DSpace logo

Use este identificador para citar ou linkar para este item: http://repositorioinstitucional.uea.edu.br//handle/riuea/5336
Registro completo de metadados
Campo DCValorIdioma
dc.contributor.authorSilva, Wivian da Conceição Costa da-
dc.date.available2023-11-08-
dc.date.available2023-11-21T12:58:33Z-
dc.date.issued2023-08-23-
dc.identifier.urihttp://repositorioinstitucional.uea.edu.br//handle/riuea/5336-
dc.description.abstractThe relationship between the immune response and COVID-19 has been widely studied, aiming to better understand the immunological mechanisms involved in SARS-CoV-2 infection. We present the Triggering Receptor Expressed on Myeloid Cells 1 (TREM1), which is upregulated in inflammation and is part of an extensive family of immunoglobulin (Ig) receptors discovered in the 2000s. Activation of TREM-1 potentiates inflammation, and some genetic variants in the TREM1 gene have been studied and associated with the worst prognosis in some diseases. In this way, we evaluated the influence of variants in the TREM-1 receptor gene and its association with the profile of soluble mediators, in patients with COVID-19 and convalescent individuals. Variants rs2234237 and rs2234246 were genotyped by qPCR in 138 participants. The measurement of CXCL8, CCL3, CCL2, IL-1β, IL-6, TNF-α and IFN-γ was performed using the Luminex assay. The measurement of sTREM-1, MMP-8 and MMP-2 was performed using the enzyme-linked immunosorbent assay ELISA in 48 participants. Results: The T allele of the rs2234237 variant, mainly in homozygotes, and the C/T genotype of the rs22342346 variant, contribute to the increase in immunological mediators in the study population. The T allele of the rs2234237 variant, mainly in homozygotes, and the C/T genotype of the rs22342346 variants, contribute to the increase in sTREM-1 in the study population. Patients with COVID-19, especially the severe form, with comorbidities and who died, had high levels of CXCL8, CCL3, CCL2, IL-1β, IL-6, TNF-α and IFN-γ. Convalescents from COVID-19 showed a decline in the levels of immune mediators 30 days after clinical cure of SARS-CoV-2 infection. Conclusion: This is the first study to investigate the relationship between variants in the TREM-1 receptor gene and COVID-19 in the Brazilian Amazon. Taken together, our data show that the rs2234237 and rs2234246 variants are not significantly associated with severity and/or mortality in COVID-19. New studies including other variants of the TREM1 gene are necessary to better understand the role of this receptor in the immune system and in modulating the release of immune mediators in response to SARS-CoV-2 infectionpt_BR
dc.languageporpt_BR
dc.publisherUniversidade do Estado do Amazonaspt_BR
dc.rightsAcesso Abertopt_BR
dc.subjectCOVID-19pt_BR
dc.subjectTREM-1pt_BR
dc.subjectPlasma convalescentept_BR
dc.titleInfluência de variantes genéticas 6 associadas ao gene do receptor TREM-1 no perfil de citocinas e outros 7 mediadores solúveis em indivíduos convalescentes e de fase aguda da COVIDpt_BR
dc.title.alternativeInfluence of genetic variants 6 associated with the TREM-1 receptor gene on the profile of cytokines and other 7 soluble mediators in convalescent and acute-phase individuals from COVIDpt_BR
dc.typeDissertaçãopt_BR
dc.date.accessioned2023-11-21T12:58:33Z-
dc.creator.IDhttp://lattes.cnpq.br/9788162653930463pt_BR
dc.contributor.advisor-co1Tarragô, Andréa Monteiro-
dc.contributor.advisor-co1Latteshttp://lattes.cnpq.br/4644326589690231pt_BR
dc.contributor.advisor1Marie, Adriana Malheiro Alle-
dc.contributor.advisor1Latteshttp://lattes.cnpq.br/2627415957053194pt_BR
dc.contributor.referee1Marie, Adriana Malheiro Alle-
dc.contributor.referee1Latteshttp://lattes.cnpq.br/2627415957053194pt_BR
dc.contributor.referee2Pontes, Gemilson Soares-
