epidemiology of 2019 novel coronavirus: implications for virus origins and receptor binding. Lancet. 2020;2020(January):19–21. 45. Wu A, Peng Y, Huang B, Ding X, Wang X, Niu P, et al. Genome Composition and Divergence of the Novel Coronavirus (2019-nCoV) Originating in China. Cell Host Microbe. 2020;27(3):325–8. 46. Yadav R, Chaudhary JK, Jain N, Chaudhary PK. Role of Structural and Non-Structural Proteins and Therapeutic. Cells. 2021;10(4):821. 47. Grey, I., Arora, T., Thomas, J., Saneh, A., Tohme, P., & Abi-habib R. Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19 . The COVID-19 resource centre is hosted on Elsevier Connect , the company ’ s public news and information. Psychiatry Res. 2020;(January):293. 48. Hosoki K, Chakraborty A, Sur S. Molecular mechanisms and epidemiology of COVID-19 from an allergist’s perspective. J Allergy Clin Immunol. 2020;146(2):285–99. 49. Rahimi A, Mirzazadeh A, Tavakolpour S. Since January 2020 Elsevier has created a 61 COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID- 19 . The COVID-19 resource centre is hosted on Elsevier Connect , the company ’ s public news and information . 2020;(January). 50. Khailany RA, Safdar M, Ozaslan M. Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID- 19 . The COVID-19 resource centre is hosted on Elsevier Connect , the company ’ s public news and information. Gene Reports. 2020;19(January):1–6. 51. Sars-cov- N. Tracking SARS-CoV-2 variants. World Health Organization. 2022. p. 1–13. 52. Choi JY, Smith DM. SARS-CoV-2 variants of concern. Yonsei Med J. 2021;62(11):961–8. 53. World Health Organization. COVID-19 Weekly Epidemiological Update. World Heal Organ [Internet]. 2022;(August):1–33. Available from: https://www.who.int/publications/m/item/covid-19-weekly-epidemiological-update 54. PHE PHE. Investigation of novel SARS-COV-2 variant: Variant of Concern 202012/01 Technical Briefing 3. GovUk [Internet]. 2020;(December):1–11. Available from: https://www.gov.uk/government/publications/investigation-of-novel-sars-cov-2-variant-variant-of-concern-20201201 55. Tegally H, Wilkinson E, Giovanetti M, Iranzadeh A, Fonseca V, Giandhari J, et al. Detection of a SARS-CoV-2 variant of concern in South Africa. Nature [Internet]. 2021;592(7854):438–43. Available from: http://dx.doi.org/10.1038/s41586-021-03402-9 56. Ek S-. Correspondence mutation reduces antibody neutralisation participants on the basis of their. Elsevier. :283–4. 57. Fujino T, Nomoto H, Kutsuna S, Ujiie M, Suzuki T, Sato R, et al. Novel SARS-CoV-2 variant in travelers from Brazil to Japan. Emerg Infect Dis. 2021;27(4):1243–5. 58. Naveca FG, Nascimento V, de Souza VC, Corado A de L, Nascimento F, Silva G, et al. COVID-19 in Amazonas, Brazil, was driven by the persistence of endemic lineages and P.1 emergence. Nat Med [Internet]. 2021;27(7):1230–8. Available from: http://dx.doi.org/10.1038/s41591-021-01378-7 59. Sabino EC, Buss LF, Carvalho MPS, Prete CA, Crispim MAE, Fraiji NA, et al. Resurgence of COVID-19 in Manaus, Brazil, despite high seroprevalence. Lancet. 2021;397(10273):452–5. 62 60. Public Health England. SARS-CoV-2 variants of concern and variants under investigation in England. Sage. 2021;(April):1–50. 61. Thakur V, Ratho RK. OMICRON (B.1.1.529): A new SARS-CoV-2 variant of concern mounting worldwide fear. J Med Virol. 2022;94(5):1821–4. 