DSpace logo

Use este identificador para citar ou linkar para este item: http://repositorioinstitucional.uea.edu.br//handle/riuea/5257
Registro completo de metadados
Campo DCValorIdioma
dc.contributor.authorOliveira, Leonardo Calheiros de-
dc.date.available2023-10-17-
dc.date.available2023-10-18T12:14:58Z-
dc.date.issued2023-06-20-
dc.identifier.urihttp://repositorioinstitucional.uea.edu.br//handle/riuea/5257-
dc.description.abstractMannose-binding lectin (MBL) is an acute phase plasma protein of innate immunity, with effector and regulatory properties that play a key role in host defense against pathogenic microorganisms. MBL exerts its activity through the activation of the complement system, mechanisms of opsonization and phagocytosis, through its ability to bind to carbohydrates rich in mannose, fucose and glucosamine, present on the cell surface of several pathogenic microorganisms. However, the presence of genetic variants in exon 1 of the MBL2 gene are associated with low plasma concentrations of the protein. These variations can result in greater susceptibility to infections, especially in immunosuppressed individuals. The main objective of this study was to characterize the polymorphism of the MBL2 gene and to evaluate the possible association of genotypes and serum levels of the MBL protein with susceptibility to infections in patients with Acute Lymphoid Leukemia (ALL). A total of 122 patients with ALL treated at foundation HEMOAM were included in this study. Genotyping of exon 1 of the MBL2 gene was performed using the PCR and restriction enzyme digestion (RFLP) technique, followed by measurement of plasma levels of MBL using an immunoenzymatic assay (ELISA). The results revealed a higher frequency of the MBL*A allele (0.37) in this study population, while the MBL*D allele (0.32) was the most frequent among the variant alleles, followed by the MBL*B allele (0.31) . The MBL*C allele was not found. However, when considering the frequency of the O polymorphic allele (presence of B or D) a frequency of 0.68 was observed. The A/O genotype (0.49) was the most common and its carriers had the highest number of infections, followed by the O/O genotype (0.38) and the A/A genotype (0.13). In the period from 2015 to 2023, a total of 239 infections occurred in the study population. The most frequent infections were parasitic (n=103) and bacterial (n=69). In addition, viral (n=48) and fungal (n=19) infections were also observed. However, no significant associations were observed between MBL serum levels, types of genotypes and susceptibility to infections. This study presents the first description of the genetic variability of the MBL2 gene in patients with ALL and its association with susceptibility to infections. The results obtained contribute to a better understanding of the genetic basis of the immune response and its relationship with health and disease in the context of ALLpt_BR
dc.languageporpt_BR
dc.publisherUniversidade do Estado do Amazonaspt_BR
dc.rightsAcesso Abertopt_BR
dc.subjectLectina ligante de manose (MBL)pt_BR
dc.subjectGene MBL2pt_BR
dc.subjectLeucemia linfoide agudapt_BR
dc.subjectDoenças infecciosaspt_BR
dc.subjectAcute lymphoid leukemiapt_BR
dc.titleCaracterização do polimorfismo do gene MBL2 em pacientes com leucemia linfoide agudapt_BR
dc.title.alternativeCharacterization of the MBL2 gene polymorphism in patients with acute lymphocytic leukemiapt_BR
dc.typeDissertaçãopt_BR
dc.date.accessioned2023-10-18T12:14:58Z-
dc.contributor.advisor1Pontes, Gemilson Soares-
dc.contributor.advisor1Latteshttp://lattes.cnpq.br/9081671233815990pt_BR
dc.contributor.referee1Pontes, Gemilson Soares-
dc.contributor.referee1Latteshttp://lattes.cnpq.br/9081671233815990pt_BR
dc.contributor.referee2Kimura, Tatiane Nayara Libório-
dc.contributor.referee2Latteshttp://lattes.cnpq.br/7764426537915981pt_BR
dc.contributor.referee3Boechat, Antônio Luiz Ribeiro-
dc.creator.Latteshttp://lattes.cnpq.br/0598831633595034pt_BR
