DSpace logo

Use este identificador para citar ou linkar para este item: http://repositorioinstitucional.uea.edu.br//handle/riuea/4565
Registro completo de metadados
Campo DCValorIdioma
dc.contributor.authorLaco, Ana Carolina Shuan-
dc.date.available2023-02-13-
dc.date.available2023-03-06T14:22:09Z-
dc.date.issued2022-10-10-
dc.identifier.urihttp://repositorioinstitucional.uea.edu.br//handle/riuea/4565-
dc.description.abstractMalaria is an infectious disease of chronic evolution, with clinical episodics manisfestations of acute profile, caused by the protozoan Plasmodium genus. The majority of cases from Amazon Region is certain by Plasmodium vivax. Althought has been considered benign and self-limit, can be worsen on children and pregnant women, having as main complications anaemia and thrombocytopnenia. The parasite has preference for young red blood cells and the parasitemia in the malaria vivax doesn´t seems to be the main cause of anaemia. In a way that the immune response modulation could be associated to this severity. The mechanisms involved in individuals with malaria are not well known. However, some studies on children with malaria has shown an association of low level of CCL5 chemokines with the increase of the disease. Objective: Our studies sought to avaliate the CCL5 expression and IFN-γ in T CD4 and T CD8 lymphocytes cells and their relation with clinical markers. Methodology: A cohort study was realized with children and teenagers from 1 to 16 years with malaria vivax at Fundação de Medicina Tropical Doutor Heitor Vieira Dourado. Were collected whole blood with heparin on day 0 (before the treatment) being acute the second phase e after that between 60 and 90 days (the convalescence phase). In each day of visit we isolated and cultivated using the antigen merozoite surface protein-1 (MSP119) and after 24 hours were realized the cells appointements. The CCL5 and IFN-γ were evaluated in T CD4+ e CD8+ CD45RO+ cells by flow cytometry. Results: We collected thirteen cases in acute phase and the second one was collected was realized in convalescence phase (after 60 to 90 days of the infection). We noted a positive correlation from de levels of hemoglobin and the percentage of TCD8+ lymphocytes memory cells IFN-γ producers on acute phase of the infection (P=0,03). In relation to RATES, when more young the individuals with malaria vivax were, less was the percentage of TCD8+ lymphocytes memory cells producers of these chemokines (P=0,04). Conclusions: The comparison of of these responses on acute phase and convalescence indicated on the correlation between the TCD8 lymphocytes memory cells rate of CCL5 and the age, suggesting an important role of the inflammatory stage in the modulation of these cells. The results are relevants indicanting that the responses founded in the studies were probably initiated on the pre erythrocyte stage and future research are importants to understand the relation of this modulation on anemia pathogenesis of malaria vivaxpt_BR
dc.languageporpt_BR
dc.publisherUniversidade do Estado do Amazonaspt_BR
dc.rightsAcesso Abertopt_BR
dc.subjectPlasmidium vivaxpt_BR
dc.subjectCriançaspt_BR
dc.subjectCCL5pt_BR
dc.subjectIFN-ypt_BR
dc.titleAvaliação da expressão de CCL5 intracelular em linfócitos T CD8 de memória e sua relação com biomarcadores clínicos de malária vivax em crianças atendidas na Fundação de Medicina Tropical Dr. Heitor Vieira Douradopt_BR
dc.title.alternativeEvaluation of intracellular CCL5 expression in memory CD8 T lymphocytes and its relationship with clinical biomarkers of vivax malaria in children attended at the Fundação de Medicina Tropical Dr. Heitor Vieira Douradopt_BR
dc.typeDissertaçãopt_BR
dc.date.accessioned2023-03-06T14:22:09Z-
dc.contributor.advisor-co1Nogueira, Paulo Afonso-
dc.contributor.advisor-co1Latteshttp://lattes.cnpq.br/8053450182210137pt_BR
dc.contributor.advisor1Melo, Gisely Cardoso de-
dc.contributor.advisor1Latteshttp://lattes.cnpq.br/5566457348830121pt_BR
dc.contributor.referee1Costa, Allyson Guimarães da-
dc.contributor.referee2Wunderlich, Gerhard-
dc.contributor.referee2Latteshttp://lattes.cnpq.br/0472884412790581pt_BR
dc.contributor.referee3Almeida, Maria Edilene Martins de-
dc.contributor.referee3Latteshttp://lattes.cnpq.br/9637683978812335pt_BR
dc.creator.Latteshttp://lattes.cnpq.br/6284291815006222pt_BR