62. Ren S-Y, Wang W-B, Gao R-D, Zhou A-M. Omicron variant (B.1.1.529) of SARS-CoV-2: Mutation, infectivity, transmission, and vaccine resistance. World J Clin Cases. 2022;10(1):1–11. 63. Wolter N, Jassat W, Walaza S, Welch R, Moultrie H, Groome M, et al. Early assessment of the clinical severity of the SARS-CoV-2 omicron variant in South Africa: a data linkage study. Lancet [Internet]. 2022;399(10323):437–46. Available from: http://dx.doi.org/10.1016/S0140-6736(22)00017-4 64. Kim MK, Lee B, Choi YY, Um J, Lee KS, Sung HK, et al. Clinical Characteristics of 40 Patients Infected With the SARS-CoV-2 Omicron Variant in Korea. J Korean Med Sci. 2022;37(3):6–10. 65. Hu B, Guo H, Zhou P, Shi ZL. Characteristics of SARS-CoV-2 and COVID-19. Nat Rev Microbiol. 2021;19(3):141–54. 66. Meyerowitz EA, Richterman A, Gandhi RT, Sax PE. Transmission of sars-cov-2: A review of viral, host, and environmental factors. Ann Intern Med. 2021;174(1):69–79. 67. Li P, Xie M, Zhang W. Clinical characteristics and intrauterine vertical transmission potential of coronavirus disease 2019 infection in 9 pregnant women: a retrospective review of medical records. Am J Obstet Gynecol. 2020;223(6):955–6. 68. Xu Z, Shi L, Wang Y, Zhang J, Huang L, Zhang C, et al. Pathological findings of COVID-19 associated with acute respiratory distress syndrome. Lancet Respir Med. 2020;8(4):420–2. 69. Tang NLS, Chan PKS, Wong CK, To KF, Wu AKL, Sung YM, et al. Early enhanced expression of interferon-inducible protein-10 (CXCL-10) and other chemokines predicts adverse outcome in severe acute respiratory syndrome. Clin Chem. 2005;51(12):2333–40. 70. Sims AC, Baric RS, Yount B, Burkett SE, Collins PL, Pickles RJ. Severe Acute Respiratory Syndrome Coronavirus Infection of Human Ciliated Airway Epithelia: Role of Ciliated Cells in Viral Spread in the Conducting Airways of the Lungs. J Virol. 2005;79(24):15511–24. 71. Djomkam ALZ, Olwal CO, Sala TB, Paemka L. Commentary: SARS-CoV-2 Cell Entry 63 Depends on ACE2 and TMPRSS2 and Is Blocked by a Clinically Proven Protease Inhibitor. Front Oncol. 2020;10:271–80. 72. Li H, Liu Z, Ge J. Scientific research progress of COVID-19/SARS-CoV-2 in the first five months. J Cell Mol Med. 2020;24(12):6558–70. 73. Patel KP, Vunnam SR, Patel PA, Krill KL, Korbitz PM, Gallagher JP, et al. Transmission of SARS-CoV-2: an update of current literature. Eur J Clin Microbiol Infect Dis. 2020;39(11):2005–11. 74. Irmak E. COVID-19 disease severity assessment using CNN model. IET Image Process. 2021;15(8):1814–24. 75. Chen CH, Lin SW, Shen CF, Hsieh KS, Cheng CM. Biomarkers during COVID-19: Mechanisms of Change and Implications for Patient Outcomes. Diagnostics. 2022;12(2):1–16. 76. Aydin S, Benk IG, Geckil AA. May viral load detected in saliva in the early stages of infection be a prognostic indicator in COVID-19 patients? J Virol Methods [Internet]. 2021;294(May):114198. Available from: https://doi.org/10.1016/j.jviromet.2021.114198 77. da Rosa Mesquita R, Francelino Silva Junior LC, Santos Santana FM, Farias de Oliveira T, Campos Alcântara R, Monteiro Arnozo G, et al. Clinical manifestations of COVID-19 in the general population: systematic review. Wien Klin Wochenschr [Internet]. 