dc.description.resumoA lectina ligante de manose (MBL) é uma proteína plasmática de fase aguda da imunidade inata, com propriedade efetoras e reguladoras que desempenham um papel fundamental na defesa do hospedeiro contra microrganismos patogênicos. A MBL exerce sua atividade por meio da ativação do sistema complemento, mecanismos de opsonização e fagocitose, através de sua capacidade de se ligar a carboidratos ricos em manose, fucose e glucosamina, presentes na superfície celular de vários microrganismos patogênicos. Contudo, a presença de variantes genéticas no éxon 1 do gene MBL2 estão associadas a baixas concentrações plasmáticas da proteína. Essas variações podem resultar em maior suscetibilidade às infecções, especialmente em indivíduos imunossuprimidos. Este estudo teve como objetivo principal caracterizar o polimorfismo do gene MBL2 e avaliar a possível associação dos genótipos e níveis séricos da proteína MBL com a susceptibilidade às infecções em pacientes portadores de Leucemia Linfoide Aguda (LLA). Um total de 122 pacientes portadores de LLA atendidos na Fundação HEMOAM foram incluídos neste estudo. A genotipagem do éxon 1 do gene MBL2 foi realizada por meio da técnica de PCR e digestão por enzimas de restrição (RFLP), seguida pela dosagem dos níveis plasmáticos de MBL por meio de um ensaio imunoenzimático (ELISA). Os resultados revelaram uma frequência maior do alelo MBL*A (0,37) nessa população de estudo, enquanto o alelo MBL*D (0,32) foi o mais frequente entre os alelos variantes, seguido pelo alelo MBL*B (0.31). O alelo MBL*C não foi encontrado. Contudo, ao se considerar a frequência do alelo polimórfico O (presença de B ou D) foi observada uma frequência de 0,68. O genótipo A/O (0,49) foi o mais comum e seus portadores apresentaram maior número de infecções, seguidas do genótipo O/O (0,38) e o genótipo A/A (0,13). No período de 2015 a 2023, um total de 239 infecções ocorreram na população de estudo. As infecções mais frequentes foram as parasitárias (n=103) e bacterianas (n=69). Além disso, também foram observadas infecções virais (n=48) e fúngicas (n=19). Contudo, não foram observadas associações significativas entre os níveis séricos da MBL, os tipos de genótipos e a suscetibilidade às infecções. Este estudo apresenta a primeira descrição da variabilidade genética do gene MBL2 em pacientes com LLA e sua associação com a suscetibilidade às infecções. Os resultados obtidos contribuem para uma melhor compreensão das bases genéticas da resposta imunológica e sua relação com a saúde e a doença no contexto da LLApt_BR
dc.publisher.countryBrasilpt_BR
dc.publisher.programPPGH -PROGRAMA DE PÓS-GRADUAÇÃO EM CIÊNCIAS APLICADAS À HEMATOLOGIApt_BR
dc.relation.references1. Eppa Ł, Pągowska-Klimek I, Świerzko AS, Moll M, Krajewski WR, Cedzyński M. Deposition of mannose-binding lectin and ficolins and activation of the lectin pathway of complement on the surface of polyurethane tubing used for cardiopulmonary bypass. J Biomed Mater Res - Part B Appl Biomater. 2018 Apr;106(3):1202–8. 2. Hammad NM, El Badawy NE, Nasr AM, Ghramh HA, Al Kady LM. Mannose-binding lectin gene polymorphism and its association with susceptibility to recurrent vulvovaginal candidiasis. Biomed Res Int. 2018;2018. 3. Dommett R, Chisholm J, Turner M, Bajaj-Elliott M, Klein NJ. Mannose-binding Lectin Genotype Influences Frequency and Duration of Infectious Complications in Children With Malignancy. Vol. 35, J Pediatr Hematol Oncol. 2013. 4. Nevadunsky NS, Korneeva I, Caputo T, Witkin SS. Mannose-binding lectin codon 54 genetic polymorphism and vaginal protein levels in women with gynecologic malignancies. Eur J Obstet Gynecol Reprod Biol. 2012;163(2):216–8. 5. Garred P, Larsen F, Seyfarth J, Fujita R, Madsen HO. Mannose-binding lectin and its genetic variants. Genes Immun. 2006 Mar;7(2):85–94. 6. Eisen DP, Minchinton RM. Impact of mannose-binding lectin on susceptibility to infectious diseases. Clin Infect Dis an Off Publ Infect Dis Soc Am. 2003 Dec;37(11):1496–505. 7. Çelik GG, Taş DA, Tahiroglu AY, Erken E, Seydaoğlu G, Ray PÇ, et al. Mannose-Binding Lectin 2 Gene Polymorphism in PANDAS Patients. Noro Psikiyatr Ars. 2019 Jun;56(2):99–105. 