dc.description.resumoA malária é uma doença infecciosa, de evolução crônica, com manifestações episódicas de caráter agudo, causada por protozoário do gênero Plasmodium. A maioria dos casos da doença na Região Amazônica é determinada pelo Plasmodium vivax (P. vivax). Embora seja considerada benigna e autolimitada, pode agravar em crianças e gestantes, sendo as principais complicações clínicas a anemia e trombocitopenia. O parasito tem preferência por eritrócitos mais jovens e a parasitemia na malária por P. vivax não parece ser a principal causa da anemia, de modo que a modulação da resposta imune possa estar mais associada a essa gravidade. Pouco se sabe sobre os mecanismos imunes envolvidos em indivíduos com malária por P. vivax, entretanto, alguns estudos em crianças com malária, encontraram associação entre o baixo nível da quimiocina CCL5 com a gravidade da doença. Objetivo: Assim, o estudo correlacionou a expressão de CCL5 nas subpopulações de linfócitos T CD8 e biomarcadores clínicos em crianças e adolescentes diagnosticadas com malária por P. vivax. Metodologia: Foi realizado um estudo observacional prospectivo com crianças e adolescentes de 1 a 16 anos diagnosticados com malária por P. vivax. As amostras de sangue foram coletadas em tubo de heparina e EDTA antes do tratamento (D0), fase aguda e na fase convalescença (D60-90). Em cada visita, foram isoladas células mononucleares do sangue periférico (PBMC), realizou-se cultivo celular utilizando a proteína de superfície de merozoíto -1 (PvMSP-119) e após 24 horas foram realizadas as marcações celulares. A expressão de CCL5 e IFN-γ foram avaliadas em células T CD4+, CD8+ e suas subpopulações por meio de citometria de fluxo. Resultados: Foram coletados 13 casos na fase aguda com segmento na fase convalescença. Observamos uma correlação positiva dos níveis de hemoglobina e a porcentagem de linfócitos T CD8 de memória que expressam IFN-γ na fase aguda da infecção (P=0,03). Em relação a CCL5, quanto mais jovens eram os indivíduos com malária por P. vivax menor foi a porcentagem de linfócitos T CD8 de memória expressores dessa quimiocina (P=0,04). Conclusão: A comparação dessas respostas na fase aguda e na convalescença indicaram uma inversão nas correlações entre frequência de linfócitos T CD8 de memória produtoras de CCL5 e a idade, sugerindo um papel importante do estado inflamatório na modulação dessas células. Os resultados são relevantes, indicando que as respostas encontradas no estudo foram provavelmente iniciadas no estágio pré-eritrocítico e, que pesquisas futuras são importantes para entender a relação dessa modulação na resposta imune a malária por P. vivaxpt_BR
dc.publisher.countryBrasilpt_BR
dc.publisher.programPPGH -PROGRAMA DE PÓS-GRADUAÇÃO EM CIÊNCIAS APLICADAS À HEMATOLOGIApt_BR
dc.relation.references1. Guerra CA, Howes RE, Patil AP, Gething PW, van Boeckel TP, Temperley WH, et al. The international limits and population at risk of Plasmodium vivax transmission in 2009. PLoS Negl Trop Dis [Internet]. 2010 Aug [cited 2021 May 9];4(8). Available from: https://pubmed.ncbi.nlm.nih.gov/20689816/ 2. Ashley EA, Pyae Phyo A, Woodrow CJ. Malaria. Vol. 391, The Lancet. Lancet Publishing Group; 2018. p. 1608–21. 3. Oliveira-Ferreira J, Lacerda MV, Brasil P, Ladislau JL, Tauil PL, Daniel-Ribeiro CT. Malaria in Brazil: An overview [Internet]. Vol. 9, Malaria Journal. 2010 [cited 2021 Mar 26]. p. 115. Available from: http://www.malariajournal.com/content/9/1/115 4. Haldar K, Murphy SC, Milner DA, Taylor TE. Malaria: Mechanisms of erythrocytic infection and pathological correlates of severe disease. Vol. 2, Annual Review of Pathology. Annual Reviews Inc.; 2007. p. 217–49. 5. Wickramasinghe SN, Abdalla SH. Blood and bone marrow changes in malaria. Bailliere’s Best Practice and Research in Clinical Haematology [Internet]. 2000 [cited 2021 May 9];13(2):277–99. Available from: https://pubmed.ncbi.nlm.nih.gov/10942626/ 6. Awoke N, Arota A. Profiles of hematological parameters in plasmodium falciparum and plasmodium vivax malaria patients attending tercha general hospital, Dawuro zone, south Ethiopia. Infect Drug Resist. 2019;12:521–7. 7. Doolan DL, Dobaño C, Baird JK. Acquired Immunity to Malaria. Clin Microbiol Rev [Internet]. 2009 Jan [cited 2022 Sep 20];22(1):13. Available from: /pmc/articles/PMC2620631/ 8. Marsh K, Kinyanjui S. Immune effector mechanisms in malaria. Vol. 28, Parasite Immunology. 2006. 9. Tjitra E, Anstey NM, Sugiarto P, Warikar N, Kenangalem E, Karyana M, et al. Multidrug-Resistant Plasmodium vivax Associated with Severe and Fatal Malaria: A Prospective Study in Papua, Indonesia. PLoS Med [Internet]. 2008 Jun [cited 2022 Aug 21];5(6):0890–9. Available from: /pmc/articles/PMC2429950/ 10. Bueno LL, Guimarã Es Morais C, Fortes F, Jo A, Assis J, Gomes S, et al. Plasmodium vivax: Induction of CD4 + CD25 + FoxP3 + Regulatory T Cells during Infection Are Directly Associated with Level of Circulating Parasites. 2010 [cited 2022 Aug 24]; Available from: www.plosone.org 62 11. Lau LS, Fernandez-Ruiz D, Mollard V, Sturm A, Neller MA, Cozijnsen A, et al. CD8+ T Cells from a Novel T Cell Receptor Transgenic Mouse Induce Liver-Stage Immunity That Can Be Boosted by Blood-Stage Infection in Rodent Malaria. PLoS Pathog [Internet]. 