2021 Apr 26;133(7–8):377–82. Available from: https://link.springer.com/10.1007/s00508-020-01760-4 78. Zhu X, Yuan W, Shao J, Huang K, Wang Q, Yao S, et al. Risk factors for mortality in patients over 70 years old with COVID-19 in Wuhan at the early break: retrospective case series. BMC Infect Dis. 2021;21(1):1–9. 79. Salzberger B, Buder F, Lampl B, Ehrenstein B, Hitzenbichler F, Holzmann T, et al. Epidemiology of SARS-CoV-2. Infection [Internet]. 2021;49(2):233–9. Available from: https://doi.org/10.1007/s15010-020-01531-3 80. Weidner L, Nunhofer V, Jungbauer C, Hoeggerl AD, Grüner L, Grabmer C, et al. A soroprevalência do anticorpo total anti-SARS-CoV-2 é maior em doadores de sangue austríacos mais jovens. Infection [Internet]. 2021;49(6):1187–94. Available from: https://doi.org/10.1007/s15010-021-01639-0 81. Fischer B, Knabbe C, Vollmer T. SARS-CoV-2 IgG seroprevalence in blood donors located in three different federal states, Germany, March to June 2020. Eurosurveillance. 64 2020;25(28). 82. Chang L, Hou W, Zhao L, Zhang Y, Wang Y, Wu L, et al. The Prevalence of Antibodies to SARS-CoV-2 Among Blood Donors in China. SSRN Electron J. 2020; 83. Davis G, York AJ, Bacon WC, Lin SC, McNeal MM, Yarawsky AE, et al. Seroprevalence of SARS-CoV-2 infection in Cincinnati Ohio USA from August to December 2020. PLoS One. 2021;16(7 July). 84. Di Stefano M, Sarno M, Faleo G, Farhan Mohamed AM, Lipsi MR, De Nittis R, et al. Low Prevalence of Antibodies to SARS-CoV-2 and Undetectable Viral Load in Seropositive Blood Donors from South-Eastern Italy. Acta Haematol. 2021;144(5):580–4. 85. Uyoga S, Adetifa IMO, Karanja HK, Nyagwange J, Tuju J, Wanjiku P, et al. Seroprevalence of anti-SARS-CoV-2 IgG antibodies in Kenyan blood donors. Science (80- ). 2020; 86. L AF, CL S, SOG M, ACMP L, RA M, VG V, et al. Seroprevalence of anti-SARS-CoV-2 among blood donors in Rio de Janeiro, Brazil. Rev Saude Publica [Internet]. 2020;54:69. Available from: https://pubmed.ncbi.nlm.nih.gov/32638883/ 87. Bryan A, Pepper G, Wener MH, Fink SL, Morishima C, Chaudhary A, et al. Performance characteristics of the abbott architect sars-cov-2 igg assay and seroprevalence in Boise, Idaho. J Clin Microbiol. 2020;58(8). 88. Younas A, Waheed S, Khawaja S, Imam M, Borhany M, Shamsi T. Seroprevalence of SARS-CoV-2 antibodies among healthy blood donors in Karachi, Pakistan. Transfus Apher Sci. 2020;59(6). 89. Berger M. Blood product safety. Nat Clim Chang. 2013;3(7):606–7. 90. Busch MP, Bloch EM, Kleinman S. Prevention of transfusion-transmitted infections. Blood. 2019;133(17):1854–64. 91. Ciotti M, Benedetti F, Zella D, Angeletti S, Ciccozzi M, Bernardini S. SARS-CoV-2 Infection and the COVID-19 Pandemic Emergency: The Importance of Diagnostic Methods. Chemotherapy. 2021;66(1–2):17–23. 92. Udugama B, Kadhiresan P, Kozlowski HN, Malekjahani A, Osborne M, Li VYC, et al. Diagnosing COVID-19: The Disease and Tools for Detection. ACS Nano. 2020;14(4):3822–35. 93. Lai CKC, Lam W. Laboratory testing for the diagnosis of COVID-19. Biochem Biophys Res Commun [Internet]. 2021;538:226–30. Available from: 65 https://doi.org/10.1016/j.bbrc.2020.10.069 94. Asgharzadeh M, Valiollahzadeh MR, Mahdavi Poor B, Samadi Kafil H, Asgharzadeh V, Vegari A, et al. Laboratory Diagnosis of COVID-19. Clin Pulm Med [Internet]. 2020 Sep;27(5):148–53. Available from: https://journals.lww.com/10.1097/CPM.0000000000000374 95. Ramanathan K, Antognini D, Combes A, Paden M, Zakhary B, Ogino M, et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet. 2020;395(January):497–506. 