dc.contributor.referee2Latteshttp://lattes.cnpq.br/9081671233815990pt_BR
dc.contributor.referee3Sadahiro, Aya-
dc.contributor.referee3Latteshttp://lattes.cnpq.br/8658798733544812pt_BR
dc.creator.LattesWivian da Conceição Costa dapt_BR
dc.description.resumoA relação entre a resposta imunológica e a COVID-19 tem sido amplamente estudada, visando uma melhor compreensão dos mecanismos imunológicos envolvidos na infecção por SARS-CoV-2. Apresentamos o Receptor Desencadeante Expresso em Células Mieloides 1 (TREM1), que é regulado positivamente na inflamação e integra uma extensa família de receptores de imunoglobulinas (Ig) descoberto nos anos 2000. A ativação de TREM-1 potencializa a inflamação, e algumas variantes genéticas no gene TREM1 têm sido estudadas e associadas com o pior prognóstico em algumas doenças. Dessa forma, avaliamos a influência de variantes no gene do receptor TREM-1 e sua associação com o perfil de mediadores solúveis, em pacientes com COVID-19 e indivíduos convalescentes. As variantes rs2234237 e rs2234246 foram genotipados por qPCR em 138 participantes. A dosagem de CXCL8, CCL3, CCL2, IL-1β, IL-6, TNF-α e IFN-γ, foi realizada por meio do ensaio Luminex. A dosagem de sTREM-1, MMP-8 e MMP-2 foi realizada pelo ensaio imunoenzimático ELISA, em 48 participantes. Resultados: O alelo T da variante rs2234237 pincipalmente em homozigotos, e genótipo C/T da variante rs22342346, contribuem para o aumento de mediadores imunológicos na população de estudo. O alelo T da variante rs2234237 pincipalmente em homozigotos, e genótipo C/T das variantes rs22342346, contribuem para o aumento de sTREM-1 na população de estudo. Pacientes com COVID-19, sobretudo com a forma grave, com comorbidades e que vieram a óbito apresentaram níveis elevados de CXCL8, CCL3, CCL2, IL-1β, IL-6, TNF-α e IFN-γ. Convalescentes da COVID-19 apresentaram declínio nos níveis de mediadores imunológicos 30 dias após a cura clínica da infecção por SARS-CoV-2. Conclusão: Este é o primeiro estudo a investigar a relação entre variantes no gene do receptor TREM-1 e COVID-19 na Amazônia Brasileira. Em conjunto, nossos dados mostram que as variantes rs2234237 e rs2234246 não estão associadas significativamente a gravidade e/ou mortalidade na COVID-19. Novos estudos incluindo outras variantes do gene TREM1 são necessários para um melhor entendimento sobre a atuação deste receptor no sistema imunológico e na modulação da liberação de mediadores imunológicos em resposta a infecção por SARS-CoV-2pt_BR
dc.publisher.countryBrasilpt_BR
dc.publisher.programPPGSC - Programa de Pós-Graduação em Saúde Coletivapt_BR
dc.relation.references1. Harrison AG, Lin T, Wang P. Mechanisms of SARS-CoV-2 Transmission and Pathogenesis. Trends Immunol [Internet]. 2020;41(12):1100–15. Available from: https://doi.org/10.1016/j.it.2020.10.004 2. Ministério da Saúde do Brasil. No Title. 2022. 3. WHO. No Title. 2022. 4. Lionel B. Ivashkiv1, 2 3 and Laura T. Donlin1. Regulation of type I interferon responses Lionel. Bone. 2008;23(1):1–7. 5. Abbas AK, Lichtman AH, Pillai S. Imunologia. Rev Inst Med Trop Sao Paulo. 1985;27(1):53–4. 6. Yang L, Liu S, Liu J, Zhang Z, Wan X, Huang B, et al. COVID-19: immunopathogenesis and Immunotherapeutics. Signal Transduction and Targeted Therapy 2020 5:1 [Internet]. 2020 Jul 25 [cited 2021 Oct 25];5(1):1–8. Available from: https://www.nature.com/articles/s41392-020-00243-2 7. Bouchon A, Dietrich J, Colonna M. Cutting Edge: Inflammatory Responses Can Be Triggered by TREM-1, a Novel Receptor Expressed on Neutrophils and Monocytes. The Journal of Immunology. 2000;164(10):4991–5. 8. Tammaro A, Derive M, Gibot S, Leemans JC, Florquin S, Dessing MC. TREM-1 and its potential ligands in non-infectious diseases: from biology to clinical perspectives. Pharmacol Ther [Internet]. 