DSpace logo

Use este identificador para citar ou linkar para este item: http://repositorioinstitucional.uea.edu.br//handle/riuea/4085
Registro completo de metadados
Campo DCValorIdioma
dc.contributor.authorAlves, Fabiola Silva-
dc.date.available2022-07-29-
dc.date.available2022-08-10T16:17:16Z-
dc.date.issued2020-06-26-
dc.identifier.urihttp://repositorioinstitucional.uea.edu.br//handle/riuea/4085-
dc.description.abstractThe dysregulation of the activation of the inflammasome complex by the presence of Single Nucleotide Polymorphisms (SNPs) is pointed out as one of the factors that promote neoplastic activity in the hematopoietic stem cell. Although the SNPs involving these complexes are associated with the manifestation of infectious and non-infectious diseases, the relationship with susceptibility or prognosis in leukemia patients in the Brazilian Amazon is still unknown. Thus, the aim of this study was to describe the frequency of polymorphisms in the NLRP1 (rs12150220 and rs35865013), NLRP3 (rs10750558 and rs10802502) genes, P2X7 (rs2230911 and rs3751143), IL1β (rs16944) and IL18 (rs187238) and its influence on clinical prognosis. A case-control study was carried out with 158 patients with ALL and 192 control individuals from a region of the Brazilian Amazon, the State of Amazonas. The genetic polymorphisms in the IL1β and IL18 genes were genotyped from the restriction fragment length polymerase- polymorphism chain reaction (PCR-RFLP). While the polymorphisms in the NLRP1, NLRP3 and P2X7 genes were genotyped using Real Time Quantitative PCR (qPCR). The IL1β C/T rs19644 genotype was associated with the risk of ALL development (C/C vs. C/T + T/T OR: 2.48 [95% CI: 1.26 - 4.88, p = 0.006]; CC vs C/T OR: 2.74 [95% CI: 1.37-5.51, p = 0.003]). The genotypes P2X7 A/C rs3751143 (OR: 2.30 [95% CI: 1.05-5.03, p= 0.036]) and NLRP3 G/G rs10754558 (OR: 7.44 [95% CI: 1.44 - 38.26, p = 0.016]) were associated with the risk of infectious comorbidities whereas, NLRP1 A/T rs12150220 (OR: 0.37 [95% CI: 0.16 - 0.87, p = 0.023]) was associated with protection against comorbidities. In addition, the association of the genotype NLRP1 A/G rs35865013 (OR: 2.72 [95% CI: 1.07 - 6.90, p = 0.034]) with the risk of relapse after treatment in ALL patients has been described. The variant IL1β rs16944 seems to predispose individuals from the Brazilian Amazon region to ALL. In addition, inflammasome SNPs are xi associated with the presence of infectious comorbidities and relapse episodes throughout treatment in individuals with acute lymphoblastic leukemiapt_BR
dc.languageporpt_BR
dc.publisherUniversidade do Estado do Amazonaspt_BR
dc.rightsAcesso Abertopt_BR
dc.subjectleucemia linfoblástica agudapt_BR
dc.subjectimunidade inatapt_BR
dc.subjectreceptores do tipo NODpt_BR
dc.subjectacute lymphoblastic leukemiapt_BR
dc.titleFrequência dos polimorfismos nos genes NLRP1, NLRP3, P2X7, IL1B e IL18 em pacientes com Leucemia Linfoblástica Aguda e sua influência no prognóstico clínicopt_BR
dc.title.alternativeFrequency of polymorphisms in NLRP1, NLRP3, P2X7, IL1B and IL18 genes in patients with Acute Lymphoblastic Leukemia and its influence on clinical prognosispt_BR
dc.typeDissertaçãopt_BR
dc.date.accessioned2022-08-10T16:17:16Z-
dc.contributor.advisor-co1Marie, Adriana Malheiro Alle-
dc.contributor.advisor-co1Latteshttp://lattes.cnpq.br/2627415957053194pt_BR
dc.contributor.advisor1Costa, Allyson Guimarães da-