96. Long MJC, Aye Y. Science’s Response to CoVID-19. ChemMedChem. 2021;16(15):2288–314. 97. Sethuraman N, Jeremiah SS, Ryo A. Interpreting Diagnostic Tests for SARS-CoV-2. JAMA - J Am Med Assoc. 2020;323(22):2249–51. 98. Kabir MA, Ahmed R, Iqbal SMA, Chowdhury R, Paulmurugan R, Demirci U, et al. Diagnosis for COVID-19: current status and future prospects. Expert Rev Mol Diagn [Internet]. 2021;21(3):269–88. Available from: https://doi.org/10.1080/14737159.2021.1894930 99. Floriano I, Silvinato A, Bernardo WM, Reis JC, Soledade G. Accuracy of the polymerase chain reaction (PCR) test in the diagnosis of acute respiratory syndrome due to coronavirus: A systematic review and meta-analysis. Rev Assoc Med Bras. 2021;66(7):880–8. 100. Padhye NS. Reconstructed diagnostic sensitivity and specificity of the RT-PCR test for COVID-19. medRxiv. 2020; 101. Tahamtan A, Ardebili A. Real-time RT-PCR in COVID-19 detection: issues affecting the results. Expert Rev Mol Diagn [Internet]. 2020;20(5):453–4. Available from: https://doi.org/10.1080/14737159.2020.1757437 102. Huang WE, Lim B, Hsu CC, Xiong D, Wu W, Yu Y, et al. RT-LAMP for rapid diagnosis of coronavirus SARS-CoV-2. Microb Biotechnol. 2020;13(4):950–61. 103. Kevadiya BD, Machhi J, Herskovitz J, Oleynikov MD, Blomberg R, Bajwa N, et al. HHS Public Access. 2021;20(5):593–605. 104. Yamayoshi S, Sakai-Tagawa Y, Koga M, Akasaka O, Nakachi I, Koh H, et al. Comparison of rapid antigen tests for covid-19. Viruses. 2020;12(12):1–8. 105. Ciotti M, Maurici M, Pieri M, Andreoni M, Bernardini S. Performance of a rapid antigen test in the diagnosis of SARS-CoV-2 infection. J Med Virol. 2021;93(5):2988–91. 66 106. Osterman A, Baldauf HM, Eletreby M, Wettengel JM, Afridi SQ, Fuchs T, et al. Evaluation of two rapid antigen tests to detect SARS-CoV-2 in a hospital setting. Med Microbiol Immunol [Internet]. 2021;210(1):65–72. Available from: https://doi.org/10.1007/s00430-020-00698-8 107. Gupta R, Kazi TA, Dey D, Ghosh A, Ravichandiran V, Swarnakar S, et al. CRISPR detectives against SARS-CoV-2: a major setback against COVID-19 blowout. Appl Microbiol Biotechnol [Internet]. 2021;105(20):7593–605. Available from: https://doi.org/10.1007/s00253-021-11583-6 108. Falzone L, Gattuso G, Tsatsakis A, Spandidos DA, Libra M. Current and innovative methods for the diagnosis of COVID-19 infection (Review). Int J Mol Med. 2021;47(6):1–23. 109. Safari F, Afarid M, Rastegari B, Borhani-Haghighi A, Barekati-Mowahed M, Behzad-Behbahani A. CRISPR systems: Novel approaches for detection and combating COVID-19. Virus Res [Internet]. 2021;294(November 2020):198282. Available from: https://doi.org/10.1016/j.virusres.2020.198282 110. Hillary VE, Ignacimuthu S, Ceasar SA. Potential of CRISPR/Cas system in the diagnosis of COVID-19 infection. Expert Rev Mol Diagn [Internet]. 2021;21(11):1179–89. Available from: https://doi.org/10.1080/14737159.2021.1970535 111. Broughton JP, Deng X, Yu G, Fasching CL, Servellita V, Singh J, et al. CRISPR–Cas12-based detection of SARS-CoV-2. Nat Biotechnol [Internet]. 2020;38(7):870–4. Available from: http://dx.doi.org/10.1038/s41587-020-0513-4 112. Azhar M, Phutela R, Kumar M, Ansari AH, Rauthan R, Gulati S, et al. Rapid and accurate nucleobase detection using FnCas9 and its application in COVID-19 diagnosis. Biosens Bioelectron. 