2014 [cited 2022 Aug 24];10(5). Available from: /pmc/articles/PMC4031232/ 12. Hafalla JCR, Cockburn IA, Zavala F. Protective and pathogenic roles of CD8+ T cells during malaria infection. Parasite Immunol. 2006 Jan;28(1–2):15–24. 13. Chaves YO, da Costa AG, Pereira MLM, de Lacerda MVG, Coelho-Dos-Reis JG, Martins-Filho OA, et al. Immune response pattern in recurrent Plasmodium vivax malaria. Malar J [Internet]. 2016 Aug 31 [cited 2022 Aug 24];15(1):1–13. Available from: https://malariajournal.biomedcentral.com/articles/10.1186/s12936-016-1501-5 14. Hojo-Souza NS, Pereira DB, de Souza FSH, de Oliveira Mendes TA, Cardoso MS, Tada MS, et al. On the cytokine/chemokine network during Plasmodium vivax malaria: new insights to understand the disease. Malar J [Internet]. 2017 Jan 24 [cited 2020 Sep 29];16(1):1–10. Available from: /pmc/articles/PMC5260126/?report=abstract 15. Ochiel DO, Awandare GA, Keller CC, Hittner JB, Kremsner PG, Weinberg JB, et al. Differential Regulation of-Chemokines in Children with Plasmodium falciparum Malaria. Infect Immun [Internet]. 2005;73(7):4190–7. Available from: http://iai.asm.org/ 16. Were T, Hittner JB, Ouma C, Otieno RO, Orago ASS, Ong’echa JM, et al. Suppression of RANTES in children with Plasmodium falciparum malaria [Internet]. Vol. 91, Haematologica. 2006 Jan [cited 2020 Sep 29]. Available from: https://haematologica.org/article/view/4185 17. Health Organization W. WHO Guidelines for malaria - 3 June 2022 [Internet]. 2022. Available from: http://apps.who.int/bookorders. 18. World Malaria Report. World_Malaria_Report_2021. 2021; 19. Secretaria de Vigilância em Saúde - Boletim Epidemiológico. Panorama epidemiológico da malária em 2021: buscando o caminho para a eliminação da malária no Brasil. 2022. 20. Brasil. Ministério da Saúde. Guia de tratamento da malária no Brasil / Ministério da Saúde, Secretaria de Vigilância em Saúde, Departamento de Imunização e Doenças Transmissíveis. [Internet]. 2. ed. 2021. Available from: www.bvsms.saude.gov.br. 21. Suh KN, Kain KC, Keystone JS. Malaria. Vol. 170, CMAJ. CMAJ; 2004. p. 1693–702. 22. Pimenta PFP, Orfano AS, Bahia AC, Duarte APM, Ríos-Velásquez CM, Melo FF, et al. An overview of malaria transmission from the perspective of amazon anopheles vectors. Mem Inst Oswaldo Cruz. 2015;110(1):1–25. 63 23. Mueller I, Galinski MR, Baird JK, Carlton JM, Kochar DK, Alonso PL, et al. Key gaps in the knowledge of Plasmodium vivax, a neglected human malaria parasite. Lancet Infect Dis. 2009;9(9):555–66. 24. Bousema T, Drakeley C. Epidemiology and infectivity of Plasmodium falciparum and Plasmodium vivax gametocytes in relation to malaria control and elimination. Vol. 24, Clinical Microbiology Reviews. American Society for Microbiology (ASM); 2011. p. 377–410. 25. Hulden L, Hulden L. Activation of the hypnozoite: A part of Plasmodium vivax life cycle and survival. Malar J. 2011;10:90. 26. Prevention CC for DC and. CDC - Malaria - About Malaria - Biology. 2020; 27. Kanjee U, Rangel GW, Clark MA, Duraisingh MT. Molecular and cellular interactions defining the tropism of Plasmodium vivax for reticulocytes. Vol. 46, Current Opinion in Microbiology. Elsevier Ltd; 2018. p. 109–15. 28. Flannery EL, Markus MB, Vaughan AM. Plasmodium vivax. Vol. 35, Trends in Parasitology. Elsevier Ltd; 2019. p. 583–4. 29. Milner DA. Malaria pathogenesis. Cold Spring Harb Perspect Med. 2018 Jan 1;8(1). 30. Price RN, Tjitra E, Guerra CA, Yeung S, White NJ, Anstey NM. Vivax malaria: Neglected and not benign. American Journal of Tropical Medicine and Hygiene [Internet]. 2007 [cited 2021 Mar 22];77(SUPPL. 6):79–87. Available from: /pmc/articles/PMC2653940/ 31. Zimmerman PA, Mehlotra RK, Kasehagen LJ, Kazura JW. Why do we need to know more about mixed Plasmodium species infections in humans? Vol. 20, Trends in Parasitology. NIH Public Access; 2004. p. 440–7. 32. Bassat Q, Alonso PL. Defying malaria: Fathoming severe Plasmodium vivax disease. Nat Med. 2011;17(1):48–9. 33. Milner DA. Malaria pathogenesis. Cold Spring Harb Perspect Med. 2018 Jan 1;8(1). 34. World Health Organization. Guidelines for the Treatment of Malaria. 2021;(June):2019. Available from: http://www.ghbook.ir/index.php?name= فرهنگ و رسانه ها ی نوین &option=com_dbook&task=readonline&book_id=13650&page=73&chkhashk=ED9C9491B4&Itemid=218&lang=fa&tmpl=component 35. Lança EFC, Magalhães BML, Vitor-Silva S, Siqueira AM, Benzecry SG, Alexandre MAA, et al. Risk factors and characterization of plasmodium vivax-associated admissions to pediatric intensive care units in the brazilian amazon. PLoS One. 2012;7(4). 64 36. Adams JH, Mueller I. The biology of plasmodium vivax. Cold Spring Harb Perspect Med. 2017 Sep 1;7(9). 37. Secretaria de Vigilância em Saúde - SVS. Boletim epidemiológico vigilância em Saúde no Brasil 2020. 