dc.contributor.advisor1Latteshttp://lattes.cnpq.br/7531662673281014pt_BR
dc.contributor.referee1Fraiji, Nelson Abrahim-
dc.contributor.referee1Latteshttp://lattes.cnpq.br/5204063085335824pt_BR
dc.contributor.referee2Arantes, Jerusa Araújo Quintão-
dc.contributor.referee2Latteshttp://lattes.cnpq.br/4094701424279023pt_BR
dc.contributor.referee3Pontes, Gemilson Soares-
dc.contributor.referee3Latteshttp://lattes.cnpq.br/9081671233815990pt_BR
dc.description.resumoA desregulação da ativação do complexo inflamassoma pela presença de Polimorfismos de Nucleotídeo Único (SNP ́s) é apontada como um dos fatores promotores da atividade neoplásica na célula-tronco hematopoiética. Embora os SNPs envolvendo esses complexos estejam associados com a manifestação de doenças infecciosas e não infeciosas, a relação com a suscetibilidade ou prognóstico em pacientes com leucemia na Amazônia brasileira ainda é desconhecida. Dessa forma, o objetivo desse estudo foi descrever a frequência dos polimorfismos nos genes NLRP1 (rs12150220 e rs35865013), NLRP3 (rs10750558 e rs10802502), P2X7 (rs2230911 e rs3751143), IL1β (rs16944) e IL18 (rs187238) em pacientes com leucemia linfoblástica aguda e sua a influência no prognóstico clínico. Foi realizado um estudo caso-controle com 158 pacientes com LLA e 192 indivíduos controles oriundos de uma região da Amazônia Brasileira, o Estado do Amazonas. Os polimorfismos genéticos nos genes IL1β e IL18 foram genotipados a partir da análise de reação em cadeia da polimerase-polimorfismo de comprimento de fragmento de restrição (PCR- RFLP). Enquanto os polimorfismos nos genes NLRP1, NLRP3 e P2X7 foram genotipados por meio de PCR Quantitativa em Tempo real (qPCR). O genótipo IL1β C/T rs19644 foi associado com o risco de desenvolvimento de LLA (C/C vs. C/T + T/T OR: 2.48 [IC 95%: 1,26 – 4,88,p=0,006]; C.C vs C/T OR: 2.74 [IC 95%: 1.37-5.51, p=0,003]). Os genótipos P2X7 A/C rs3751143 (OR: 2.30 [IC 95%: 1.05-5.03, p=0,036]) e NLRP3 G/G rs10754558 (OR: 7.44 [IC 95%: 1.44 – 38.26, p=0,016]) foram associados com o risco de comorbidades infecciosas enquanto que, NLRP1 A/T rs12150220 (OR: 0.37 [IC 95%: 0.16 – 0.87, p=0,023]) foi associado com a proteção contra comorbidades. Além disso, foi descrita a associação do genótipo NLRP1 A/G rs35865013 (OR: 2.72 [IC 95%: 1.07 – 6.90, p=0,034]) com o risco de recaída após o tratamento em pacientes com LLA. A variante IL1β rs16944 parece predispor os indivíduos da região da Amazônia brasileira a LLA. Além disso, SNPs do inflamassoma estão associados com a presença de comorbidades infecciosas e episódios de recaída ao longo do tratamento em indivíduos com leucemia linfoblástica agudapt_BR
dc.publisher.countryBrasilpt_BR
dc.publisher.programPROGRAMA DE PÓS-GRADUAÇÃO EM CIÊNCIAS APLICADAS À HEMATOLOGIApt_BR
dc.relation.references1. Miranda Filho A, Piñeros M, Ferlay J, Soerjomataram I, Monnereau A, Bray F. Epidemiological patterns of leukaemia in 184 countries: a population-based study. Lancet Haematol [Internet]. 2018;5(1):14–24. Available from: http://dx.doi.org/10.1016/S2352-3026(17)30232-6 2. Instituto Nacional do Câncer. Estimativa de câncer no Brasil 2020. In: Ministério da Saúde. 2019. p. 122. 3. Wiemels J. Perspectives on the causes of childhood leukemia. Chem Biol Interact [Internet]. 2012;196(3):59–67. Available from: http://dx.doi.org/10.1016/j.cbi.2012.01.007 4. Crump C, Sundquist J, Sieh W, Winkleby MA, Sundquist K. Perinatal and familial risk factors for acute lymphoblastic leukemia in a Swedish national cohort. Cancer. 