2017;177:81–95. Available from: http://dx.doi.org/10.1016/j.pharmthera.2017.02.043 9. Guan W jie, Ni Z yi, Hu Y, Liang W hua, Ou C quan, He J xing, et al. Clinical Characteristics of Coronavirus Disease 2019 in China. New England Journal of Medicine. 2020;382(18):1708–20. 10. Wang D, Hu B, Hu C, Zhu F, Liu X, Zhang J, et al. Clinical Characteristics of 138 Hospitalized Patients with 2019 Novel Coronavirus-Infected Pneumonia in Wuhan, China. JAMA - Journal of the American Medical Association. 2020;323(11):1061–9. 11. Muralidar S, Visaga S, Sekaran S. Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID- 19 . The COVID-19 resource centre is hosted on Elsevier Connect , the company ’ s public news and information. Biochimie. 2020;179(January):85–100. 12. Huang C, Wang Y, Li X, Ren L, Zhao J, Hu Y, et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. The Lancet. 2020;395(10223):497–506. 13. Teich VD, Klajner S, Almeida FAS de, Dantas ACB, Laselva CR, Torritesi MG, et al. Epidemiologic and clinical features of patients with COVID-19 in Brazil. Einstein (Sao Paulo). 2020;18:eAO6022. 14. Zhou P, Yang X Lou, Wang XG, Hu B, Zhang L, Zhang W, et al. A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature. 2020;579(7798):270–3. 85 15. Hartenian E, Nandakumar D, Lari A, Ly M, Tucker JM, Glaunsinger BA. The molecular virology of coronaviruses. Journal of Biological Chemistry. 2020;295(37):12910–34. 16. Mishra KP, Singh AK, Singh SB. Hyperinflammation and Immune Response Generation in COVID-19. Neuroimmunomodulation. 2021;27(2):80–6. 17. Hu B, Guo H, Zhou P, Shi ZL. Characteristics of SARS-CoV-2 and COVID-19. Nat Rev Microbiol. 2021;19(3):141–54. 18. Folha informativa sobre COVID-19 - OPAS/OMS | Organização Pan-Americana da Saúde [Internet]. [cited 2022 Aug 2]. Available from: https://www.paho.org/pt/covid19 19. Ministério da Saúde - Governo Federal do Brasil — Português (Brasil) [Internet]. [cited 2022 Aug 2]. Available from: https://www.gov.br/saude/pt-br 20. Choi JY, Smith DM. SARS-CoV-2 variants of concern. Yonsei Med J. 2021;62(11):961–8. 21. OMS anuncia nomenclaturas simples e fáceis de pronunciar para variantes de interesse e de preocupação do SARS-CoV-2 - OPAS/OMS | Organização Pan-Americana da Saúde [Internet]. [cited 2022 Aug 2]. Available from: https://www.paho.org/pt/noticias/1-6-2021-oms-anuncia-nomenclaturas-simples-e-faceis-pronunciar-para-variantes-interesse-e 22. Mistry P, Barmania F, Mellet J, Peta K, Strydom A, Viljoen IM, et al. SARS-CoV-2 Variants, Vaccines, and Host Immunity. Front Immunol. 2022;12(January):1–21. 23. Naveca FG, Nascimento V, de Souza VC, Corado A de L, Nascimento F, Silva G, et al. COVID-19 in Amazonas, Brazil, was driven by the persistence of endemic lineages and P.1 emergence. Nat Med. 2021;27(7):1230–8. 24. Portal FVS-RCP/AM [Internet]. [cited 2022 Aug 2]. Available from: https://www.fvs.am.gov.br/ 25. V’kovski P, Kratzel A, Steiner S, Stalder H, Thiel V. Coronavirus biology and replication: implications for SARS-CoV-2. Nat Rev Microbiol. 2021;19(3):155–70. 26. Andersen KG, Rambaut A, Lipkin WI, Holmes EC, Garry RF. The proximal origin of SARS-CoV-2. Nat Med. 2020;26(4):450–2. 27. Li G, Fan Y, Lai Y, Han T, Li Z, Zhou P, et al. Coronavirus infections and immune responses. J Med Virol. 2020;92(4):424–32. 28. Zhang J jin, Dong X, Cao Y yuan, Yuan Y dong, Yang Y bin, Yan Y qin, et al. Clinical characteristics of 140 patients infected with SARS-CoV-2 in Wuhan, China. Allergy: European Journal of Allergy and Clinical Immunology. 2020;75(7):1730–41. 29. Paces J, Strizova Z, Smrz D, Cerny J. COVID-19 and the Immune System. 2020;9973:379–88. 30. Ekstedt S, Piersiala K, Petro M, Karlsson A, Kågedal Å, Kumlien Georén S, et al. A prolonged innate systemic immune response in COVID-19. Sci Rep. 2022;12(1):1–9. 