2021;183. 113. Das Mukhopadhyay C, Sharma P, Sinha K, Rajarshi K. Recent trends in analytical and digital techniques for the detection of the SARS-Cov-2. Biophys Chem [Internet]. 2021;270(December 2020):106538. Available from: https://doi.org/10.1016/j.bpc.2020.106538 114. Khan J, Asoom LI Al, Khan M, Chakrabartty I, Dandoti S, Rudrapal M, et al. Evolution of RNA viruses from SARS to SARS-CoV-2 and diagnostic techniques for COVID-19: a review. Beni-Suef Univ J Basic Appl Sci [Internet]. 2021;10(1). Available from: https://doi.org/10.1186/s43088-021-00150-7 115. Ding X, Yin K, Li Z, Liu C. All-in-One Dual CRISPR-Cas12a (AIOD-CRISPR) Assay: 67 A Case for Rapid, Ultrasensitive and Visual Detection of Novel Coronavirus SARS-CoV-2 and HIV virus. bioRxiv. 2020;2020.03.19.998724. 116. Aralis Z, Rauch JN, Audouard M, Valois E, Lach RS, Solley S, et al. CREST, a Cas13-Based, Rugged, Equitable, Scalable Testing (CREST) for SARS-CoV-2 Detection in Patient Samples. Curr Protoc. 2022;2(2):1–18. 117. Rauch JN, Valois E, Solley SC, Braig F, Lach RS, Audouard M. A Scalable , Easy-to-Deploy Protocol for Cas13-Based Detection. J Clin Microbiol. 2021;(March):1–8. 118. Ong DSY, Fragkou PC, Schweitzer VA, Chemaly RF, Moschopoulos CD, Skevaki C. How to interpret and use COVID-19 serology and immunology tests. Clin Microbiol Infect [Internet]. 2021;27(7):981–6. Available from: https://doi.org/10.1016/j.cmi.2021.05.001 119. Carter LJ, Garner L V., Smoot JW, Li Y, Zhou Q, Saveson CJ, et al. Assay Techniques and Test Development for COVID-19 Diagnosis. ACS Cent Sci. 2020;6(5):591–605. 120. Mahmoudinobar F, Britton D, Montclare JK. Protein-based lateral flow assays for COVID-19 detection. Protein Eng Des Sel. 2021;34:1–10. 121. Hsiao WWW, Le TN, Pham DM, Ko HH, Chang HC, Lee CC, et al. Recent advances in novel lateral flow technologies for detection of COVID-19. Biosensors. 2021;11(9):1–26. 122. Andryukov BG. Six decades of lateral flow immunoassay: From determining metabolic markers to diagnosing covid-19. AIMS Microbiol. 2020;6(3):280–304. 123. Guedez-López GV, Alguacil-Guillén M, González-Donapetry P, Bloise I, Tornero-Marin C, González-García J, et al. Evaluation of three immunochromatographic tests for rapid detection of antibodies against SARS-CoV-2. Eur J Clin Microbiol Infect Dis. 2020;39(12):2289–97. 124. Aly M, Elrobh M, Alzayer M, Aljuhani S, Balkhy H. Occurrence of the Middle East Respiratory Syndrome Coronavirus (MERS-CoV) across the Gulf Corporation Council countries: Four years update. PLoS One. 2017;12(10). 125. Wu JL, Tseng WP, Lin CH, Lee TF, Chung MY, Huang CH, et al. Four point-of-care lateral flow immunoassays for diagnosis of COVID-19 and for assessing dynamics of antibody responses to SARS-CoV-2. J Infect [Internet]. 2020;81(3):435–42. Available from: https://doi.org/10.1016/j.jinf.2020.06.023 126. Machado BAS, Hodel KVS, Barbosa-Júnior VG, Soares MBP, Badaró R. The main molecular and serological methods for diagnosing covid-19: An overview based on the 68 literature. Viruses. 2021;13(1):1–36. 127. Lijia S, Lihong S, Huabin W, Xiaoping X, Xiaodong L, Yixuan Z, et al. Serological chemiluminescence immunoassay for the diagnosis of SARS-CoV-2 infection. J Clin Lab Anal. 2020;34(10):2–7. 