2015;121(7):1040–7. 74 5. Greaves M. A causal mechanism for childhood acute lymphoblastic leukaemia. Nat Rev Cancer. 2018;18(8):471–84. 6. Takizawa H, Manz MG. Impact of inflammation on early hematopoiesis and the microenvironment. Int J Hematol. 2017;106(1):27–33. 7. Broz P, Dixit VM. Inflammasomes: Mechanism of assembly, regulation and signalling. Nat Rev Immunol [Internet]. 2016;16(7):407–20. Available from: http://dx.doi.org/10.1038/nri.2016.58 8. Kantono M, Guo B. Inflammasomes and cancer: The dynamic role of the inflammasome in tumor development. Front Immunol. 2017;8(SEP):1–9. 9. Seth M, Motti G, Donald M, Simon P, Marc P, O’Donnell1 J, et al. NLRP1 inflammasome activation induces pyroptosis of hematopoetic progenitor cells. ImmunityTY. 2012;37(6):82–91. 10. Paugh SW, Bonten EJ, Savic D, Ramsey LB, Thierfelder WE, Gurung P, et al. NALP3 inflammasome upregulation and CASP1 cleavage of the glucocorticoid receptor cause glucocorticoid resistance in leukemia cells. Nat Genet. 2015; 11. Arber DA, Orazi A, Hasserjian R, Borowitz MJ, Beau MM Le, Bloomfield CD, et al. The 2016 revision to the World Health Organization classi fi cation of myeloid neoplasms and acute leukemia. Blood. 2016;127(20):2391–406. 12. Folwaczny M, Glas J, Török HP, Tonenchi L, Paschos E, Bauer B, et al. Polymorphisms of the interleukin-18 gene in periodontitis patients. J Clin Periodontol. 2005;32(5):530–4. 13. Bhat IA, Naykoo NA, Qasim I, Ganie FA, Yousuf Q, Bhat BA, et al. Association of interleukin 1 beta (IL-1β) polymorphism with mRNA expression and risk of non small cell lung cancer. Meta Gene [Internet]. 2014;2(1):123–33. Available from: http://dx.doi.org/10.1016/j.mgene.2013.12.002 14. Kinlen LJ. Evidence for an infective cause of childhood leukaemia: comparison of a scottish new town with nuclear reprocessing sites in britain. Lancet. 1988;332(8624):1323–7. 15. Kinlen LJ. An examination, with a meta-analysis, of studies of childhood leukaemia in relation to population mixing. Br J Cancer [Internet]. 2012;107(7):1163–8. Available from: http://dx.doi.org/10.1038/bjc.2012.402 16. Greaves MF. Aetiology of acute leukaemia. Lancet. 1997;349(9048):344– 9. 17. Greaves M. Infection, immune responses and the aetiology of childhood leukaemia. Nat Rev Cancer. 2006;6(3):193–203. 18. Karki R, Man SM, Kanneganti TD. Inflammasomes and cancer. Cancer Immunol Res. 2017;5(2):94–9. 19. He Q, Fu Y, Tian D, Yan W. The contrasting roles of inflammasomes in cancer. Am J Cancer Res [Internet]. 2018;8(4):566–83. Available from: http://www.ncbi.nlm.nih.gov/pubmed/29736304%0Ahttp://www.pubmedc entral.nih.gov/articlerender.fcgi?artid=PMC5934549 20. Moossavi M, Parsamanesh N, Bahrami A, Atkin SL, Sahebkar A. Role of the NLRP3 inflammasome in cancer. Mol Cancer. 2018;17(1):1–13. 21. Awad F, Assrawi E, Louvrier C, Jumeau C, Georgin-Lavialle S, Grateau 75 G, et al. Inflammasome biology, molecular pathology and therapeutic implications. Pharmacol Ther [Internet]. 2018;187:133–49. Available from: https://doi.org/10.1016/j.pharmthera.2018.02.011 22. Platnich JM, Muruve DA. NOD-like receptors and inflammasomes: A review of their canonical and non-canonical signaling pathways. Arch Biochem Biophys [Internet]. 2019;670:4–14. Available from: https://doi.org/10.1016/j.abb.2019.02.008 23. Pontillo A, Girardelli M, Kamada AJ, Pancotto JAT, Donadi EA, Crovella S, et al. Polimorphisms in inflammasome genes are involved in the predisposition to systemic lupus erythematosus. Autoimmunity. 