86 31. Siracusano G, Pastori C, Lopalco L. Humoral Immune Responses in COVID-19 Patients: A Window on the State of the Art. Front Immunol. 2020;11(May):1–9. 32. Cagdas D. Convalescent plasma and hyperimmune globulin therapy in COVID-19. https://doi.org/101080/1744666X20211894927 [Internet]. 2021 [cited 2023 Jul 19];17(4):309–16. Available from: https://www.tandfonline.com/doi/abs/10.1080/1744666X.2021.1894927 33. Bégin P, Callum J, Jamula E, Cook R, Heddle NM, Tinmouth A, et al. Convalescent plasma for hospitalized patients with COVID-19: an open-label, randomized controlled trial. Nat Med [Internet]. 2021 Nov 1 [cited 2023 Jul 19];27(11):2012. Available from: /pmc/articles/PMC8604729/ 34. Tobian AAR, Cohn CS, Shaz BH. COVID-19 convalescent plasma. Blood [Internet]. 2022 Jul 7 [cited 2023 Jul 19];140(3):196. Available from: /pmc/articles/PMC8548835/ 35. Jorda A, Kussmann M, Kolenchery N, Siller-Matula JM, Zeitlinger M, Jilma B, et al. Convalescent Plasma Treatment in Patients with Covid-19: A Systematic Review and Meta-Analysis. Front Immunol [Internet]. 2022 Feb 7 [cited 2023 Jul 19];13:817829. Available from: /pmc/articles/PMC8859444/ 36. Kanj S, Al-Omari B. Convalescent Plasma Transfusion for the Treatment of COVID-19 in Adults: A Global Perspective. Viruses [Internet]. 2021 [cited 2023 Jul 19];13(5). Available from: /pmc/articles/PMC8148438/ 37. Palazzo SJ, Simpson T, Schnapp LM. Dimens Crit Care Nurs. 2012 Jan-Feb;31(1) 1-6. 2016;31(1):1–6. 38. Roe K, Gibot S, Verma S. Triggering receptor expressed on myeloid cells-1 (TREM-1): A new player in antiviral immunity? Front Microbiol. 2014;5(NOV):1–11. 39. da Silva-Neto P V., de Carvalho JCS, Pimentel VE, Pérez MM, Toro DM, Fraga-Silva TFC, et al. Strem-1 predicts disease severity and mortality in covid-19 patients: Involvement of peripheral blood leukocytes and mmp-8 activity. Viruses. 2021;13(12):1–17. 40. de Nooijer AH, Grondman I, Lambden S, Kooistra EJ, Janssen NAF, Kox M, et al. Increased sTREM-1 plasma concentrations are associated with poor clinical outcomes in patients with COVID-19. Biosci Rep. 2021;41(7):1–12. 41. Tammaro A, Derive M, Gibot S, Leemans JC, Florquin S, Dessing MC. TREM-1 and its potential ligands in non-infectious diseases: from biology to clinical perspectives. Pharmacol Ther. 2017;177:81–95. 42. Genua M, Rutella S, Correale C, Danese S. The triggering receptor expressed on myeloid cells (TREM) in inflammatory bowel disease pathogenesis. J Transl Med. 2014;12(1):1–12. 43. Adukpo S, Gyan BA, Ofori MF, Dodoo D, Velavan TP, Meyer CG. Triggering receptor expressed on myeloid cells 1 (TREM-1) and cytokine gene variants in complicated and uncomplicated malaria. Tropical Medicine and International Health. 2016;21(12):1592–601. 87 44. Pavan Kumar N, Venkataraman A, Varadarjan P, Nancy A, Rajamanickam A, Selladurai E, et al. Role of matrix metalloproteinases in multi-system inflammatory syndrome and acute COVID-19 in children. Front Med (Lausanne). 2022;9(December):1–11. 45. da Silva-Neto P V., Do Valle VB, Fuzo CA, Fernandes TM, Toro DM, Fraga-Silva TFC, et al. Matrix Metalloproteinases on Severe COVID-19 Lung Disease Pathogenesis: Cooperative Actions of MMP-8/MMP-2 Axis on Immune Response through HLA-G Shedding and Oxidative Stress. Biomolecules. 2022;12(5). 46. Visse R, Nagase H. Matrix metalloproteinases and tissue inhibitors of metalloproteinases: Structure, function, and biochemistry. Vol. 92, Circulation Research. 2003. p. 827–39. 47. Wang X, Khalil RA. Matrix Metalloproteinases, Vascular Remodeling, and Vascular Disease. Adv Pharmacol [Internet]. 2018 [cited 2023 Apr 20];81:241. Available from: /pmc/articles/PMC5765875/ 48. Laronha H, Caldeira J. Structure and Function of Human Matrix Metalloproteinases. Cells [Internet]. 