128. Cinquanta L, Fontana DE, Bizzaro N. Chemiluminescent immunoassay technology: what does it change in autoantibody detection? Autoimmun Highlights. 2017;8(1). 129. Li M, Wang H, Tian L, Pang Z, Yang Q, Huang T, et al. COVID-19 vaccine development: milestones, lessons and prospects. Vol. 7, Signal Transduction and Targeted Therapy. Springer US; 2022. 130. Krammer F. SARS-CoV-2 vaccines in development. Nature [Internet]. 2020;586(7830):516–27. Available from: http://dx.doi.org/10.1038/s41586-020-2798-3 131. Chung YH, Beiss V, Fiering SN, Steinmetz NF. Covid-19 vaccine frontrunners and their nanotechnology design. ACS Nano. 2020;14(10):12522–37. 132. Creech CB, Walker SC, Samuels RJ. SARS-CoV-2 Vaccines. 2021;325(13):2021–3. 133. Dai L, Gao L, Tao L, Hadinegoro SR, Erkin M, Ying Z, et al. Efficacy and Safety of the RBD-Dimer–Based Covid-19 Vaccine ZF2001 in Adults. N Engl J Med. 2022;386(22):2097–111. 134. Heath PT, Galiza EP, Baxter DN, Boffito M, Browne D, Burns F, et al. Safety and Efficacy of NVX-CoV2373 Covid-19 Vaccine. N Engl J Med. 2021;385(13):1172–83. 135. Khobragade A, Bhate S, Ramaiah V, Deshpande S, Giri K, Phophle H, et al. Efficacy, safety, and immunogenicity of the DNA SARS-CoV-2 vaccine (ZyCoV-D): the interim efficacy results of a phase 3, randomised, double-blind, placebo-controlled study in India. Lancet [Internet]. 2022;399(10332):1313–21. Available from: http://dx.doi.org/10.1016/S0140-6736(22)00151-9 136. Forchette L, Sebastian W, Liu T. A Comprehensive Review of COVID-19 Virology, Vaccines, Variants, and Therapeutics. Curr Med Sci. 2021;41(6):1037–51. 137. Tregoning JS, Flight KE, Higham SL, Wang Z, Pierce BF. Progress of the COVID-19 vaccine effort: viruses, vaccines and variants versus efficacy, effectiveness and escape. Nat Rev Immunol [Internet]. 2021;21(10):626–36. Available from: http://dx.doi.org/10.1038/s41577-021-00592-1 138. Prete CA, Buss LF, Buccheri R, Abrahim CMM, Salomon T, Crispim MAE, et al. Reinfection by the SARS-CoV-2 Gamma variant in blood donors in Manaus, Brazil. BMC Infect Dis [Internet]. 2022;22(1):1–8. Available from: 69 https://doi.org/10.1186/s12879-022-07094-y 139. Nuno R. Faria, Thomas A. Mellan, Charles Whittaker IMC, Darlan da S. Candido, Swapnil Mishra, Myuki A. E. Crispim FCSS, Iwona Hawryluk, John T. McCrone, Ruben J. G. Hulswit LAMF, Mariana S. Ramundo, Jaqueline G. de Jesus, Pamela S. Andrade TMC, Giulia M. Ferreira, Camila A. M. Silva, Erika R. Manuli, Rafael H. M. Pereira, Pedro S. Peixoto, Moritz U. G. Kraemer, Nelson Gaburo Jr., Cecilia da C. Camilo, Henrique Hoeltgebaum, William M. Souza, Esmenia C. Rocha, Leandro M. de Souza, Mariana C. de Pi J do PS, Danielle A. G. Zauli, Alessandro C. de S. Ferreira, Ricardo P. Schnekenberg, Daniel J. Laydon, Patrick G. T. Walker, Hannah M. Schlüter, Ana L. P. dos Santos MSV, et al. Genomics and epidemiology of the P.1 SARS-CoV-2 lineage in Manaus, Brazil. Science (80- ). 2021;372(May):815–21. 140. Murat S, Dogruoz Karatekin B, Icagasioglu A, Ulasoglu C, İçten S, Incealtin O. Clinical presentations of pain in patients with COVID-19 infection. Ir J Med Sci. 2021;190(3):913–7. 141. Ghamdi F Al, Naqvi S, Alabassi FA, Alhayyani S, Baig MR, Kumar V, et al. Alterations in Clinical Characteristics of Blood Donors Post COVID-19 Recovery. Curr Pharm Des. 2022;28(12):981–92. 