2020; 38. Adams JH, Mueller I. The biology of plasmodium vivax. Cold Spring Harb Perspect Med. 2017 Sep 1;7(9). 39. Battle KE, Lucas TCD, Nguyen M, Howes RE, Nandi AK, Twohig KA, et al. Mapping the global endemicity and clinical burden of Plasmodium vivax, 2000–17: a spatial and temporal modelling study. The Lancet. 2019 Jul 27;394(10195):332–43. 40. Dayananda KK, Achur RN, Gowda DC. Epidemiology, drug resistance, and pathophysiology of plasmodium vivax malaria. Vol. 55, Journal of Vector Borne Diseases. Wolters Kluwer Medknow Publications; 2018. p. 1–8. 41. Borges QI, Fontes CJF, Damazo AS. Analysis of lymphocytes in patients with Plasmodium vivax malaria and its relation to the annexin-A1 and IL-10. Malar J [Internet]. 2013 Dec 20 [cited 2021 Feb 7];12(1):455. Available from: /pmc/articles/PMC3878186/?report=abstract 42. Kochar DK, Das A, Kochar A, Middha S, Acharya J, Tanwar GS, et al. Thrombocytopenia in Plasmodium falciparum, Plasmodium vivax and mixed infection malaria: A study from Bikaner (Northwestern India). Platelets [Internet]. 2010 Dec [cited 2020 Sep 29];21(8):623–7. Available from: https://www.tandfonline.com/doi/abs/10.3109/09537104.2010.505308 43. Karyana M, Burdarm L, Yeung S, Kenangalem E, Wariker N, Maristela R, et al. Malaria morbidity in Papua Indonesia, an area with multidrug resistant Plasmodium vivax and Plasmodium falciparum. Malar J [Internet]. 2008 [cited 2022 Aug 25];7:148. Available from: /pmc/articles/PMC2518158/ 44. Naing C, Whittaker MA. Severe thrombocytopaenia in patients with vivax malaria compared to falciparum malaria: a systematic review and meta-analysis. Infect Dis Poverty [Internet]. 2018 Dec 9 [cited 2021 May 8];7(1):10. Available from: https://idpjournal.biomedcentral.com/articles/10.1186/s40249-018-0392-9 45. Andrade BB, Reis-Filho A, Souza-Neto SM, Clarncio J, Camargo LM, Barral A, et al. Severe Plasmodium vivax malaria exhibits marked inflammatory imbalance. Malar J [Internet]. 2010 [cited 2021 Mar 26];9(1):13. Available from: /pmc/articles/PMC2837053/ 65 46. Lacerda MV, Mourão MP, Alexandre MA, Siqueira AM, Magalhães BM, Martinez-Espinosa FE, et al. Understanding the clinical spectrum of complicated Plasmodium vivax malaria: A systematic review on the contributions of the Brazilian literature. Malar J. 2012;11:1–18. 47. Patriani D, Arguni E, Kenangalem E, Dini S, Sugiarto P, Hasanuddin A, et al. Early and late mortality after malaria in young children in Papua, Indonesia. BMC Infect Dis. 2019 Oct 30;19(1):922. 48. Chu CS, White NJ. Management of relapsing Plasmodium vivax malaria. Vol. 14, Expert Review of Anti-Infective Therapy. Taylor and Francis Ltd; 2016. p. 885–900. 49. Kochar DK, Das A, Kochar A, Middha S, Acharya J, Tanwar GS, et al. Thrombocytopenia in Plasmodium falciparum, Plasmodium vivax and mixed infection malaria: A study from Bikaner (Northwestern India). Platelets. 2010 Dec;21(8):623–7. 50. Kwak YG, Lee HK, Kim M, Um TH, Cho CR. Clinical characteristics of vivax malaria and analysis of recurred patients. Infect Chemother. 2013 Mar;45(1):69–75. 51. Sam SS, Omar SFS, Teoh BT, Abd-Jamil J, AbuBakar S. Review of Dengue Hemorrhagic Fever Fatal Cases Seen Among Adults: A Retrospective Study. Vol. 7, PLoS Neglected Tropical Diseases. Public Library of Science; 2013. 52. Good MF, Xu H, Wykes M, Engwerda CR. Development and regulation of cell-mediated immune responses to the blood stages of malaria: Implications for vaccine research. Vol. 23, Annual Review of Immunology. Annual Reviews Inc.; 2005. p. 69–99. 53. Stevenson MM, Riley EM. Innate immunity to malaria. Nature Reviews Immunology 2004 4:3 [Internet]. 2004 [cited 2022 Sep 25];4(3):169–80. Available from: https://www.nature.com/articles/nri1311 54. Matlani M, Kojom LP, Mishra N, Dogra V, Singh V. Severe vivax malaria trends in the last two years: a study from a tertiary care centre, Delhi, India. Ann Clin Microbiol Antimicrob [Internet]. 2020 Dec 1 [cited 2022 Sep 1];19(1):49. Available from: /pmc/articles/PMC7602347/ 55. Snow B, Trape JF, Marsh K, Snow RW. The past, present and future of childhood malaria mortality in Africa [Internet]. Vol. 17, TRENDS in Parasitology. 2001. Available from: http://parasites.trends.com1471 56. Kevin Baird J, Masbar S, Basri H, Tirtokusumo S, Subianto B, Hoffman SL. Age-Dependent Susceptibility to Severe Disease with Primary Exposure to Plasmodium falciparum. J Infect Dis [Internet]. 1998 Aug 1 [cited 2022 Sep 1];178(2):592–5. Available from: https://academic.oup.com/jid/article/178/2/592/904962 66 57. Medzhitov R. Recognition of microorganisms and activation of the immune response. Nature 2007 449:7164 [Internet]. 2007 Oct 17 [cited 2022 Sep 1];449(7164):819–26. Available from: https://www.nature.com/articles/nature06246 58. Chua CLL, Brown G, Hamilton JA, Rogerson S, Boeuf P. Monocytes and macrophages in malaria: Protection or pathology? Vol. 29, TrendsinParasitology. 