2020 Apr 26 [cited 2023 Apr 20];9(5). Available from: /pmc/articles/PMC7290392/ 49. Abdel-Latif MS. Plasma Levels of Matrix Metalloproteinase (MMP)-2, MMP-9 and Tumor Necrosis Factor-α in Chronic Hepatitis C Virus Patients. Open Microbiol J [Internet]. 2015 Sep 16 [cited 2023 Apr 24];9(1):136. Available from: /pmc/articles/PMC4598372/ 50. D`Avila-Mesquita C, Couto AES, Campos LCB, Vasconcelos TF, Michelon-Barbosa J, Corsi CAC, et al. MMP-2 and MMP-9 levels in plasma are altered and associated with mortality in COVID-19 patients. Biomedicine & Pharmacotherapy [Internet]. 2021 Oct 1 [cited 2023 Apr 24];142:112067. Available from: /pmc/articles/PMC8376652/ 51. Luchian I, Goriuc A, Sandu D, Covasa M. The Role of Matrix Metalloproteinases (MMP-8, MMP-9, MMP-13) in Periodontal and Peri-Implant Pathological Processes. Int J Mol Sci [Internet]. 2022 Feb 1 [cited 2023 Jul 5];23(3):1806. Available from: /pmc/articles/PMC8837018/ 52. Aldasoro Arguinano AA, Dadé S, Stathopoulou M, Derive M, Coumba Ndiaye N, Xie T, et al. TREM-1 SNP rs2234246 regulates TREM-1 protein and mRNA levels and is associated with plasma levels of L-selectin. PLoS One. 2017;12(8):1–16. 53. Su L, Liu C, Li C, Jiang Z, Xiao K, Zhang X, et al. Dynamic changes in serum soluble triggering receptor expressed on myeloid cells-1 (sTREM-1) and its gene polymorphisms are associated with sepsis prognosis. Inflammation [Internet]. 2012 Dec [cited 2023 Apr 20];35(6):1833–43. Available from: https://pubmed.ncbi.nlm.nih.gov/22798017/ 54. Umakanthan S, Sahu P, Ranade A V., Bukelo MM, Rao JS, Abrahao-Machado LF, et al. Origin, transmission, diagnosis and management of coronavirus disease 2019 (COVID-19). Postgrad Med J [Internet]. 2020 Dec 1 [cited 2023 Jul 18];96(1142):753. Available from: /pmc/articles/PMC10016932/ 88 55. Zhang H ping, Sun Y li, Wang Y fen, Yazici D, Azkur D, Ogulur I, et al. Recent developments in the immunopathology of COVID‐19. Allergy [Internet]. 2023 Feb 1 [cited 2023 Jul 18];78(2):369. Available from: /pmc/articles/PMC10108124/ 56. Merad M, Blish CA, Sallusto F, Iwasaki A. The immunology and immunopathology of COVID-19. Science (1979) [Internet]. 2022 Mar 11 [cited 2023 Jul 18];375(6585):1122–7. Available from: https://www.science.org/doi/10.1126/science.abm8108 57. Golovkin AS, Ponasenko A V., Yuzhalin AE, Salakhov RR, Khutornaya M V., Kutikhin AG, et al. An association between single nucleotide polymorphisms within TLR and TREM-1 genes and infective endocarditis. Cytokine [Internet]. 2015;71(1):16–21. Available from: http://dx.doi.org/10.1016/j.cyto.2014.08.001 58. Golovkin AS, Ponasenko A V., Khutornaya M V., Kutikhin AG, Salakhov RR, Yuzhalin AE, et al. Association of TLR and TREM-1 gene polymorphisms with risk of coronary artery disease in a Russian population. Gene [Internet]. 2014;550(1):101–9. Available from: http://dx.doi.org/10.1016/j.gene.2014.08.022 59. de Jesus MCS, Cerilo-Filho M, Ramirez ADR, Menezes RAO, Gomes MSM, Cassiano GC, et al. Influence of trem-1 gene polymorphisms on cytokine levels during malaria by Plasmodium vivax in a frontier area of the Brazilian Amazon. Cytokine [Internet]. 2023 Sep;169:156264. Available from: https://linkinghub.elsevier.com/retrieve/pii/S1043466623001424 60. Da Silva SJR, Do Nascimento JCF, Germano Mendes RP, Guarines KM, Targino Alves Da Silva C, Da Silva PG, et al. Two Years into the COVID-19 Pandemic: Lessons Learned. ACS Infect Dis [Internet]. 2022 Sep 9 [cited 2023 Jul 10];8(9):1758–814. Available from: /pmc/articles/PMC9380879/ 61. Espín E, Yang C, Shannon CP, Assadian S, He D, Tebbutt SJ. Cellular and molecular biomarkers of long COVID: a scoping review. EBioMedicine [Internet]. 