DSpace logo

Use este identificador para citar ou linkar para este item: http://repositorioinstitucional.uea.edu.br//handle/riuea/4309
Registro completo de metadados
Campo DCValorIdioma
dc.contributor.authorMoraes, Thainá Najar Matos de-
dc.date.available2022-09-28T14:35:47Z-
dc.date.issued2022-05-06-
dc.identifier.citationMORAES, Thainá Najar Matos de. Análise morfométrica de osteocephalus taurinus (anura: hylidae). 2022. 38 f. TCC (Graduação em Ciências Biológicas) - Universidade do Estado do Amazonas, Manaus.pt_BR
dc.identifier.urihttp://repositorioinstitucional.uea.edu.br//handle/riuea/4309-
dc.description.abstractThe Amazon is home to a high species richness, however, neotropical forests as a whole are poorly studied and possibly under-sampled. Studies with various taxonomic groups, including amphibians, have shown that the diversity may be even greater than imagined, revealing high rates of cryptodiversity. To explain the high biodiversity of the Amazon, there are theories that mainly consider 1) changes in the landscape, 2) historical climatic variations and to a lesser extent, 3) ecological factors. Anurans of the genus Osteocephalus are widely distributed, occupying tropical forests in the Amazon Basin and Guiana Region. It constitutes a group rich in cryptic species, being recognized for not reaching taxonomic stability, where studies of synonymy and species resuscitation are frequent. In this context, we evaluated whether the morphometry in O. taurinus varies in populations from different localities. Sixteen morphometric parameters were measured for 175 specimens of O. taurinus deposited in the herpetological collection of the Instituto Nacional de Pesquisas da Amazônia (INPA). We used a Linear Discriminant Analysis (LDA) to test significant differences in the morphometry of the evaluated individuals. Our results showed a poor accuracy in the discrimination of populations when analyzed by geographic location (44% accuracy). When analyzing the groups according to the relief, in a plain vs shield comparison, the groups had greater accuracy (79%). Keywords: Geographic variation, Species delimitation, Cryptic species.pt_BR
dc.languageporpt_BR
dc.publisherUniversidade do Estado do Amazonaspt_BR
dc.rightsAcesso Abertopt_BR
dc.subjectVariação geográficapt_BR
dc.subjectDelimitação de espéciespt_BR
dc.subjectEspécies crípticaspt_BR
dc.subjectGeographical variationpt_BR
dc.subjectSpecies delimitationpt_BR
dc.subjectCryptic speciespt_BR
dc.titleAnálise morfométrica de osteocephalus taurinus (anura: hylidae)pt_BR
dc.title.alternativeMorphometric analysis of osteocephalus taurinus (anura: hylidae)pt_BR
dc.typeTrabalho de Conclusão de Cursopt_BR
dc.date.accessioned2022-09-28T14:35:47Z-
dc.contributor.advisor-co1Barros, André de Lima-
dc.contributor.advisor-co1Latteshttp://lattes.cnpq.br/9175217134135270pt_BR
dc.contributor.advisor1Rocha, Marcelo Salles-
dc.contributor.advisor1Latteshttp://lattes.cnpq.br/3725637010799117pt_BR
dc.description.resumoA Amazônia abriga uma alta riqueza de espécies, entretanto, as florestas neotropicais como um todo, encontram-se mal estudadas e possivelmente, subamostradas. Estudos com vários grupos taxonômicos, incluindo anfíbios, têm mostrado que a diversidade pode ser ainda maior do que o imaginado, revelando altas taxa de criptodiversidade. Para explicar a alta biodiversidade amazônica existem teorias que consideram principalmente, 1) mudanças na paisagem, 2) variações climáticas históricas e em menor escala, 3) fatores ecológicos. Anuros do gênero Osteocephalus são amplamente distribuídos, ocupando florestas tropicais da Bacia Amazônica e Região das Guianas. Constitui