2013. 59. Langhorne J, Ndungu FM, Sponaas AM, Marsh K. Immunity to malaria: more questions than answers. Nature Immunology 2008 9:7 [Internet]. 2008 Jul [cited 2022 Sep 21];9(7):725–32. Available from: https://www.nature.com/articles/ni.f.205 60. Day KP, Marsh K. Naturally acquired immunity to Plasmodium faldparum. Immunol Today. 1991 Jan 1;12(3):A68–71. 61. Alves FP, Gil LHS, Marrelli MT, Ribolla PEM, Camargo EP, da Silva LHP. Asymptomatic Carriers of Plasmodium spp. as Infection Source for Malaria Vector Mosquitoes in the Brazilian Amazon. J Med Entomol [Internet]. 2005 Sep 1 [cited 2022 Sep 1];42(5):777–9. Available from: https://academic.oup.com/jme/article/42/5/777/862895 62. Andrade BB, Rocha BC, Reis-Filho A, Camargo LMA, Tadei WP, Moreira LA, et al. Anti-Anopheles darlingi saliva antibodies as marker of Plasmodium vivax infection and clinical immunity in the Brazilian Amazon. Malar J [Internet]. 2009 Jun 5 [cited 2022 Sep 1];8(1):1–9. Available from: https://malariajournal.biomedcentral.com/articles/10.1186/1475-2875-8-121 63. Cutts JC, Powell R, Agius PA, Beeson JG, Simpson JA, Fowkes FJI. Immunological markers of Plasmodium vivax exposure and immunity: A systematic review and meta-analysis. BMC Med [Internet]. 2014 Sep 9 [cited 2022 Sep 21];12(1):1–20. Available from: https://bmcmedicine.biomedcentral.com/articles/10.1186/s12916-014-0150-1 64. Nogueira PA, Alves FP, Fernandez-Becerra C, Pein O, Santos NR, Pereira Da Silva LH, et al. A Reduced Risk of Infection with Plasmodium vivax and Clinical Protection against Malaria Are Associated with Antibodies against the N Terminus but Not the C Terminus of Merozoite Surface Protein 1. Infect Immun [Internet]. 2006 May [cited 2022 Sep 21];74(5):2726. Available from: /pmc/articles/PMC1459730/ 65. Versiani FG, Almeida ME, Melo GC, Versiani FO, Orlandi PP, Mariúba LAM, et al. High levels of IgG3 anti ICB2-5 in Plasmodium vivax-infected individuals who did not develop symptoms. Malar J [Internet]. 2013 Aug 27 [cited 2022 Sep 21];12(1):1–12. Available from: https://malariajournal.biomedcentral.com/articles/10.1186/1475-2875-12-294 67 66. Takeda K, Akira S. Toll-like receptors in innate immunity. Int Immunol [Internet]. 2005 Jan 1 [cited 2022 Sep 2];17(1):1–14. Available from: https://academic.oup.com/intimm/article/17/1/1/721976 67. Tran TM, Samal B, Kirkness E, Crompton PD. Systems immunology of human malaria. Trends Parasitol [Internet]. 2012 Jun [cited 2022 Sep 2];28(6):248. Available from: /pmc/articles/PMC3361535/ 68. Nathan C. Points of control in inflammation. Nature [Internet]. 2002; Available from: www.nature.com/nature 69. Akira S, Uematsu S, Takeuchi O. Pathogen Recognition and Innate Immunity. Cell [Internet]. 2006 Feb 24 [cited 2022 Sep 2];124(4):783–801. Available from: http://www.cell.com/article/S0092867406001905/fulltext 70. Zevering Y, Khamboonruang C, Rungruengthanakit K, Tunoviboonchai L, Ruengpipattanapan J, Bathurst I, et al. Life-spans of human T-cell responses to determinants from the circumsporozoite proteins of Plasmodium falciparum and Plasmodium vivax. Proc Natl Acad Sci U S A [Internet]. 1994 Jun 6 [cited 2022 Sep 2];91(13):6118. Available from: /pmc/articles/PMC44149/?report=abstract 71. Medzhitov R, Janeway-Jr C. Innate Immunity. N Engl J Med. 2000;343(5):338– 44. 72. Miller LH, Baruch DI, Marsh K, Doumbo OK. The pathogenic basis of malaria. Nature [Internet]. 2002;415(6872):673–9. Available from: www.nature.com 73. Schofield L, Hackett F. Signal transduction in host cells by a glycosylphosphatidylinositol toxin of malaria parasites. J Exp Med [Internet]. 1993 Jan 1 [cited 2022 Sep 17];177(1):145. Available from: /pmc/articles/PMC2190877/?report=abstract 74. Parroche P, Lauw FN, Goutagny N, Latz E, Monks BG, Visintin A, et al. From the Cover: Malaria hemozoin is immunologically inert but radically enhances innate responses by presenting malaria DNA to Toll-like receptor 9. Proc Natl Acad Sci U S A [Internet]. 2007 Feb 2 [cited 2022 Sep 17];104(6):1919. Available from: /pmc/articles/PMC1794278/ 75. Guimarães Da Costa A, do Valle Antonelli LR, Augusto Carvalho Costa P, Paulo Diniz Pimentel J, Garcia NP, Monteiro Tarragô A, et al. The Robust and Modulated Biomarker Network Elicited by the Plasmodium vivax Infection Is Mainly Mediated by the IL-6/IL-10 Axis and Is Associated with the Parasite Load. J Immunol Res [Internet]. 2014 [cited 2022 Sep 17];2014. Available from: /pmc/articles/PMC3987793/ 68 76. Chaves YO, da Costa AG, Pereira MLM, de Lacerda MVG, Coelho-Dos-Reis JG, Martins-Filho OA, et al. Immune response pattern in recurrent Plasmodium vivax malaria. Malar J. 2016;15(1):1–13. 