2012;45(4):271–8. 24. Grandemange S, Sanchez E, Louis-Plence P, Tran Mau-Them F, Bessis D, Coubes C, et al. A new autoinflammatory and autoimmune syndrome associated with NLRP1 mutations: NAIAD (NLRP1- associated autoinflammation with arthritis and dyskeratosis). Ann Rheum Dis. 2017;76(7):1191–8. 25. Fan J, Xie K, Wang L, Zheng N, Yu X. Roles of Inflammasomes in Inflammatory Kidney Diseases. Mediators Inflamm. 2019;2019:2923072. 26. Raza Y, Khan A, Khan AI, Khan S, Akhter S, Mubarak M, et al. Combination of Interleukin 1 Polymorphism and Helicobacter pylori Infection: an Increased Risk of Gastric Cancer in Pakistani Population. Pathol Oncol Res [Internet]. 2017;23(4):873–80. Available from: http://dx.doi.org/10.1007/s12253-017-0191-9 27. Tak KH, Yu GI, Lee MY, Shin DH. Association between polymorphisms of interleukin 1 family genes and hepatocellular carcinoma. Med Sci Monit. 2018; 24:34.88–95. 28. Yin C, He N, Li P, Zhang C, Yu J, Hua M, et al. Polymorphisms of Interlukin-1β rs16944 confer susceptibility to myelodysplastic syndromes. Life Sci. 2016;165:109–12. 29. Wang H, Hua M, Wang S, Yu J, Chen C, Zhao X, et al. Genetic polymorphisms of IL-18 rs1946518 and IL-1β rs16944 are associated with prognosis and survival of acute myeloid leukemia. Inflamm Res. 2017;66(3):249–58. 30. Gore EA, Sanders JJ, Pandey JP, Palesch Y, Galbraith GMP. Interleukin- 1β+3953 allele 2: Association with disease status in adult periodontitis. J Clin Periodontol. 1998;25(10):781–5. 31. Bent R, Moll L, Grabbe S, Bros M. Interleukin-1 beta—A friend or foe in malignancies? Int J Mol Sci. 2018;19(8). 32. Umare V, Pradhan V, Rajadhyaksha A, Ghosh K, Nadkarni A. Predisposition of IL-1β (-511 C/T) polymorphism to renal and hematologic disorders in Indian SLE patients. Gene [Internet]. 2018;641:41–5. Available from: http://dx.doi.org/10.1016/j.gene.2017.10.039 33. Arranz L, Arriero M del M, Villatoro A. Interleukin-1β as emerging therapeutic target in hematological malignancies and potentially in their complications. Blood Rev [Internet]. 2017;31(5):306–17. Available from: http://dx.doi.org/10.1016/j.blre.2017.05.001 34. Pietras EM Mirantes-Barbeito C, Fong S, Loeffler D, Kovtonyuk L V., Zhang S, et al. Chronic interleukin-1 drives haematopoietic stem cells 76 towards precocious myeloid differentiation at the expense of self-renewal. Nat Cell Biol. 2016;18(6):607–18. 35. Hasselbalch HC. Chronic inflammation as a promotor of mutagenesis in essential thrombocythemia, polycythemia vera and myelofibrosis. A human inflammation model for cancer development? Leuk Res [Internet]. 2013;37(2):214–20. Available from: http://dx.doi.org/10.1016/j.leukres.2012.10.020 36. Kristinsson SY, Björkholm M, Hultcrantz M, Derolf ÅR, Landgren O, Goldin LR. Chronic immune stimulation might act as a trigger for the development of acute myeloid leukemia or myelodysplastic syndromes. J Clin Oncol. 2011;29(21):2897–903. 37. Nakamura K, Kassem S, Cleynen A, Chrétien ML, Guillerey C, Putz EM, et al. Dysregulated IL-18 Is a Key Driver of Immunosuppression and a Possible Therapeutic Target in the Multiple Myeloma Microenvironment. Cancer Cell. 2018;33(4):634-648.e5. 38. Yalçın S, Mutlu P, Çetin T, Sarper M, Özgür G, Avcu F. The -137G/C Polymorphism in Interleukin-18 Gene Promoter Contributes to Chronic Lymphocytic and Chronic Myelogenous Leukemia Risk in Turkish Patients. Turkish J Hematol. 