2023 Apr 8 [cited 2023 Jul 5];91:104552. Available from: http://www.ncbi.nlm.nih.gov/pubmed/37037165 62. Lucas C, Wong P, Klein J, Castro TBR, Silva J, Sundaram M, et al. Longitudinal analyses reveal immunological misfiring in severe COVID-19. Nature [Internet]. 2020 Aug 20 [cited 2023 Jul 5];584(7821):463. Available from: /pmc/articles/PMC7477538/ 63. Xie J, Ding C, Li J, Wang Y, Guo H, Lu Z, et al. Characteristics of patients with coronavirus disease (COVID‐19) confirmed using an IgM‐IgG antibody test. J Med Virol [Internet]. 2020 Oct 1 [cited 2023 Jun 20];92(10):2004. Available from: /pmc/articles/PMC7264659/ 64. Yuan X, Huang W, Ye B, Chen C, Huang R, Wu F, et al. Changes of hematological and immunological parameters in COVID-19 patients. Int J Hematol [Internet]. 2020 Oct 1 [cited 2023 Jun 19];112(4):553. Available from: /pmc/articles/PMC7354745/ 65. Zhang J jin, Dong X, Cao Y yuan, Yuan Y dong, Yang Y bin, Yan Y qin, et al. Clinical characteristics of 140 patients infected with SARS-CoV-2 in Wuhan, China. Allergy: European Journal of Allergy and Clinical Immunology. 2020 Jul 1;75(7):1730–41. 89 66. Chen QX, Zhou HD, Wu SJ, Wang HH, Lv C, Cheng BL, et al. Lack of association between TREM-1 gene polymorphisms and severe sepsis in a Chinese Han population. Hum Immunol [Internet]. 2008 Mar [cited 2023 Jun 19];69(3):220–6. Available from: https://pubmed.ncbi.nlm.nih.gov/18396215/ 67. Su L, Liu C, Li C, Jiang Z, Xiao K, Zhang X, et al. Dynamic changes in serum soluble triggering receptor expressed on myeloid cells-1 (sTREM-1) and its gene polymorphisms are associated with sepsis prognosis. Inflammation [Internet]. 2012 Dec [cited 2023 Jun 19];35(6):1833–43. Available from: https://pubmed.ncbi.nlm.nih.gov/22798017/ 68. Jung ES, Kim SW, Moon CM, Shin DJ, Son NH, Kim ES, et al. Relationships between genetic polymorphisms of triggering receptor expressed on myeloid cells-1 and inflammatory bowel diseases in the Korean population. Life Sci [Internet]. 2011 Aug 29 [cited 2023 Jun 19];89(9–10):289–94. Available from: https://pubmed.ncbi.nlm.nih.gov/21763322/ 69. Santo Júnior JDE, de Mesquita TGR, da Silva LDO, de Araújo FJ, de Souza JL, de Lacerda TC, et al. Trem1 rs2234237 (Thr25ser) polymorphism in patients with cutaneous leishmaniasis caused by leishmania guyanensis: A case-control study in the state of Amazonas, Brazil. Pathogens [Internet]. 2021 [cited 2023 Jun 19];10(4). Available from: /pmc/articles/PMC8074324/ 70. Santos CNO, Magalhães LS, Fonseca AB de L, Bispo AJB, Porto RLS, Alves JC, et al. Association between genetic variants in TREM1, CXCL10, IL4, CXCL8 and TLR7 genes with the occurrence of congenital Zika syndrome and severe microcephaly. Scientific Reports 2023 13:1 [Internet]. 2023 Mar 1 [cited 2023 Jun 19];13(1):1–10. Available from: https://www.nature.com/articles/s41598-023-30342-3 71. Aldasoro Arguinano AA, Dadé S, Stathopoulou M, Derive M, Coumba Ndiaye N, Xie T, et al. TREM-1 SNP rs2234246 regulates TREM-1 protein and mRNA levels and is associated with plasma levels of L-selectin. PLoS One [Internet]. 2017 Aug 1 [cited 2023 Apr 20];12(8):e0182226. Available from: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0182226 72. Hyun J, McMahon RS, Lang AL, Edwards JS, Badilla AD, Greene ME, et al. HIV and HCV augments inflammatory responses through increased TREM-1 expression and signaling in Kupffer and Myeloid cells. PLoS Pathog [Internet]. 2019 Jul 1 [cited 2023 Jun 15];15(7). Available from: /pmc/articles/PMC6625740/ 73. Wang F, Liu S, Wu S, Zhu Q, Ou G, Liu C, et al. Blocking TREM-1 signaling prolongs survival of mice with Pseudomonas aeruginosa induced sepsis. Cell Immunol. 2012 Jan 1;272(2):251–8. 74. de Jesus MCS, Cerilo-Filho M, Ramirez ADR, Menezes RAO, Gomes MSM, Cassiano GC, et al. Influence of trem-1 gene polymorphisms on cytokine levels during malaria by Plasmodium vivax in a frontier area of the Brazilian Amazon. Cytokine [Internet]. 