77. Zhu J, Krishnegowda G, Gowda DC. Induction of Proinflammatory Responses in Macrophages by the Glycosylphosphatidylinositols (GPIs) of Plasmodium falciparum: The requirement of ERK, p38, JNK and NF-κB pathways for the expression of proinflammatory cytokines and nitric oxide. J Biol Chem [Internet]. 2005 Mar 3 [cited 2022 Sep 17];280(9):8617. Available from: /pmc/articles/PMC4980998/ 78. STEPHENS PW, Silvina Pagola. The structure of malaria pigment b-haematin. Nature [Internet]. 2000; Available from: www.nature.com 79. Brant F, Miranda AS, Esper L, Rodrigues DH, Kangussu LM, Bonaventura D, et al. Role of the Aryl Hydrocarbon Receptor in the Immune Response Profile and Development of Pathology during Plasmodium berghei Anka Infection. Infect Immun [Internet]. 2014 [cited 2022 Sep 17];82(8):3127. Available from: /pmc/articles/PMC4136209/ 80. Torre D. early production of g- interferon in clinical malaria: Role of interleukin-18 and interleukin-12. Clinical Infectious Diseases [Internet]. 2009 May 15 [cited 2022 Sep 17];48(10):1481–2. Available from: https://academic.oup.com/cid/article/48/10/1481/425194 81. Gonçalves RM, Salmazi KC, Santos BAN, Bastos MS, Rocha SC, Boscardin SB, et al. CD4+ CD25+ Foxp3+ Regulatory T Cells, Dendritic Cells, and Circulating Cytokines in Uncomplicated Malaria: Do Different Parasite Species Elicit Similar Host Responses? Infect Immun [Internet]. 2010 Nov [cited 2022 Sep 17];78(11):4763. Available from: /pmc/articles/PMC2976362/ 82. Bueno LL, Morais CG, da Silva Soares I, Bouillet LEM, Bruna-Romero O, Fontes CJ, et al. Plasmodium vivax recombinant vaccine candidate AMA-1 plays an important role in adaptive immune response eliciting differentiation of dendritic cells. Vaccine. 2009 Sep 18;27(41):5581–8. 83. Jangpatarapongsa K, Chootong P, Sattabongkot J, Chotivanich K, Sirichaisinthop J, Tungpradabkul S, et al. Plasmodium vivax parasites alter the balance of myeloid and plasmacytoid dendritic cells and induction of regulatory T cells. Eur J Immunol [Internet]. 2008 [cited 2022 Sep 17];38(10):2697. Available from: /pmc/articles/PMC2757553/ 84. Taylor A, Verhagen J, Blaser K, Akdis M, Akdis CA. Mechanisms of immune suppression by interleukin-10 and transforming growth factor-β: the role of T regulatory 69 cells. Immunology [Internet]. 2006 Apr [cited 2022 Sep 17];117(4):433. Available from: /pmc/articles/PMC1782242/ 85. Fernandes AAM, Carvalho LJDM, Zanini GM, Ventura AMRDS, Souza JM, Cotias PM, et al. Similar cytokine responses and degrees of anemia in patients with Plasmodium falciparum and Plasmodium vivax infections in the Brazilian Amazon region. Clinical and Vaccine Immunology [Internet]. 2008 Apr [cited 2021 Feb 7];15(4):650–8. Available from: /pmc/articles/PMC2292669/?report=abstract 86. Mount AM, Mwapasa V, Elliott SR, Beeson JG, Tadesse E, Lema VM et al. Impairment of humoral immunity to Plasmodium falciparum malaria in pregnancy by HIV infection. Lancet. 2004;63(9424):1860-7. 87. Blackman MJ, Heidrich HG, Donachie S, Mcbride JS, Holder AA. A Single Fragment of a Malaria Merozoite Surface Protein Remains on the Parasite During Red Cell Invasion and Is the Target of Invasion-inhibiting Antibodies. J Exp Med. 1990;172(1):379-82. 88. Holder AA. The carboxy-terminus of merozoite surface protein 1: Structure, specific antibodies and immunity to malaria. Vol. 136, Parasitology. 2009. p. 1445–56. 89. RILEY EM, ALLEN SJ, WHEELER JG, BLACKMAN MJ, BENNETT S, TAKACS B, et al. Naturally acquired cellular and humoral immune responses to the major merozoite surface antigen (Pf MSP1) of Plasmodium falciparum are associated with reduced malaria morbidity. Parasite Immunol [Internet]. 1992 May 1 [cited 2022 Sep 28];14(3):321–37. Available from: https://onlinelibrary.wiley.com/doi/full/10.1111/j.1365-3024.1992.tb00471.x 90. Chitnis CE, Sharma A. Targeting the Plasmodium vivax Duffy-binding protein. Vol. 24, Trends in Parasitology. 2008. p. 29–34. 91. de Sousa TN, Kano FS, de Brito CFA, Carvalho LH. The Duffy binding protein as a key target for a Plasmodium vivax vaccine: lessons from the Brazilian Amazon. Mem Inst Oswaldo Cruz [Internet]. 2014 [cited 2022 Sep 28];109(5):608–17. Available from: http://www.scielo.br/j/mioc/a/khygqzpNpyKVfRfgw5TqDhn/abstract/?lang=en 92. Soares IS, Levitus G, Souza JM, del Portillo HA, Rodrigues MM. Acquired immune responses to the N- and C-terminal regions of Plasmodium vivax merozoite surface protein 1 in individuals exposed to malaria. Infect Immun [Internet]. 1997 [cited 2022 Sep 28];65(5):1606. Available from: /pmc/articles/PMC175182/?report=abstract 70 93. Ofir-Birin Y, ben Ami Pilo H, Cruz Camacho A, Rudik A, Rivkin A, Revach OY, et al. Malaria parasites both repress host CXCL10 and use it as a cue for growth acceleration. Nat Commun. 2021 Dec 1;12(1). 94. Frimpong A, Owusu EDA, Amponsah JA, Obeng-Aboagye E, Puije W van der, Frempong AF, et al. Cytokines as Potential Biomarkers for Differential Diagnosis of Sepsis and Other Non-Septic Disease Conditions. Front Cell Infect Microbiol. 