8. Terwilliger T, Abdul-Hay M. Acute lymphoblastic leukemia: a comprehensive review and 2017 update. Blood Cancer J. 2017;7(6):577. 9. Hunger SP, Mullighan CG, Terwilliger T, Abdul-Hay M, Rafei H, Kantarjian HM, et al. Acute lymphoblastic leukemia with treatment-naïve fanconi anemia. Blood Cancer J. 2013 Jun;50(2):207–23. 10. Bielorai B, Fisher T, Waldman D, Lerenthal Y, Nissenkorn A, Tohami T, et al. Acute lymphoblastic leukemia in early childhood as the presenting sign of ataxia-telangiectasia variant. Pediatr Hematol Oncol. 2013;30(6):574–82. 11. Chessells JM, Harrison G, Richards SM, Chessells D. Down’s syndrome and acute lymphoblastic leukaemia: clinical features and response to treatment A report from the MRC childhood leukaemia working party. Vol. 85, Arch Dis Child. 2001. 44 12. Hunger SP, Mullighan CG. Acute lymphoblastic leukemia in children. Vol. 373, New England Journal of Medicine. Massachussetts Medical Society; 2015. p. 1541–52. 13. Rafei H, Kantarjian HM, Jabbour EJ. Targeted therapy paves the way for the cure of acute lymphoblastic leukaemia. Vol. 188, British Journal of Haematology. Blackwell Publishing Ltd; 2020. p. 207–23. 14. Greaves MF, Maia AT, Wiemels JL, Ford AM. Leukemia in twins: lessons in natural history. Blood. 2003 Oct;102(7):2321–33. 15. Litzman J, Freiberger T, Grimbacher B, Gathmann B, Salzer U, Pavlík T, et al. Mannose-binding lectin gene polymorphic variants predispose to the development of bronchopulmonary complications but have no influence on other clinical and laboratory symptoms or signs of common variable immunodeficiency. Clin Exp Immunol. 2008 Sep;153(3):324–30. 16. Abbas AK, Lichtman AH, Pillai S. Imunologia celular e molecular. 9th ed. Elsevier, editor. Rio de Janeiro; 2019. 17. Nicholson LB. The immune system. Essays Biochem. 2016 Oct;60(3):275–301. 18. Janeway CAJ. The immune system evolved to discriminate infectious nonself from noninfectious self. Immunol Today. 1992 Jan;13(1):11–6. 19. Janeway CAJ, Medzhitov R. Innate immune recognition. Annu Rev Immunol. 2002;20:197–216. 20. Delves PJ, Roitt IM. The immune system. First of two parts. N Engl J Med. 2000 Jul;343(1):37–49. 21. Schwalbe RA, Dahlbäck B, Coe JE, Nelsestuen GL. Pentraxin family of proteins interact specifically with phosphorylcholine and/or phosphorylethanolamine. Biochemistry. 1992 May;31(20):4907–15. 22. Gewurz H, Mold C, Siegel J, Fiedel B. C-reactive protein and the acute phase response. Adv Intern Med. 1982;27:345–72. 23. Fraser IP, Koziel H, Ezekowitz RA. The serum mannose-binding protein and the macrophage mannose receptor are pattern recognition molecules that link innate and adaptive immunity. Semin Immunol. 1998 Oct;10(5):363–72. 24. Giang J, Seelen MAJ, van Doorn MBA, Rissmann R, Prens EP, Damman J. Complement Activation in Inflammatory Skin Diseases. Front Immunol. 2018;9:639. 25. Sarma JV, Ward PA. The complement system. Cell Tissue Res. 2011 Jan;343(1):227–35. 26. Barrington R, Zhang M, Fischer M, Carroll MC. The role of complement in 45 inflammation and adaptive immunity. Immunol Rev. 2001 Apr;180:5–15. 27. Walport MJ. Complement. First of two parts. N Engl J Med. 2001 Apr;344(14):1058–66. 28. Jaffer IH, Fredenburgh JC, Hirsh J, Weitz JI. Medical device-induced thrombosis: what causes it and how can we prevent it? J Thromb Haemost. 2015 Jun;13 Suppl 1:S72-81. 29. Walport MJ. Complement. Second of two parts. N Engl J Med. 2001 Apr;344(15):1140–4. 30. Cedzyński M, Świerzko AS. Components of the Lectin Pathway of Complement in Haematologic Malignancies. Cancers (Basel). 2020 Jul;12(7). 31. Terai I, Kobayashi K, Matsushita M, Fujita T. Human serum mannose-binding lectin (MBL)-associated serine protease-1 (MASP-1): determination of levels in body fluids and identification of two forms in serum. Clin Exp Immunol. 1997 Nov;110(2):317–23. 32. Meri S, Jarva H. Complement regulation. Vox Sang. 1998;74 Suppl 2:291–302. 33. Afshar-Kharghan V. The role of the complement system in cancer. J Clin Invest. 2017 Mar;127(3):780–9. 