142. Fu L, Wang B, Yuan T, Chen X, Ao Y, Fitzpatrick T, et al. Clinical characteristics of coronavirus disease 2019 (COVID-19) in China: A systematic review and meta-analysis. J Infect [Internet]. 2020;80(6):656–65. Available from: https://doi.org/10.1016/j.jinf.2020.03.041 143. Elnasser Z, Obeidat H, Amarin Z, Alrabadi N, Jaradat A, Alomarat D, et al. Prevalence of COVID-19 among blood donors. Medicine (Baltimore). 2021;100(41):e27537. 144. Bai X, Lu Z, Bai EX. Clinical features of COVID-19 by SARS-CoV-2 Gamma variant: A prospective cohort study of vaccinated and unvaccinated healthcare worker. 2022;84(September 2021):262–5. 145. von Seidlein L, Alabaster G, Deen J, Knudsen J. Crowding has consequences: Prevention and management of COVID-19 in informal urban settlements. Build Environ. 2021;188(October 2020). 146. Leece P, Whelan M, Costa AP, Daneman N, Johnstone J, McGeer A, et al. Nursing home crowding and its association with outbreak-associated respiratory infection in Ontario, Canada before the COVID-19 pandemic (2014–19): a retrospective cohort study. Lancet Heal Longev. 2023;4(3):e107–14. 70 147. Vassallo RR, Bravo MD, Dumont LJ, Hazegh K, Kamel H. Seroprevalence of antibodies to SARS-CoV-2 in US blood donors. medRxiv. 2020;1–19. 148. Ratiani L, Sanikidze T V., Ormotsadze G, Pachkoria E, Sordia G. Role of ABO Blood Groups in Susceptibility and Severity of COVID-19 in the Georgian Population. Indian J Crit Care Med. 2022;26(4):487–90. 149. Solmaz İ, Araç S. ABO blood groups in COVID-19 patients; Cross-sectional study. Int J Clin Pract. 2021;75(4):2–5. 150. Tu H, Tu S, Gao S, Shao A, Sheng J. Current epidemiological and clinical features of COVID-19; a global perspective from China. J Infect. 2020;81(1):1–9. 151. Vaira LA, Salzano G, Deiana G, De Riu G. Anosmia and Ageusia: Common Findings in COVID-19 Patients. Laryngoscope. 2020;130(7):1787. 152. Agyeman AA, Chin KL, Landersdorfer CB, Liew D, Ofori-Asenso R. Smell and Taste Dysfunction in Patients With COVID-19: A Systematic Review and Meta-analysis. Mayo Clin Proc. 2020;95(8):1621–31. 153. Abduljabbar T, Alhamdan RS, Al Deeb M, Alaali KA, Vohra F. Association of Salivary Content Alteration and Early Ageusia Symptoms in COVID-19 Infections: A Systematic Review. Eur J Dent. 2020;14(Supl 1):S152–8. 154. Santos REA, da Silva MG, do Monte Silva MCB, Barbosa DAM, Gomes AL do V, Galindo LCM, et al. Onset and duration of symptoms of loss of smell/taste in patients with COVID-19: A systematic review. Am J Otolaryngol - Head Neck Med Surg. 2021;42(2). 155. Mastrangelo A, Bonato M, Cinque P. Smell and taste disorders in COVID-19: From pathogenesis to clinical features and outcomes. Neurosci Lett. 2021;748(October 2020). 156. Vaira LA, De Vito A, Lechien JR, Chiesa-Estomba CM, Mayo-Yàñez M, Calvo-Henrìquez C, et al. New Onset of Smell and Taste Loss Are Common Findings Also in Patients With Symptomatic COVID-19 After Complete Vaccination. Laryngoscope. 2022;132(2):419–21. 157. Nanjo Y, Okuma T, Kuroda Y, Hayakawa E, Shibayama K, Akimoto T, et al. Multiple Types of Taste Disorders among Patients with COVID-19. Intern Med. 2022;61(14):2127–34. 158. Plaza JJG, Hulak N, Zhumadilov Z, Akilzhanova A. Fever as an important resource for infectious diseases research. Intractable Rare Dis Res. 2016;5(2):97–102. 