2015;32(4):311–6. 39. Masters SL, Gerlic M, Metcalf D, Preston S, Pellegrini M, O’Donnell JA, et al. NLRP1 Inflammasome Activation Induces Pyroptosis of Hematopoietic Progenitor Cells. Immunity [Internet]. 2012;37(6):1009–23. Available from: http://dx.doi.org/10.1016/j.immuni.2012.08.027 40. Wu J y., Zeng LY. Role of NLRP1 in blood disoders. Zhonggo Shi Yan Ye Xue Za Zhi. 2014;5:1476–9. 41. Xu Z, Wang H, Wei S, Wang Z, Ji G. Inhibition of ER stress-related IRE1α/CREB/NLRP1 pathway promotes the apoptosis of human chronic myelogenous leukemia cell. Mol Immunol [Internet]. 2018;101(83):377– 85. Available from: https://doi.org/10.1016/j.molimm.2018.07.002 42. Paugh SW, Bonten EJ, Evans WE. Inflammasome-mediated glucocorticoid resistance: The receptor rheostat. Mol Cell Oncol [Internet]. 2016;3(1):1–3. Available from: http://dx.doi.org/10.1080/23723556.2015.1065947 43. Clarke RT, Van Den Bruel A, Bankhead C, Mitchell CD, Phillips B, Thompson MJ. Clinical presentation of childhood leukaemia: A systematic review and meta-analysis. Arch Dis Child. 2016;101(10):894–901. 44. Witola WH, Mui E, Hargrave A, Liu S, Hypolite M, Montpetit A, et al. NALP1 influences susceptibility to human congenital toxoplasmosis, proinflammatory cytokine response, and fate of Toxoplasma gondii- infected monocytic cells. Infect Immun. 2011;79(2):756–66. 45. Clay GM, Wilson ME. NLR proteins and parasitic disease. Immunol Res. 2016;59:142–52. 46. Greaves M. A causal mechanism for childhood acute lymphoblastic leukaemia. Nat Rev Cancer [Internet]. 2018;18(8):471–84. Available from: http://dx.doi.org/10.1038/s41568-018-0015-6 47. Feng W, Yang F, Wang R, Yang X, Wang L, Chen C, et al. High Level P2X7-Mediated Signaling Impairs Function of Hematopoietic Stem/Progenitor Cells. Stem Cell Rev Reports [Internet]. 2016;12(3):305– 77 14. Available from: http://dx.doi.org/10.1007/s12015-016-9651-y 48. Shemon AN, Sluyter R, Fernando SL, Clarke AL, Dao-Ung LP, Skarratt KK, et al. A Thr357 to Ser polymorphism in homozygous and compound heterozygous subjects causes absent or reduced P2X7 function and impairs ATP-induced mycobacterial killing by macrophages. J Biol Chem. 2006;281(4):2079–86. 49. Taheri M, Sarani H, Moazeni-Roodi A, Naderi M, Hashemi M. Association between P2X7 polymorphisms and susceptibility to tuberculosis: An updated meta-analysis of case-control studies. Med. 2019;55(6). 50. Thunberg U, Tobin G, Johnson A, Söderberg O, Padyukov L, Hultdin M, et al. Polymorphism in the P2X7 receptor gene and survival in chronic lymphocytic leukaemia. Lancet. 2002;360(9349):1935–9. 51. Salaro E, Rambaldi A, Falzoni S, Amoroso FS, Franceschini A, Sarti AC, et al. Involvement of the P2X7-NLRP3 axis in leukemic cell proliferation and death. Sci Rep [Internet]. 2016;6(1):1–13. Available from: http://dx.doi.org/10.1038/srep26280 52. Moreira-Souza ACA, Almeida-da-Silva CLC, Rangel TP, Rocha G da C, Bellio M, Zamboni DS, et al. The P2X7 receptor mediates Toxoplasma gondii Control in Macrophages through canonical NLRP3 inflammasome activation and reactive oxygen species production. Front Immunol. 2017;8(OCT).pt_BR
dc.publisher.initialsUEApt_BR
Aparece nas coleções:DISSERTAÇÃO - PPCAH Programa de Pós-Graduação em Ciências Aplicadas à Hematologia



Os itens no repositório estão protegidos por copyright, com todos os direitos reservados, salvo quando é indicado o contrário.