34. Miller ME, Seals J, Kaye R, Levitsky LC. A familial plasma-associated defect of phagocytosis. Lancet. 1968;2:60–3. 35. Turner MW. Mannose-binding lectin: the pluripotent molecule of the innate immune system. Immunol Today. 1996;17(11):532–40. 36. Kilpatrick DC. Introduction to mannan-binding lectin. Biochem Soc Trans. 2003 Aug;31(Pt 4):745–7. 37. Kilpatrick DC. Mannan-binding lectin: clinical significance and applications. Biochim Biophys Acta. 2002 Sep;1572(2–3):401–13. 38. Xu J, Chen G, Yan Z, Qiu M, Tong W, Zhang X, et al. Effect of mannose-binding lectin gene polymorphisms on the risk of rheumatoid arthritis: Evidence from a meta-analysis. Int J Rheum Dis. 2021 Mar;24(3):300–13. 39. Luo J, Xu F, Lu G-J, Lin H-C, Feng Z-C. Low mannose-binding lectin (MBL) levels and MBL genetic polymorphisms associated with the risk of neonatal sepsis: An updated meta-analysis. Early Hum Dev. 2014 Oct;90(10):557–64. 40. Taylor ME, Brickell PM, Craig RK, Summerfield JA. Structure and evolutionary origin of the gene encoding a human serum mannose-binding protein. Biochem J. 1989 Sep;262(3):763–71. 41. Shen W, Xiao L, Li Y, Zhou D, Zhang W. Association between polymorphisms in mannose-binding lectin 2 gene with pulmonary tuberculosis susceptibility. Hereditas. 46 2020 Aug;157(1):33. 42. Alves Pedroso ML, Boldt ABW, Pereira-Ferrari L, Steffensen R, Strauss E, Jensenius JC, et al. Mannan-binding lectin MBL2 gene polymorphism in chronic hepatitis C: association with the severity of liver fibrosis and response to interferon therapy. Clin Exp Immunol. 2008 May;152(2):258–64. 43. Garred P, Genster N, Pilely K, Bayarri-Olmos R, Rosbjerg A, Ma YJ, et al. A journey through the lectin pathway of complement-MBL and beyond. Immunol Rev. 2016 Nov;274(1):74–97. 44. Levy ER, Yip W-K, Super M, Ferdinands JM, Mistry AJ, Newhams MM, et al. Evaluation of Mannose Binding Lectin Gene Variants in Pediatric Influenza Virus-Related Critical Illness. Front Immunol. 2019;10:1005. 45. Kilpatrick DC. Mannan-binding lectin and its role in innate immunity. Transfus Med. 2002 Dec;12(6):335–52. 46. Pana ZD, Samarah F, Papi R, Antachopoulos C, Papageorgiou T, Farmaki E, et al. Mannose binding lectin and ficolin-2 polymorphisms are associated with increased risk for bacterial infections in children with B acute lymphoblastic leukemia. Pediatr Blood Cancer. 2014 Jun;61(6):1017–22. 47. Coelho AVC, Brandão LAC, Guimarães RL, Loureiro P, de Lima Filho JL, de Alencar LCA, et al. Mannose binding lectin and mannose binding lectin-associated serine protease-2 genes polymorphisms in human T-lymphotropic virus infection. J Med Virol. 2013 Oct;85(10):1829–35. 48. Das BK, Panda AK. MBL-2 polymorphisms (codon 54 and Y-221X) and low MBL levels are associated with susceptibility to multi organ dysfunction in P. falciparum malaria in Odisha, India. Front Microbiol. 2015;6:778. 49. Giang NT, van Tong H, Quyet D, Hoan NX, Nghia TH, Nam NM, et al. Complement protein levels and MBL2 polymorphisms are associated with dengue and disease severity. Sci Rep. 2020 Sep;10(1):14923. 50. Ghazi M, Isadyar M, Gachkar L, Mahmoudi S, Goudarzi H, Eslami G, et al. Serum levels of mannose-binding lectin and the risk of infection in pediatric oncology patients with chemotherapy. J Pediatr Hematol Oncol. 2012 Mar;34(2):128–30. 51. Fekete F, Fadgyas B, Papp É, Szilágyi Á, Prohászka Z, Müller B, et al. The role of mannose binding lectin on fever episodes in pediatric oncology patients. Pathol Oncol Res. 2016 Jan;22(1):139–43. 52. Iacobucci I, Mullighan CG. Genetic Basis of Acute Lymphoblastic Leukemia. J Clin 47 Oncol Off J Am Soc Clin Oncol. 2017 Mar;35(9):975–83. 53. Dieguez C, Oliveira MHR, Pachá C. Estimativa 2020 - Incidência de câncer no Brasil. 2019;122. 54. Puckett Y, Chan O. Acute Lymphocytic Leukemia. In Treasure Island (FL); 2021. 55. Onciu M. Acute lymphoblastic leukemia. Hematol Oncol Clin North Am. 2009 Aug;23(4):655–74. 56. Roberts KG, Mullighan CG. The Biology of B-Progenitor Acute Lymphoblastic Leukemia. Cold Spring Harb Perspect Med. 2020 Jul;10(7). 