159. da Rosa Mesquita R, Francelino Silva Junior LC, Santos Santana FM, Farias de Oliveira 71 T, Campos Alcântara R, Monteiro Arnozo G, et al. Clinical manifestations of COVID-19 in the general population: systematic review. Wien Klin Wochenschr. 2021;133(7–8):377–82. 160. Badawi A, Ryoo SG. Prevalence of comorbidities in the Middle East respiratory syndrome coronavirus (MERS-CoV): a systematic review and meta-analysis. Int J Infect Dis. 2016;49(January):129–33. 161. Lam CWK, Chan MHM, Wong CK. Severe acute respiratory syndrome: clinical and laboratory manifestations. Clin Biochem Rev [Internet]. 2004;25(2):121–32. Available from: http://www.ncbi.nlm.nih.gov/pubmed/18458712%0Ahttp://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=PMC1904416 162. Tana C, Bentivegna E, Cho SJ, Harriott AM, García-Azorín D, Labastida-Ramirez A, et al. Long COVID headache. J Headache Pain [Internet]. 2022;23(1):1–12. Available from: https://doi.org/10.1186/s10194-022-01450-8 163. Bobker SM, Robbins MS. COVID-19 and Headache: A Primer for Trainees. Headache. 2020;60(8):1806–11. 164. Sampaio Rocha-Filho PA. Headache associated with COVID-19: Epidemiology, characteristics, pathophysiology, and management. Headache. 2022;62(6):650–6. 165. dos Anjos de Paula RC, de Maria Frota Vasconcelos T, da Costa FBS, de Brito LA, Torres DM, Moura AEF, et al. Characterization of Headache in COVID-19: a Retrospective Multicenter Study. Mol Neurobiol [Internet]. 2021;58(9):4487–94. Available from: https://doi.org/10.1007/s12035-021-02430-w 166. Yong SJ. Long COVID or post-COVID-19 syndrome: putative pathophysiology, risk factors, and treatments. Infect Dis (Auckl) [Internet]. 2021;53(10):737–54. Available from: https://doi.org/10.1080/23744235.2021.1924397 167. Miyazato Y, Morioka S, Tsuzuki S, Akashi M, Osanai Y, Tanaka K, et al. Prolonged and Late-Onset Symptoms of Coronavirus Disease 2019. Open Forum Infect Dis. 2020;7(11):4–6. 168. Van Kessel SAM, Olde Hartman TC, Lucassen PLBJ, Van Jaarsveld CHM. Post-acute and long-COVID-19 symptoms in patients with mild diseases: A systematic review. Fam Pract. 2022;39(1):159–67. 169. Swigris JJ, Streiner DL, Brown KK, Belkin A, Green KE, Wamboldt FS, et al. Assessing exertional dyspnea in patients with idiopathic pulmonary fibrosis. Respir Med. 72 2014;108(1):181–8. 170. Hu J, Wang Y. The Clinical Characteristics and Risk Factors of Severe COVID-19. Gerontology. 2021;67(3):255–66. 171. Orellana JDY, da Cunha GM, Marrero L, da Costa Leite I, Domingues CMAS, Horta BL. Changes in the pattern of COVID-19 hospitalizations and deaths after substantial vaccination of the elderly in Manaus, Amazonas State, Brazil. Cad Saude Publica. 2022;38(5):1–14. 172. Goyal L, Zapata M, Ajmera K, Chaurasia P, Pandit R, Pandit T. A Hitchhiker’s Guide to Worldwide COVID-19 Vaccinations: A Detailed Review of Monovalent and Bivalent Vaccine Schedules, COVID-19 Vaccine Side Effects, and Effectiveness Against Omicron and Delta Variants. Cureus. 2022;14(10). 173. Yang M, Shi L, Chen H, Wang X, Jiao J, Liu M, et al. Comparison of COVID-19 Vaccine Policies in Italy, India, and South Africa. Vaccines. 2022;10(9)pt_BR
dc.publisher.initialsUEApt_BR
Aparece nas coleções:DISSERTAÇÃO - PPCAH Programa de Pós-Graduação em Ciências Aplicadas à Hematologia



Os itens no repositório estão protegidos por copyright, com todos os direitos reservados, salvo quando é indicado o contrário.