2022 Jun 23;12:758. 95. Xie JH, Nomura N, Lu M, Chen SL, Koch GE, Weng Y, et al. Antibody-mediated blockade of the CXCR3 chemokine receptor results in diminished recruitment of T helper 1 cells into sites of inflammation. J Leukoc Biol [Internet]. 2003 Jun 1 [cited 2022 Sep 22];73(6):771–80. Available from: https://onlinelibrary.wiley.com/doi/full/10.1189/jlb.1102573 96. Ono SJ, Nakamura T, Miyazaki D, Ohbayashi M, Dawson M, Toda M. Chemokines: Roles in leukocyte development, trafficking, and effector function. Journal of Allergy and Clinical Immunology [Internet]. 2003 Jun 1 [cited 2022 Sep 22];111(6):1185–99. Available from: http://www.jacionline.org/article/S009167490301460X/fulltext 97. Mcdermott DH, Murphy PM. Springer Seminars in Immunopathology Chemokines and their receptors in infectious disease. Vol. 22, Springer Semin Immunopathol. 2000. 98. Brevern AG de, Autin L, Colin Y, Bertrand O, Etchebest C. In silico studies on DARC. Infect Disord Drug Targets [Internet]. 2009 Nov 14 [cited 2022 Sep 22];9(3):289. Available from: /pmc/articles/PMC3198718/ 99. Darbonne WC, Rice GC, Mohler MA, Apple T, Hébert CA, Valente AJ, et al. Red blood cells are a sink for interleukin 8, a leukocyte chemotaxin. Journal of Clinical Investigation [Internet]. 1991 [cited 2022 Sep 22];88(4):1362. Available from: /pmc/articles/PMC295607/?report=abstract 100. Graham GJ. D6 and the atypical chemokine receptor family: Novel regulators of immune and inflammatory processes. Vol. 39, European Journal of Immunology. 2009. p. 342–51. 101. Castro-Gomes T, Moura&tild;o LC, Melo GC, Monteiro WM, Lacerda MVG, Braga EM. Potential immune mechanisms associated with anemia in Plasmodium vivax malaria: A Puzzling question. Vol. 82, Infection and Immunity. American Society for Microbiology; 2014. p. 3990–4000. 71 102. Palomino DC arolina T, Marti LC avalheiro. Chemokines and immunity. Vol. 13, Einstein (São Paulo, Brazil). Instituto Israelita de Ensino e Pesquisa Albert Einstein; 2015. p. 469–73. 103. Krensky AM, Ahn YT. Mechanisms of disease: Regulation of RANTES (CCL5) in renal disease. Vol. 3, Nature Clinical Practice Nephrology. 2007. p. 164–70. 104. Ochiel DO, Awandare GA, Keller CC, Hittner JB, Kremsner PG, Weinberg JB, et al. Differential regulation of β-chemokines in children with Plasmodium falciparum malaria. Infect Immun. 2005 Jul;73(7):4190–7. 105. Duque GA, Descoteaux A. Macrophage cytokines: Involvement in immunity and infectious diseases. Front Immunol. 2014;5(OCT):1–12. 106. Díaz I. Rules of thumb to obtain, isolate, and preserve porcine peripheral blood mononuclear cells. Vet Immunol Immunopathol [Internet]. 2022 Sep 1 [cited 2022 Sep 4];251:110461. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0165242722000812 107. Turner RJ, Geraghty NJ, Williams JG, Ly D, Brungs D, Carolan MG, et al. Comparison of peripheral blood mononuclear cell isolation techniques and the impact of cryopreservation on human lymphocytes expressing CD39 and CD73. Purinergic Signal [Internet]. 2020 Sep 1 [cited 2022 Sep 4];16(3):389. Available from: /pmc/articles/PMC7524993/ 108. de Oliveira CI, Wunderlich G, Levitus G, Soares IS, Rodrigues MM, Tsuji M, et al. Antigenic properties of the merozoite surface protein 1 gene of Plasmodium vivax. Vaccine. 1999 Aug 6;17(23–24):2959–68. 109. Bastos MS, da Silva-Nunes M, Malafronte RS, Hoffmann EHE, Wunderlich G, Moraes SL, et al. Antigenic polymorphism and naturally acquired antibodies to Plasmodium vivax merozoite surface protein 1 in rural Amazonians. Clinical and Vaccine Immunology [Internet]. 2007 [cited 2022 Sep 4];14(10):1249–59. Available from: https://journals.asm.org/doi/10.1128/CVI.00243-07 110. Lee S, Choi YK, Goo YK. Humoral and cellular immune response to Plasmodium vivax VIR recombinant and synthetic antigens in individuals naturally exposed to P. vivax in the Republic of Korea. Malar J [Internet]. 2021 Dec 1 [cited 2022 Aug 15];20(1):1–8. Available from: https://malariajournal.biomedcentral.com/articles/10.1186/s12936-021-03810-2 72 111. Tanwar G, Chahar C, Kochar DK. Spectrum of severe Plasmodium vivax malaria in children in Bikaner (Northwestern India). International Journal of Infectious Diseases. 2012 Jun;16:e273. 112. Poespoprodjo JR, Fobia W, Kenangalem E, Lampah DA, Hasanuddin A, Warikar N, et al. Vivax malaria: A major cause of morbidity in early infancy. Clinical Infectious Diseases [Internet]. 2009 Jun 15 [cited 2021 May 9];48(12):1704–12. Available from: /pmc/articles/PMC4337979/ 113. Kochar DK, Das A, Kochar SK, Saxena V, Sirohi P, Garg S, et al. Severe Plasmodium vivax Malaria: A Report on Serial Cases from Bikaner in Northwestern India. Am J Trop Med Hyg [Internet]. 