2023 Sep 1 [cited 2023 Jun 18];169:156264. Available from: https://linkinghub.elsevier.com/retrieve/pii/S1043466623001424 90 75. Chen QX, Zhou HD, Wu SJ, Wang HH, Lv C, Cheng BL, et al. Lack of association between TREM-1 gene polymorphisms and severe sepsis in a Chinese Han population. Hum Immunol. 2008;69(3):220–6. 76. Medeiros T, Guimarães GMC, Carvalho FR, Alves LS, Faustino R, Campi-Azevedo AC, et al. Acute kidney injury associated to COVID-19 leads to a strong unbalance of circulant immune mediators. Cytokine [Internet]. 2022 Sep 1 [cited 2023 Jun 21];157. Available from: https://pubmed.ncbi.nlm.nih.gov/35907365/ 77. Kesmez Can F, Özkurt Z, Öztürk N, Sezen S. Effect of IL-6, IL-8/CXCL8, IP-10/CXCL 10 levels on the severity in COVID 19 infection. Int J Clin Pract [Internet]. 2021 Dec 1 [cited 2023 Jun 21];75(12). Available from: https://pubmed.ncbi.nlm.nih.gov/34626520/ 78. McElvaney OJ, McEvoy NL, McElvaney OF, Carroll TP, Murphy MP, Dunlea DM, et al. Characterization of the Inflammatory Response to Severe COVID-19 Illness. Am J Respir Crit Care Med [Internet]. 2020 Sep 15 [cited 2023 Jun 21];202(6):812–21. Available from: https://pubmed.ncbi.nlm.nih.gov/32584597/ 79. Del Valle DM, Kim-Schulze S, Huang HH, Beckmann ND, Nirenberg S, Wang B, et al. An inflammatory cytokine signature predicts COVID-19 severity and survival. Nat Med [Internet]. 2020 Oct 1 [cited 2023 Jun 21];26(10):1636–43. Available from: https://pubmed.ncbi.nlm.nih.gov/32839624/ 80. Hamza M, Alhujaily M, Alosaimi B, El Bakkouri K, AlDughaim MS, Alonazi M, et al. Association between inflammatory cytokines/chemokines, clinical laboratory parameters, disease severity and in-hospital mortality in critical and mild COVID-19 patients without comorbidities or immune-mediated diseases. J Immunoassay Immunochem [Internet]. 2023 [cited 2023 Jul 5];44(1):13–30. Available from: https://pubmed.ncbi.nlm.nih.gov/35915975/ 81. Guo W, Li M, Dong Y, Zhou H, Zhang Z, Tian C, et al. Diabetes is a risk factor for the progression and prognosis of COVID‐19. Diabetes Metab Res Rev [Internet]. 2020 Oct 1 [cited 2023 Jul 5];36(7). Available from: /pmc/articles/PMC7228407/ 82. Rajpal A, Rahimi L, Ismail-Beigi F. Factors leading to high morbidity and mortality of COVID‐19 in patients with type 2 diabetes. J Diabetes [Internet]. 2020 Dec 1 [cited 2023 Jul 5];12(12):895. Available from: /pmc/articles/PMC7405270/ 83. Velazquez-Salinas L, Verdugo-Rodriguez A, Rodriguez LL, Borca M V. The role of interleukin 6 during viral infections. Vol. 10, Frontiers in Microbiology. Frontiers Media S.A.; 2019. 84. Santa Cruz A, Mendes-Frias A, Oliveira AI, Dias L, Matos AR, Carvalho A, et al. Interleukin-6 Is a Biomarker for the Development of Fatal Severe Acute Respiratory Syndrome Coronavirus 2 Pneumonia. Front Immunol. 2021 Feb 18;12. 85. Vilotić A, Nacka-Aleksić M, Pirković A, Bojić-Trbojević Ž, Dekanski D, Jovanović Krivokuća M. IL-6 and IL-8: An Overview of Their Roles in Healthy and Pathological Pregnancies. Int J Mol Sci [Internet]. 2022 Dec 1 [cited 2023 Jun 21];23(23):14574. Available from: /pmc/articles/PMC9738067/ 91 86. Baggiolini M, Clark-Lewis I. Interleukin-8, a chemotactic and inflammatory cytokine. FEBS Lett [Internet]. 1992 Jul 27 [cited 2023 Jun 21];307(1):97–101. Available from: https://onlinelibrary.wiley.com/doi/full/10.1016/0014-5793%2892%2980909-Z 87. Palomino DC arolina T, Marti LC avalheiro. Chemokines and immunity. Einstein [Internet]. 2015 Jul 1 [cited 2023 Jun 21];13(3):469. Available from: /pmc/articles/PMC4943798/ 88. Baggiolini M, Walz A, Kunkel$ SL. Perspectives Neutrophil-activating Peptide-1/lnterleukin 8, a Novel Cytokine That Activates Neutrophils. 