um grupo rico em espécies crípticas, sendo reconhecido por não alcançar estabilidade taxonômica, onde são frequentes estudos de sinonímia e ressuscitação de espécies. Neste contexto avaliamos se a morfometria em O. taurinus varia em populações de diferentes localidades. Foram aferidos 16 parâmetros morfométricos para 175 espécimes de O. taurinus depositados na coleção herpetológica do Instituto Nacional de Pesquisas da Amazônia (INPA). Utilizamos uma Análise Discriminante Linear (LDA) para testar diferenças significativas na morfometria os indivíduos avaliados. Nossos resultados mostraram uma fraca acertabilidade na discriminação das populações quando analisadas por localidade geográfica (44% de acerto). Já quando analisados os grupos de acordo com o relevo, em uma comparação planície vs escudos, os agrupamentos tiveram maior acertabilidade (79%). Palavras-chaves: Variação geográfica, Delimitação de espécies, Espécies crípticas.pt_BR
dc.publisher.countryBrasilpt_BR
dc.relation.referencesALEIXO, A.L.P. Conceitos de espécie e suas implicações para a conservação. Megadiversidade, vol. 5, p. 87-95, 2009. BALAKRISHNAMA, S; GANAPATHIRAJU, A. Linear discriminant analysis-a brief tutorial. Institute for Signal and information Processing, v. 18, n. 1998, p. 1-8, 1998. BEHEREGARAY, L. B. Twenty years of phylogeography: the state of the field and the challenges for the Southern Hemisphere. Molecular Ecology, vol. 17, n. 17, p. 3754-3774, 2008. BERNARDE, P. S. et al. A remarkable new species of coralsnake of the Micrurus hemprichii species group from the Brazilian Amazon. Salamandra, vol. 54, n. 4, p. 249-258, 2018. BICKFORD, D. et al. Cryptic species as a window on diversity and conservation. Trends in Ecology and Evolution, vol. 22, n. 3, p. 148-155, 2006. BLOTTO, B. L. et al. The phylogeny of the Casque-headed Treefrogs (Hylidae: Hylinae: Lophyohylini). Cladistics, p. 1–37, 2020a. BLOTTO, B. L. et al. Hand and foot musculature of Anura: structure, homology, terminology, and synapomorphies for major clades. Bulletin of the American Museum of Natural History, v. 443, n. 1, p. 1-156, 2020b. BUSH, M. B. Amazonian speciation: a necessarily complex model. Journal of Biogeography, vol. 21, n. 1, p. 5-17, 1994. CASTROVIEJO‐FISHER, S. et al. Neotropical diversification seen through glassfrogs. Journal of Biogeography, v. 41, n. 1, p. 66-80, 2014. CECCARELLI, F. S. et al. Andean uplift drives diversification of the bothriurid scorpion genus Brachistosternus. Journal of Biogeography, v. 43, n. 10, p. 1942-1954, 2016. CRACRAFT, J. Historical biogeography and patterns of differentiation within the South American avifauna: areas of endemism. Ornithological Monographs, vol. 36, p. 49–84, 1985. 31 DA SILVA, J. M. C; RYLANDS, A. B.; DA FONSECA, G. A. B. The fate of the Amazonian areas of endemism. Conservation Biology, v. 19, n. 3, p. 689-694, 2005. DE LA RIVA, I.; MARQUEZ, R.; BOSCH, J. Advertisement calls of eight Bolivian hylids (Amphibia, Anura). Journal of Herpetology, vol. 29, p. 113–118, 1995. DE QUEIROZ, K. Species concepts and species delimitation. Systematic biology, v. 56, n. 6, p. 879-886, 2007. DUELLMAN, W. E. Quaternary climatic-ecological fluctuations in the lowland tropics: frogs and forests. Biological Diversification in the Tropics. Columbia University Press, New York, p. 389-402, 1982. DUELLMAN, W. E. (Ed.). Patterns of distribution of amphibians: a global perspective. JHU Press, 1999. ESTUPIÑÁN-TRISTANCHO, R. A. et al. Variação geográfica de Osteocephalus taurinus Steindachner, 1862 (Amphibia: Anura: Hylidae). 