57. Weng AP, Ferrando AA, Lee W, Morris JP 4th, Silverman LB, Sanchez-Irizarry C, et al. Activating mutations of NOTCH1 in human T cell acute lymphoblastic leukemia. Science. 2004 Oct;306(5694):269–71. 58. Arber DA, Orazi A, Hasserjian R, Borowitz MJ, Beau MM Le, Bloomfield CD, et al. The 2016 revision to the World Health Organization classification of myeloid neoplasms and acute leukemia. Blood. 2016;127(20):2391–406. 59. Gianni F, Belver L, Ferrando A. The Genetics and Mechanisms of T-Cell Acute Lymphoblastic Leukemia. Cold Spring Harb Perspect Med. 2020 Mar;10(3). 60. Malard F, Mohty M. Acute lymphoblastic leukaemia. Lancet (London, England). 2020 Apr;395(10230):1146–62. 61. Rose-Inman H, Kuehl D. Acute Leukemia. Hematol Oncol Clin North Am. 2017;31(6):1011–28. 62. Shafique S, Tehsin S. Acute Lymphoblastic Leukemia Detection and Classification of Its Subtypes Using Pretrained Deep Convolutional Neural Networks. Technol Cancer Res Treat. 2018 Jan;17:1533033818802789. 63. Bennett JM, Catovsky D, Daniel MT, Flandrin G, Galton DA, Gralnick HR, et al. Proposals for the classification of the acute leukaemias. French-American-British (FAB) co-operative group. Br J Haematol. 1976 Aug;33(4):451–8. 64. Kato M, Imamura T, Manabe A, Hashii Y, Koh K, Sato A, et al. Prognostic impact of gained chromosomes in high-hyperdiploid childhood acute lymphoblastic leukaemia: a collaborative retrospective study of the Tokyo Children’s Cancer Study Group and Japan Association of Childhood Leukaemia Study. Vol. 166, British journal of haematology. England; 2014. p. 295–8. 65. Carroll AJ, Shago M, Mikhail FM, Raimondi SC, Hirsch BA, Loh ML, et al. Masked hypodiploidy: Hypodiploid acute lymphoblastic leukemia (ALL) mimicking hyperdiploid ALL in children: A report from the Children’s Oncology Group. Cancer 48 Genet. 2019 Oct;238:62–8. 66. Holmfeldt L, Wei L, Diaz-Flores E, Walsh M, Zhang J, Ding L, et al. The genomic landscape of hypodiploid acute lymphoblastic leukemia. Nat Genet. 2013 Mar;45(3):242–52. 67. Raimondi SC, Zhou Y, Mathew S, Shurtleff SA, Sandlund JT, Rivera GK, et al. Reassessment of the prognostic significance of hypodiploidy in pediatric patients with acute lymphoblastic leukemia. Cancer. 2003 Dec;98(12):2715–22. 68. Yen H-J, Chen S-H, Chang T-Y, Yang C-P, Lin D-T, Hung I-J, et al. Pediatric acute lymphoblastic leukemia with t(1;19)/TCF3-PBX1 in Taiwan. Pediatr Blood Cancer. 2017 Oct;64(10). 69. Ferlay J, Colombet M, Soerjomataram I, Parkin DM, Piñeros M, Znaor A, et al. Cancer statistics for the year 2020: An overview. Int J cancer. 2021 Apr; 70. Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2018 Nov;68(6):394–424. 71. Ferlay J, Colombet M, Soerjomataram I, Mathers C, Parkin DM, Piñeros M, et al. Estimating the global cancer incidence and mortality in 2018: GLOBOCAN sources and methods. Int J cancer. 2019 Apr;144(8):1941–53. 72. de Camargo B, de Oliveira Santos M, Rebelo MS, de Souza Reis R, Ferman S, Noronha CP, et al. Cancer incidence among children and adolescents in Brazil: first report of 14 population-based cancer registries. Int J cancer. 2010 Feb;126(3):715–20. 73. Reis RDS, Camargo B De, Santos MDO, Moreira J, Oliveira D, Silva FA, et al. Childhood Leukemia Incidence in Brazil According to Different Geographical Regions. Pediatr Blood Cancer. 2011;56:58–64. 74. Silva-junior AL, Silva Alves F, Wendell M, Gabriela M, Kerr A, Xabregas LA, et al. Acute lymphoid and myeloid leukemia in a Brazilian Amazon population : Epidemiology and predictors of comorbidity and deaths. PLoS One. 2019;14(8):1–16. 75. Heerema NA. Cytogenetic abnormalities and molecular markers of acute lymphoblastic leukemia. Hematol Oncol Clin North Am. 1990 Aug;4(4):795–820. 76. Look AT. Oncogenic transcription factors in the human acute leukemias. Science. 1997 Nov;278(5340):1059–64. 77. Kinlen L. Evidence for an infective cause of childhood leukaemia: comparison of a Scottish new town with nuclear reprocessing sites in Britain. Lancet (London, England). 1988 Dec;2(8624):1323–7. 