89. Thirumangalakudi L, Yin L, Rao HV, Grammas P. IL-8 induces expression of matrix metalloproteinases, cell cycle and pro-apoptotic proteins, and cell death in cultured neurons. J Alzheimers Dis [Internet]. 2007 [cited 2023 Jun 21];11(3):305–11. Available from: https://pubmed.ncbi.nlm.nih.gov/17851181/ 90. Li A, Dubey S, Varney ML, Dave BJ, Singh RK. IL-8 Directly Enhanced Endothelial Cell Survival, Proliferation, and Matrix Metalloproteinases Production and Regulated Angiogenesis. The Journal of Immunology [Internet]. 2003 Mar 15 [cited 2023 Jun 21];170(6):3369–76. Available from: https://dx.doi.org/10.4049/jimmunol.170.6.3369 91. Pavan Kumar N, Venkataraman A, Varadarjan P, Nancy A, Rajamanickam A, Selladurai E, et al. Role of matrix metalloproteinases in multi-system inflammatory syndrome and acute COVID-19 in children. Front Med (Lausanne). 2022 Dec 5;9. 92. da Silva-Neto P V., Do Valle VB, Fuzo CA, Fernandes TM, Toro DM, Fraga-Silva TFC, et al. Matrix Metalloproteinases on Severe COVID-19 Lung Disease Pathogenesis: Cooperative Actions of MMP-8/MMP-2 Axis on Immune Response through HLA-G Shedding and Oxidative Stress. Biomolecules. 2022 May 1;12(5). 93. Laronha H, Caldeira J. Structure and Function of Human Matrix Metalloproteinases. Vol. 9, Cells. NLM (Medline); 2020. 94. Lee HS, Kim WJ. The Role of Matrix Metalloproteinase in Inflammation with a Focus on Infectious Diseases. International Journal of Molecular Sciences 2022, Vol 23, Page 10546 [Internet]. 2022 Sep 11 [cited 2023 Mar 22];23(18):10546. Available from: https://www.mdpi.com/1422-0067/23/18/10546/htm 95. Weiss G, Lai C, Fife ME, Grabiec AM, Tildy B, Snelgrove RJ, et al. Reversal of TREM-1 ectodomain shedding and improved bacterial clearance by intranasal metalloproteinase inhibitors. Mucosal Immunol. 2017 Jul 1;10(4):1021–30. 96. Wright SW, Lovelace-Macon L, Hantrakun V, Rudd KE, Teparrukkul P, Kosamo S, et al. sTREM-1 predicts mortality in hospitalized patients with infection in a tropical, middle-income country. BMC Med. 2020;18(1):1–9. 97. Tornai D, Vitalis Z, Jonas A, Janka T, Foldi I, Tornai T, et al. Increased sTREM-1 levels identify cirrhotic patients with bacterial infection and predict their 90-day mortality. Clin Res Hepatol Gastroenterol [Internet]. 2021;45(5):101579. Available from: https://doi.org/10.1016/j.clinre.2020.11.009 92 98. Forrester DL, Barr HL, Fogarty A, Knox A. sTREM-1 is elevated in cystic fibrosis and correlates with proteases. Pediatr Pulmonol. 2017;52(4):467–71. 99. de Jesus MCS, Barbosa JHR, Menezes RA de O, Gomes M do SM, Bomfim LGS, Pimenta TS, et al. Soluble triggering receptor expressed on myeloid cells-1 (sTREM-1) and other inflammatory mediators in malaria by Plasmodium vivax during enteroparasites coinfection. PLoS One. 2022;17(6):e0270007. 100. Phetsouphanh C, Darley DR, Wilson DB, Howe A, Munier CML, Patel SK, et al. Immunological dysfunction persists for 8 months following initial mild-to-moderate SARS-CoV-2 infection. Nature Immunology 2022 23:2 [Internet]. 2022 Jan 13 [cited 2023 Jul 5];23(2):210–6. Available from: https://www.nature.com/articles/s41590-021-01113-x 101. Tang Y, Liu J, Zhang D, Xu Z, Ji J, Wen C. Cytokine Storm in COVID-19: The Current Evidence and Treatment Strategies. Front Immunol. 2020;11(July):1–13. 102. Lucas C, Wong P, Klein J, Castro TBR, Silva J, Sundaram M, et al. Longitudinal analyses reveal immunological misfiring in severe COVID-19. Nature 2020 584:7821 [Internet]. 2020 Jul 27 [cited 2023 Jul 5];584(7821):463–9. Available from: https://www.nature.com/articles/s41586-020-2588-ypt_BR
dc.publisher.initialsUEApt_BR
Aparece nas coleções:DISSERTAÇÃO - PPCAH Programa de Pós-Graduação em Ciências Aplicadas à Hematologia



Os itens no repositório estão protegidos por copyright, com todos os direitos reservados, salvo quando é indicado o contrário.