2001. FABREZI, M. Morphological evolution of Ceratophryinae (Anura, Neobatrachia). Journal of Zoological Systematics and Evolutionary Research, v. 44, n. 2, p. 153-166, 2006. FOUQUET, A. et al. Underestimation of species richness in Neotropical frogs revealed by mtDNA analyses. PLoS One 10: art, e1109, 2007. FOUQUET, A. et al. Multiple quaternary refugia in the eastern Guiana Shield revealed by comparative phylogeography of 12 frog species. Systematic Biology, v. 61, n. 3, p. 461, 2012. FOUQUET, A. et al. Species delimitation, patterns of diversification and historical biogeography of the Neotropical frog genus Adenomera (Anura, Leptodactylidae). Journal of Biogeography, v. 41, n. 5, p. 855-870, 2014. FROST, D. R. 2022. Amphibian Species of the World: em Online Reference. Version 6.0 http://research.amnh.org/herpetology/amphibia/index.html. American Museum of Natural History, New York, EUA. Acesso em: 20/04/2022. 32 GEHARA, M. et al. From widespread to microendemic: molecular and acoustic analyses show that Ischnocnema guentheri (Amphibia: Brachycephalidae) is endemic to Rio de Janeiro, Brazil. Conservation genetics, v. 14, n. 5, p. 973-982, 2013. GODINHO, M. B. C; DA SILVA, F. R. The influence of riverine barriers, climate, and topography on the biogeographic regionalization of Amazonian anurans. Scientific Reports, v. 8, n. 1, p. 1-11, 2018. GONÇALVES, M. F. Análise de diversificação fenotípica de anuros neotropicais da Mata Atlântica brasileira. 2010. HADDAD, C.F. B; PRADO, C. P. A. Reproductive modes in frogs and their unexpected diversity in the Atlantic Forest of Brazil. BioScience, v. 55, n. 3, p. 207-217, 2005. HAFFER, J. Speciation in Amazonian forest birds. Science, 165: p.131-137, 1969. HAMMER, O.; HARPER, D. A. T.; RYAN, P. D. PAST: Paleontological statistics software package for education and data analysis. Paleontologica Electronica v. 4, n. 1. 2001. HAUSDORF, B. Progress toward a general species concept. Evolution, vol. 65, n. 4, p. 923- 931, 2011. HEBERT, P. D. N et al. Ten species in one: DNA barcoding reveals cryptic species in the neotropical skipper butterfly Astraptes fulgerator. Proceedings of the National Academy of Sciences, vol. 101, n. 41, p. 14812-14817, 2004. HOORN, C. et al. Amazonia through time: Andean uplift, climate change, landscape evolution, and biodiversity. Science, 330: p. 927-931, 2010. IRWIN, D. E. et al. Speciation by distance in a ring species. Science, v. 307, n. 5708, p. 414- 416, 2005. JENKINS, C. N.; PIMM, S. L.; JOPPA, L. N. Global patterns of terrestrial vertebrate diversity and conservation. Proceedings of the National Academy of Sciences, vol. 110, n. 28, E2602-E2610, 2013. JUNGFER, K. H. The taxonomic status of some spiny-backed treefrogs, genus Osteocephalus (Amphibia: Anura: Hylidae). Zootaxa, vol. 2407, p. 28–50, 2010. 33 JUNGFER, K. H. et al. Systematics of spiny-backed treefrogs (Hylidae:Osteocephalus): an Amazonian puzzle. Zoologica Scripta, vol. 42, n.4, p. 351–380, 2013. KAEFER, I. L. et al. The early stages of speciation in Amazonian forest frogs: phenotypic conservatism despite strong genetic structure. Evolutionary Biology, v. 40, n. 2, p. 228-245, 2013. KOBAYASHI, S. et al. Fine-scale genetic structure and estimation of gene flow of the Japanese brown frog Rana japonica in a Satoyama landscape on the western side of Inba Lake, Eastern Japan. Current herpetology, v. 37, n. 1, p. 11-22, 2018. LAMPERT, K. P. et al. Fine‐scale genetic pattern and evidence for sex‐biased dispersal in the túngara frog, Physalaemus pustulosus. Molecular Ecology, v. 12, n. 12, p. 3325-3334, 2003. LIMA, A. P. et al. Guia de sapos da Reserva Adolpho Ducke, Amazônia Central. Manaus: Attema Design Editorial, 2006. LOUGHEED, S. C. et al. Multi-character