49 78. Greaves M. Infection, immune responses and the aetiology of childhood leukaemia. Nat Rev Cancer. 2006 Mar;6(3):193–203. 79. Greaves M. A causal mechanism for childhood acute lymphoblastic leukaemia. Nat Rev Cancer. 2018 Aug;18(8):471–84. 80. Sabaawy HE, Azuma M, Embree LJ, Tsai H-J, Starost MF, Hickstein DD. TEL-AML1 transgenic zebrafish model of precursor B cell acute lymphoblastic leukemia. Proc Natl Acad Sci U S A. 2006 Oct;103(41):15166–71. 81. Hong D, Gupta R, Ancliff P, Atzberger A, Brown J, Soneji S, et al. Initiating and cancer-propagating cells in TEL-AML1-associated childhood leukemia. Science. 2008 Jan;319(5861):336–9. 82. Bernardin F, Yang Y, Cleaves R, Zahurak M, Cheng L, Civin CI, et al. TEL-AML1, expressed from t(12;21) in human acute lymphocytic leukemia, induces acute leukemia in mice. Cancer Res. 2002 Jul;62(14):3904–8. 83. North TE, de Bruijn MFTR, Stacy T, Talebian L, Lind E, Robin C, et al. Runx1 expression marks long-term repopulating hematopoietic stem cells in the midgestation mouse embryo. Immunity. 2002 May;16(5):661–72. 84. Mori H, Colman SM, Xiao Z, Ford AM, Healy LE, Donaldson C, et al. Chromosome translocations and covert leukemic clones are generated during normal fetal development. Proc Natl Acad Sci U S A. 2002 Jun;99(12):8242–7. 85. Inthal A, Krapf G, Beck D, Joas R, Kauer MO, Orel L, et al. Role of the erythropoietin receptor in ETV6/RUNX1-positive acute lymphoblastic leukemia. Clin cancer Res an Off J Am Assoc Cancer Res. 2008 Nov;14(22):7196–204. 86. van der Weyden L, Giotopoulos G, Wong K, Rust AG, Robles-Espinoza CD, Osaki H, et al. Somatic drivers of B-ALL in a model of ETV6-RUNX1; Pax5(+/-) leukemia. BMC Cancer. 2015 Aug;15:585. 87. Li M, Jones L, Gaillard C, Binnewies M, Ochoa R, Garcia E, et al. Initially disadvantaged, TEL-AML1 cells expand and initiate leukemia in response to irradiation and cooperating mutations. Vol. 27, Leukemia. 2013. p. 1570–3. 88. Chan LC, Lam TH, Li CK, Lau YL, Li CK, Yuen HL, et al. Is the timing of exposure to infection a major determinant of acute lymphoblastic leukaemia in Hong Kong? Paediatr Perinat Epidemiol. 2002 Apr;16(2):154–65. 89. Kinlen L. Childhood leukaemia, nuclear sites, and population mixing. Br J Cancer. 2011 Jan;104(1):12–8. 90. Shang Y, Zhou F. Current Advances in Immunotherapy for Acute Leukemia: An 50 Overview of Antibody, Chimeric Antigen Receptor, Immune Checkpoint, and Natural Killer. Front Oncol. 2019;9:917. 91. Boddu P, Kantarjian H, Garcia-Manero G, Allison J, Sharma P, Daver N. The emerging role of immune checkpoint based approaches in AML and MDS. Leuk Lymphoma. 2018 Apr;59(4):790–802. 92. Inaba H, Greaves M, Mullighan CG. Acute lymphoblastic leukaemia. Lancet (London, England). 2013 Jun;381(9881):1943–55. 93. O’Connor D, Bate J, Wade R, Clack R, Dhir S, Hough R, et al. Infection-related mortality in children with acute lymphoblastic leukemia: an analysis of infectious deaths on UKALL2003. Blood. 2014 Aug;124(7):1056–61. 94. Afzal S, Ethier M-C, Dupuis LL, Tang L, Punnett AS, Richardson SE, et al. Risk factors for infection-related outcomes during induction therapy for childhood acute lymphoblastic leukemia. Pediatr Infect Dis J. 2009 Dec;28(12):1064–8. 95. Hurwitz CA, Silverman LB, Schorin MA, Clavell LA, Dalton VK, Glick KM, et al. Substituting dexamethasone for prednisone complicates remission induction in children with acute lymphoblastic leukemia. Cancer. 2000 Apr;88(8):1964–9. 96. Inaba H, Pui C-H. Immunotherapy in pediatric acute lymphoblastic leukemia. Cancer Metastasis Rev. 2019 Dec;38(4):595–610. 97. Lam JC, Chai JY, Wong YL, Tan NW, Ha CT, Chan MY, et al. Causative Pathogens of Febrile Neutropaenia in Children Treated for Acute Lymphoblastic Leukaemia. Ann Acad Med Singapore. 2015 Nov;44(11):530–4. 98. Inaba H, Pei D, Wolf J, Howard SC, Hayden RT, Go M, et al. Infection-related complications during treatment for childhood acute lymphoblastic leukemia. Ann Oncol Off J Eur Soc Med Oncol. 2017 Feb;28(2):386–92. 