2009 [cited 2022 Sep 19];80(2):194–8. Available from: www.ajtmh.org 114. Kochar DK, Saxena V, Singh N, Kochar SK, Kumar SV, Das A. Plasmodium vivax Malaria [Internet]. Available from: www.cdc.gov/eid 115. Anstey NM, Russell B, Yeo TW, Price RN. The pathophysiology of vivax malaria. Vol. 25, Trends in Parasitology. 2009. p. 220–7. 116. Fischer FR, Luo Y, Luo M, Santambrogio L, Dorf ME. RANTES-Induced Chemokine Cascade in Dendritic Cells. The Journal of Immunology [Internet]. 2001 Aug 1 [cited 2022 Sep 19];167(3):1637–43. Available from: https://www.jimmunol.org/content/167/3/1637 117. Bujarbaruah D, Kalita MP, Baruah V, Basumatary TK, Hazarika S, Begum RH, et al. RANTES levels as a determinant of falciparum malaria severity or recovery. Parasite Immunol. 2017 Sep 1;39(9). 118. John CC, Opika-Opoka R, Byarugaba J, Idro R, Boivin MJ. Low Levels of RANTES Are Associated with Mortality in Children with Cerebral Malaria. J Infect Dis [Internet]. 2006 Sep 15 [cited 2022 Aug 25];194(6):837–45. Available from: https://academic.oup.com/jid/article/194/6/837/865785 119. Catalfamo M, Karpova T, McNally J, Costes S v., Lockett SJ, Bos E, et al. Human CD8+ T Cells Store RANTES in a Unique Secretory Compartment and Release It Rapidly after TcR Stimulation. Immunity [Internet]. 2004 Feb 1 [cited 2022 Sep 19];20(2):219–30. Available from: http://www.cell.com/article/S1074761304000275/fulltext 120. Douglas NM, Anstey NM, Buffet PA, Poespoprodjo JR, Yeo TW, White NJ, et al. The anaemia of Plasmodium vivax malaria [Internet]. Vol. 11, Malaria Journal. BioMed Central; 2012 [cited 2021 Feb 7]. p. 135. Available from: /pmc/articles/PMC3438072/?report=abstract 73 121. Maina RN, Walsh D, Gaddy C, Hongo G, Waitumbi J, Otieno L, et al. Impact of Plasmodium falciparum infection on haematological parameters in children living in Western Kenya. Malar J [Internet]. 2010 [cited 2021 May 8];9(SUPPL. 3):S4. Available from: /pmc/articles/PMC3002140/ 122. Rodríguez-Morales AJ, Sánchez E, Vargas M, Piccolo C, Colina R, Arria M. Anemia and thrombocytopenia in children with plasmodium vivax malaria. J Trop Pediatr [Internet]. 2006 Feb [cited 2021 May 9];52(1):49–51. Available from: https://pubmed.ncbi.nlm.nih.gov/15980019/ 123. Erhart LM, Yingyuen K, Chuanak N, Buathong N, Laoboonchai A, Miller RS, et al. Hematologic and clinical indices of malaria in a semi-immune population of Western Thailand. American Journal of Tropical Medicine and Hygiene [Internet]. 2004 Jan 1 [cited 2021 May 8];70(1):8–14. Available from: https://www.ajtmh.org/view/journals/tpmd/70/1/article-p8.xml 124. Price RN, Simpson JA, Nosten F, Luxemburger C, Hkirjaroen L, Kuile FT, et al. Factors contributing to anemia after uncomplicated falciparum malaria. American Journal of Tropical Medicine and Hygiene [Internet]. 2001 [cited 2021 Mar 27];65(5):614–22. Available from: /pmc/articles/PMC4337986/ 125. Tjitra E, Anstey NM, Sugiarto P, Warikar N, Kenangalem E, Karyana M, et al. Multidrug-resistant Plasmodium vivax associated with severe and fatal malaria: A prospective study in Papua, Indonesia [Internet]. Vol. 5, PLoS Medicine. PLoS Med; 2008 [cited 2020 Sep 29]. p. 0890–9. Available from: https://pubmed.ncbi.nlm.nih.gov/18563962/ 126. Walzer T, Marçais A, Saltel F, Bella C, Jurdic P, Marvel J. Cutting Edge: Immediate RANTES Secretion by Resting Memory CD8 T Cells Following Antigenic Stimulation. The Journal of Immunology [Internet]. 2003 Feb 15 [cited 2022 Sep 19];170(4):1615–9. Available from: https://www.jimmunol.org/content/170/4/1615 127. Lelliott PM, Coban C. IFN-γ protects hepatocytes against Plasmodium vivax infection via LAP-like degradation of sporozoites. Proc Natl Acad Sci U S A [Internet]. 2016 Jun 6 [cited 2022 Sep 19];113(25):6813. Available from: /pmc/articles/PMC4922169/ 128. Ong’echa JMO, Lal AA, Terlouw DJ, ter Kuile FO, Kariuki SK, Udhayakumar V, et al. Association of interferon-gamma responses to pre-erythrocytic stage vaccine candidate antigens of Plasmodium falciparum in young Kenyan children with improved hemoglobin levels: XV. Asembo Bay Cohort Project. Am J Trop Med Hyg [Internet]. 74 2003 [cited 2022 Sep 28];68(5):590–7. Available from: https://pubmed.ncbi.nlm.nih.gov/12812352/ 129. Alves-Junior ER, Gomes LT, Dombroski TCD, Nery AF, Vandresen-Filho S, Nakazato L, et al. New laboratory perspectives for evaluation of vivax malaria infected patients: a useful tool for infection monitoring. Brazilian Journal of Infectious Diseases [Internet]. 2020 Jun 26 [cited 2022 Sep 19];24(2):120–9. Available from: http://www.scielo.br/j/bjid/a/j9WR7cjB4x5dZjBpSfYM7tg/?format=html&lang=enpt_BR
dc.publisher.initialsUEApt_BR
Aparece nas coleções:DISSERTAÇÃO - PPCAH Programa de Pós-Graduação em Ciências Aplicadas à Hematologia



Os itens no repositório estão protegidos por copyright, com todos os direitos reservados, salvo quando é indicado o contrário.