perspectives on the evolution of intraspecific differentiation in a neotropical hylid frog. BMC evolutionary biology, v. 6, n. 1, p. 1-16, 2006. MÂNGIA, S.; KOROIVA, R.; SANTANA, D. J. A new tiny toad species of Amazophrynella (Anura: Bufonidae) from east of the Guiana Shield in Amazonia, Brazil. PeerJ, vol. 8, p. e9887, 2020. MARCELINO, V. R.; HADDAD, C. F. B; ALEXANDRINO, J. Geographic distribution and morphological variation of striped and nonstriped populations of the Brazilian Atlantic Forest treefrog Hypsiboas bischoffi (Anura: Hylidae). Journal of Herpetology, p. 351-361, 2009. MARCHESINI, A. et al. Fine-scale phylogeography of Rana temporaria (Anura: Ranidae) in a putative secondary contact zone in the southern Alps. Biological Journal of the Linnean Society, v. 122, n. 4, p. 824-837, 2017. MAYR, E. Systematics and the origin of species: from the viewpoint of a zoologia. 1942. 34 MELO-SAMPAIO, P. R.; FERRÃO, M. ; DE LIMA MORAES, L. J. C. A new species of Osteocephalus Steindachner, 1862 (Anura: Hylidae), from brazilian amazonia. Breviora, v. 572, n. 1, p. 1-21, 2021. MÉNDEZ, M. A. et al. Morphological and genetic differentiation among Chilean populations of Bufo spinulosus (Anura: Bufonidae). Revista Chilena de Historia Natural, v. 77, p. 559- 567, 2004. MORAES, L. J. et al. The combined influence of riverine barriers and flooding gradients on biogeographical patterns for amphibians and squamates in south‐eastern Amazonia. Journal of Biogeography, vol. 43, n. 11, p. 2113-2124, 2016. MOTA, E. D. et al. Hidden diversity within the broadly distributed Amazonian giant monkey frog (Phyllomedusa bicolor: Phyllomedusidae). Amphibia-Reptilia, vol. 41, p. 349-359, 2020. NEWMAN, R. A.; SQUIRE, T. Microsatellite variation and fine‐scale population structure in the wood frog (Rana sylvatica). Molecular Ecology, v. 10, n. 5, p. 1087-1100, 2001. NOONAN, B. P.; WRAY, K. P. Neotropical diversification: the effects of a complex history on diversity within the poison frog genus Dendrobates. Journal of Biogeography, v. 33, n. 6, p. 1007-1020, 2006. ORTIZ, D. A.; LIMA, A. P.; WERNECK, F. P. Environmental transition zone and rivers shape intraspecific population structure and genetic diversity of an Amazonian rain forest tree frog. Evolutionary Ecology, v. 32, n. 4, p. 359-378, 2018. PADIAL, J. M.; DE LA RIVA, I. Integrative taxonomy reveals cryptic Amazonian species of Pristimantis (Anura: Strabomantidae). Zoological Journal of the Linnean Society, v. 155, n. 1, p. 97-122, 2009. PAVAN, S. E.; MENDES-OLIVEIRA, A. C.; VOSS, R. S. A new species of Monodelphis (Didelphimorphia: Didelphidae) from the Brazilian Amazon. American Museum Novitates, vol. 2017, n. 3872, p. 1-20, 2017. 35 RÉJAUD, A. et al. Historical biogeography identifies a possible role of Miocene wetlands in the diversification of the Amazonian rocket frogs (Aromobatidae: Allobates). Journal of Biogeography, v. 47, n. 11, p. 2472-2482, 2020. RIBAS, C. C. et al. A palaeobiogeographic model for biotic diversification within Amazonia over the past three million years. Proceedings of the Royal Society B: Biological Sciences, vol. 279, p. RODRÍGUEZ, A. et al. Biogeographic origin and radiation of Cuban Eleutherodactylus frogs of the auriculatus species group, inferred from mitochondrial and nuclear gene sequences. Molecular Phylogenetics and Evolution, v. 54, n. 1, p. 179-186, 2010.681–689, 2012. SANÍN, M. J. et al. The Neogene rise of the tropical Andes facilitated diversification of wax palms (Ceroxylon: Arecaceae) through geographical colonization and climatic niche separation. Botanical Journal of the Linnean Society, v. 182, n. 2, p. 303-317, 