99. Domingo-Domènech E, Benavente Y, González-Barca E, Montalban C, Gumà J, Bosch R, et al. Impact of interleukin-10 polymorphisms (-1082 and -3575) on the survival of patients with lymphoid neoplasms. Haematologica. 2007 Nov;92(11):1475–81. 100. Ding Q, Shi Y, Fan B, Fan Z, Ding L, Li F, et al. The interleukin-10 promoter polymorphism rs1800872 (-592C>A), contributes to cancer susceptibility: meta-analysis of 16,785 cases and 19,713 controls. PLoS One. 2013;8(2):e57246. 101. Armitage RJ, Macduff BM, Eisenman J, Paxton R, Grabstein KH. IL-15 has stimulatory activity for the induction of B cell proliferation and differentiation. J Immunol. 1995 Jan;154(2):483–90. 102. Giron-Michel J, Giuliani M, Fogli M, Brouty-Boyé D, Ferrini S, Baychelier F, et al. 51 Membrane-bound and soluble IL-15/IL-15Ralpha complexes display differential signaling and functions on human hematopoietic progenitors. Blood. 2005 Oct;106(7):2302–10. 103. Fehniger TA, Caligiuri MA. Interleukin 15: biology and relevance to human disease. Blood. 2001 Jan;97(1):14–32. 104. Cario G, Izraeli S, Teichert A, Rhein P, Skokowa J, Möricke A, et al. High interleukin-15 expression characterizes childhood acute lymphoblastic leukemia with involvement of the CNS. J Clin Oncol Off J Am Soc Clin Oncol. 2007 Oct;25(30):4813–20. 105. Lin D, Liu C, Xue M, Liu R, Jiang L, Yu X, et al. The role of interleukin-15 polymorphisms in adult acute lymphoblastic leukemia. PLoS One. 2010 Oct;5(10):e13626. 106. Wu Y, Zhou BP. TNF-alpha/NF-kappaB/Snail pathway in cancer cell migration and invasion. Br J Cancer. 2010 Feb;102(4):639–44. 107. Powers MP, Nishino H, Luo Y, Raza A, Vanguri A, Rice L, et al. Polymorphisms in TGFbeta and TNFalpha are associated with the myelodysplastic syndrome phenotype. Arch Pathol Lab Med. 2007 Dec;131(12):1789–93. 108. Waterer GW, Wunderink RG. Science review: Genetic variability in the systemic inflammatory response. Crit Care. 2003 Aug;7(4):308–14. 109. Madsen EC, Levy ER, Madden K, Agan AA, Sullivan RM, Graham DA, et al. Mannose-Binding Lectin Levels in Critically Ill Children With Severe Infections. Pediatr Crit care Med a J Soc Crit Care Med World Fed Pediatr Intensive Crit Care Soc. 2017 Feb;18(2):103–11. 110. Schmiegelow K, Garred P, Lausen B, Andreassen B, Petersen BL, Madsen HO. Increased frequency of mannose-binding lectin insufficiency among children with acute lymphoblastic leukemia. Blood. 2002 Nov;100(10):3757–60. 111. Merlen C, Bonnefoy A, Wagner E, Dedeken L, Leclerc J-M, Laverdière C, et al. L-Asparaginase lowers plasma antithrombin and mannan-binding-lectin levels: Impact on thrombotic and infectious events in children with acute lymphoblastic leukemia. Pediatr Blood Cancer. 2015 Aug;62(8):1381–7. 112. Jack DL, Klein NJ, Turner MW. Mannose-binding lectin: targeting the microbial world for complement attack and opsonophagocytosis. Immunol Rev. 2001 Apr;180:86–99. 113. Carlos A, Vallinoto R, Freitas FB, Guirelli I, Fernando L, Machado A, et al. Characterization of mannose-binding lectin plasma levels and genetic polymorphisms in HIV-1-infected individuals. Rev Soc Bras Med Trop. 2011;44(1):1–3. 52 114. Pontes GS, Tamegão-Lopes B, Machado LFA, Azevedo VN, Ishak MOG, Ishak R, et al. Characterization of mannose-binding lectin gene polymorphism among human T-cell lymphotropic virus 1 and 2-infected asymptomatic subjects. Hum Immunol. 2005;66(8):892–6. 115. Zehnder A, Fisch U, Hirt A, Niggli FK, Simon A, Ozsahin H, et al. Prognosis in pediatric hematologic malignancies is associated with serum concentration of mannose-binding lectin-associated serine protease-2 (MASP-2). Pediatr Blood Cancer. 2009 Jul;53(1):53–7. 116. Agostinho ME. Black American Colonization in the Brazilian Amazon. Sæculum – Rev História. 2020;25(43):164–79. 117. Oguz R, Ciftci HS, Gokce M, Ogret Y, Karadeniz S, Pehlivan S, et al. The association of HLA-DRB1 alleles and MBL2 gene variant in pediatric acute lymphoblastic leukemia patients. Hematol Transfus cell Ther. 2023 Mar; 118. Wong M, Öhrmalm L, Broliden K, Aust C, Hibberd M, Tolfvenstam T. Mannose-binding lectin 2 polymorphisms do not influence frequency or type of infection in adults with chemotherapy induced neutropaenia. PLoS One. 2012;7(2):e30819. 119. Ferraroni NR, Segat L, Guimarães RL, Brandão LAC, Crovella S, Constantino-Silva RN, et al. Mannose-binding lectin and MBL-associated serine protease-2 gene polymorphisms in a Brazilian population from Rio de Janeiro. Int J Immunogenet. 2012;39(1):32–8. 120. Edge MD, Rosenberg NA. Implications of the apportionment of human genetic diversity for the apportionment of human phenotypic diversity. Stud Hist Philos Biol Biomed Sci. 2015 Aug;52:32–45. 121. Hunley KL, Cabana GS, Long JC. The apportionment of human diversity revisited. Am J Phys Anthropol. 2016 Aug;160(4):561–9. 122. Novembre J. The background and legacy of Lewontin’s apportionment of human genetic diversity. Philos Trans R Soc London Ser B, Biol Sci. 2022 Jun;377(1852):20200406. 123. Sokołowska A, Świerzko AS, Gajek G, Gołos A, Michalski M, Nowicki M, et al. Associations of ficolins and mannose-binding lectin with acute myeloid leukaemia in adults. Sci Rep. 2020 Jun;10(1):10561. 124. Pehlivan M, Nursal AF, Gündeş İ, Oyacı Y, Kıvanç D, Pehlivan S. Role of MIF-173G/C and Mbl2 Codon 54A/B Variants in the Risk of Multiple Myeloma: An Association Study. Endocr Metab Immune Disord Drug Targets. 2021;21(5):925–31. 53 125. Frakking FNJ, Israëls J, Kremer LCM, Kuijpers TW, Caron HN, van de Wetering MD. Mannose-binding lectin (MBL) and the risk for febrile neutropenia and infection in pediatric oncology patients with chemotherapy. Pediatr Blood Cancer. 2011 Jul;57(1):89–96. 126. Summerfield JA, Sumiya M, Levin M, Turner MW. Association of mutations in mannose binding protein gene with childhood infection in consecutive hospital series. BMJ. 1997 Apr;314(7089):1229–32. 127. Mølle I, Peterslund NA, Thiel S, Steffensen R. MBL2 polymorphism and risk of severe infections in multiple myeloma patients receiving high-dose melphalan and autologous stem cell transplantation. Bone Marrow Transplant. 2006 Oct;38(8):555–60. 128. Klostergaard A, Steffensen R, Møller JK, Peterslund N, Juhl-Christensen C, Mølle I. Sepsis in acute myeloid leukaemia patients receiving high-dose chemotherapy: no impact of chitotriosidase and mannose-binding lectin polymorphisms. Eur J Haematol. 2010 Jul;85(1):58–64. 129. Holanda K, Lucena-Araujo AR, Quintas A, Mendonça T, Lima A, Vasconcelos LR, et al. Mannose-binding lectin 2 (MBL2) gene polymorphisms do not influence frequency of infections in chronic lymphocytic leukemia patients. Rev Bras Hematol Hemoter. 2014;36(1):29–34. 130. Lausen B, Schmiegelow K, Andreassen B, Madsen HO, Garred P. Infections during induction therapy of childhood acute lymphoblastic leukemia--no association to mannose-binding lectin deficiency. Eur J Haematol. 2006 Jun;76(6):481–7. 131. Nitsche-Schmitz DP, Rohde M, Chhatwal GS. Invasion mechanisms of Gram-positive pathogenic cocci. Thromb Haemost. 2007 Sep;98(3):488–96. 132. Dresen M, Valentin-Weigand P, Berhanu Weldearegay Y. Role of Metabolic Adaptation of Streptococcus suis to Host Niches in Bacterial Fitness and Virulence. Pathog (Basel, Switzerland). 2023 Mar;12(4). 133. Ruskamp JM, Hoekstra MO, Rovers MM, Schilder AGM, Sanders EAM. Mannose-binding lectin and upper respiratory tract infections in children and adolescents: a review. Arch Otolaryngol Head Neck Surg. 2006 May;132(5):482–6. 134. Vekemans M, Robinson J, Georgala A, Heymans C, Muanza F, Paesmans M, et al. Low mannose-binding lectin concentration is associated with severe infection in patients with hematological cancer who are undergoing chemotherapy. Clin Infect Dis an Off Publ Infect Dis Soc Am. 2007 Jun;44(12):1593–601.pt_BR
dc.publisher.initialsUEApt_BR
Aparece nas coleções:DISSERTAÇÃO - PPCAH Programa de Pós-Graduação em Ciências Aplicadas à Hematologia

Arquivos associados a este item:
Arquivo Descrição TamanhoFormato 
Caracterização do polimorfismo do gene MBL2 em pacientes com leucemia linfoide aguda.pdf1,98 MBAdobe PDFVisualizar/Abrir


Os itens no repositório estão protegidos por copyright, com todos os direitos reservados, salvo quando é indicado o contrário.