2016. SANTANA, C. D. et al. Unexpected species diversity in electric eels with a description of the strongest living bioelectricity generator. Nature Communication, vol.10, n. 4000, 2019. SEGALLA, M. V. et al. List of Brazilian amphibians. Herpetologia Brasileira, v. 10, n. 1, p. 121-216, 2021. SIQUEIRA, S. J. R. et al. Unusual intra-individual karyotypical variation and evidence of cryptic species in Amazonian populations of Pristimantis (Anura, Terrarana). Hereditas, vol. 146, p. 141-151, 2009. STEINDACHNER, F. Uber zwei noch unbeschriebene Batrachier. Arch. Zool. Anat. Fisiol., 2:77-82. STURARO, M. J. et al. Resolving the taxonomic puzzle of Boana cinerascens (Spix, 1824), with resurrection of Hyla granosa gracilis Melin, 1941 (Anura: Hylidae). Zootaxa, v. 4750, n. 1, p. 1–30-1–30, 2020. TRUEB, L.; DUELLMAN, W. E. A synopsis of Neotropical hylid frogs, genus Osteocephalus. Occasional Papers of the Museum of Natural History, The University of Kansas, vol. 1, p.1–48, 1971. 36 VACHER, J. P et al. Large‐scale DNA‐based survey of frogs in Amazonia suggests a vast underestimation of species richness and endemism. Journal of Biogeography, vol. 00, n.1, p. 1-11, 2020. VANZOLINI, P. E., WILLIAMS, E. E. The vanishing refuge: a mechanism for ecogeographic speciation. Papeis Avulsos de Zoologia, vol. 34, p. 251-255, 1981. VIEIRA, K. S. et al. An examination of morphometric variations in a Neotropical toad population (Proceratophrys cristiceps, Amphibia, Anura, Cycloramphidae). PloS one, v. 3, n. 12, p. e3934, 2008. WADDELL, E. H. et al. Hierarchies of evolutionary radiation in the world’s most species rich vertebrate group, the Neotropical Pristimantis leaf litter frogs. Systematics and Biodiversity, v. 16, n. 8, p. 807-819, 2018. WALLACE, A. On the monkeys of the Amazon. Proceedings of the Zoological Society of London, vol. 20: p. 107-110, 1852. WANG, I. J.; CRAWFORD, A. J.; BERMINGHAM, E. Phylogeography of the Pygmy Rain Frog (Pristimantis ridens) across the lowland wet forests of isthmian Central America. Molecular phylogenetics and evolution, v. 47, n. 3, p. 992-1004, 2008. WANG, X. et al. Hydroclimate changes across the Amazon lowlands over the past 45,000 years. Nature, v. 541, n. 7636, p. 204-207, 2017. WATTERS, J. L. et al. Review of morphometric measurements used in anuran species descriptions and recommendations for a standardized approach. Zootaxa, v. 4072, n. 4, p. 477-495, 2016. WELLS, K. D. The ecology and behavior of amphibians. In: The Ecology and Behavior of Amphibians. University of Chicago press, 2010. WYNN, A.; HEYER, W. R. Do geographically widespread species of tropical amphibians exist? An estimate of genetic relatedness within the neotropical frog Leptodactylus fuscus (Schneider 1799) (Anura Leptodactylidae). Tropical Zoology, v. 14, n. 2, p. 255-285, 2001. 37 WOGEL, H., POMBAL JR., J. P. Comportamento reprodutivo e seleção sexual em Dendropsophus bipunctatus (Spix, 1824) (Anura, Hylidae). Papéis Avulsos de Zoologia, vol. 47, n.13, p. 165-174, 2007. ZEISSET, I; BEEBEE, T. J. C. Amphibian phylogeography: a model for understanding historical aspects of species distributions. Heredity, v. 101, n. 2, p. 109-119, 2008.pt_BR
dc.subject.cnpqCiências Biológicaspt_BR
dc.subject.cnpqBiologiapt_BR
dc.publisher.initialsUEApt_BR
Aparece nas coleções:ENS - Trabalho de Conclusão de Curso de Graduação

Arquivos associados a este item:
Arquivo Descrição TamanhoFormato 
Análise morfométrica de osteocephalus taurinus (anura - hylidae).pdf702,76 kBAdobe PDFVisualizar/Abrir


Os itens no repositório estão protegidos por copyright, com todos os direitos reservados, salvo quando é indicado o contrário.