DSpace logo

Use este identificador para citar ou linkar para este item: http://repositorioinstitucional.uea.edu.br//handle/riuea/4070
Registro completo de metadados
Campo DCValorIdioma
dc.contributor.authorJamel, Aline Sampaio-
dc.date.available2022-07-27-
dc.date.available2022-08-08T16:37:42Z-
dc.date.issued2018-08-29-
dc.identifier.urihttp://repositorioinstitucional.uea.edu.br//handle/riuea/4070-
dc.description.abstractHereditary Hemorrhagic Telangiectasia (HHT) is an autosomal dominant disease characterized by the presence of diffuse vascular malformations, affecting the dermis, mucous membranes and solid organs. The estimated prevalence of HHT worldwide is 1: 10,000 individuals, it is possible that these data represent an underestimation of reality. As for Brazil, there is no data on the actual estimated prevalence of HHT. The diagnosis of THH is essentially clinical and established according to the "Criteria of Curaçao". Currently, about 80% of the cases have mutations in two genes encoding endoglin (ENG) and the Activase Receptor Kinase-1 (ACVRL1). Our objective was to characterize the clinical and molecular aspects of a population of HHT individuals from two different Brazilian regions. Thus, demographic, clinical and laboratory data were collected through medical records and patient interviews. The DNA was extracted from leukocytes. Automated sequencer was used for sequencing the ENG and ACVRL1 gene exons. A total of 40 patients were included in the study, seven (07) from Manaus (age ± SD = 67.10±25.24) and 33 from Campinas (Age ± SD = 51.25±22.25). Respectively, epistaxis and mucosal telangiectasia were observed at the most frequent clinics, with 85.7% / 57.1% in patients Manaus and 75.7% / 87.8% in Campinas. Comorbidities such as Diabetes, hypertension and heart disease were more frequent in Campinas (45.4%) than Manaus (28.5%). Gene sequencing was performed in just 16 patients, being seven (07) from Manaus and nine (09) from Campinas. In ENG we identified 20 different variants, 7 in exons (3 unpublished) and 13 in introns (13 unpublished). In ACVRL-1 we identified 26 different variants, 16 in exons (6 unpublished) and 10 in introns (9 unpublished). Just one patient from São Paulo didn’t presented mutations in the genes studied. Fifteen patients presenting mutation rate to 93,75% (n=15/16) and the higher numbers of intronic mutations and three large deletions 5ÙTR regions and the predominance of ACVRL1 over ENG mutations. We believe that an identical and unique mutation of these genes in different countries is unlikely. Different and random variations between series can not be excluded, since this has already been demonstrated in countries like France, Holland and England. In our study, we found that the ENG and ACVRL-1 genes showed mutations associated with a more serious phenotype, including early onset of epistaxis and increased occurrence of pulmonary arteriovenous malformations. Our results may open the way to be studied or may indicate limitations in the care of these patients, who need a multidisciplinary attention to prevent and treat complications of this condition.pt_BR
dc.languageporpt_BR
dc.publisherUniversidade do Estado do Amazonaspt_BR
dc.rightsAcesso Abertopt_BR
dc.subjectEpistaxept_BR
dc.subjectmalformação vascular autossômicapt_BR
dc.subjectEndoglinapt_BR
dc.subjectACVRL1 e TGFβpt_BR
dc.subjectautosomal vascular malformationpt_BR
dc.titleCaracterização clínica e molecular de pacientes com Telangiectasia Hemorrágica Hereditária da Região de Campinas (SP) e Manaus (AM)pt_BR
dc.title.alternativeClinical and molecular characterization of patients with Hemorrhagic Telangiectasia Hereditary from the Region of Campinas (SP) and Manaus (AM)pt_BR
dc.typeDissertaçãopt_BR
dc.date.accessioned2022-08-08T16:37:42Z-
dc.contributor.advisor-co1Paula, Erich Vinicius de-
dc.contributor.advisor-co1Latteshttp://lattes.cnpq.br/0983518713985469pt_BR
dc.contributor.advisor1Moura Neto, José Pereira de-
dc.contributor.advisor1Latteshttp://lattes.cnpq.br/6749773067557179pt_BR
dc.creator.Latteshttp://lattes.cnpq.br/5904160248284654pt_BR
dc.description.resumoA Telangiectasia Hemorrágica Hereditária (THH) é uma doença autossômica dominante caracterizada pela presença de malformações vasculares difusas, acometendo a derme, mucosas e órgãos sólidos. A prevalência estimada da THH mundialmente é 1:10.000 indivíduos, com possibilidade destes dados representarem uma subestimação da realidade. O diagnóstico de THH é essencialmente clínico e estabelecido segundo os “Critérios de Curaçao”. Atualmente, cerca de 80% dos casos apresentam mutações nos genes ENG e ACVRL1. Nosso objetivo foi caracterizar clinicamente e molecularmente os genes ENG e ACVRL1 de indivíduos portadores de THH de duas regiões brasileiras distintas - Campinas e Manaus. Os dados demográficos, clínicos e laboratoriais foram coletados por meio de prontuário médico e entrevista ao paciente. O DNA foi extraído de isolados de leucócitos. A análise molecular foi realizada por sequenciamento automático. Um total de 40 pacientes foram incluídos no estudo, sendo sete (07) de Manaus (idade ± SD = 67,10 ± 25,24) e 33 de Campinas (idade ± SD = 51,25 ± 22,25). Respectivamente, epistaxe e telangiectasias muco-cutânea foram as manifestações clínicas mais frequentes, ocorrendo 85,7% / 57,1% nos pacientes de Manaus e 75,7% / 87,8% de Campinas. Comorbidades como Diabetes, Hipertensão e doença cardíaca foram mais frequentes em Campinas (45,4%) que em Manaus (28,5%). O sequenciamento gênico foi realizado em apenas em 16 pacientes, sendo sete (07) de Manaus e nove (08) de Campinas. Diversas novas variantes gênicas e outras já descritas foram encontradas no nosso estudo. Para ENG identificamos sete (07) em éxons (3 não publicados) e 13 em íntrons (13 não publicados). Já ACVRL-1 identificamos 16 em éxon (6 não publicados) e 10 em íntrons (9 não publicados). Apenas um paciente de São Paulo não apresentou mutações nos genes estudados. A razão de mutações encontradas foi de 93,75% (15/16). Um maior número de mutações intrônicas e três grandes deleções nas regiões foram mais prevalentes para ACVRL1 do que ENG, sendo mais frequentes nos éxons 7 e 8. Acreditamos que uma variante idêntica e única desses genes em diferentes países é improvável. Variações diferentes e aleatórias entre séries não podem ser excluídas, já que isso já foi demonstrado em países como França, Holanda e Inglaterra. Em nosso estudo, descobrimos que os genes ENG e ACVRL-1 apresentaram mutações associadas a um fenótipo mais grave, incluindo início precoce de epistaxe e aumento da ocorrência de malformações arteriovenosas pulmonares. Nossos resultados podem abrir caminhos para serem estudados ou podem indicar limitações na assistência a esses pacientes, os quais precisam de uma atenção multidisciplinar para prevenir e tratar complicações desta condição.pt_BR
dc.publisher.countryBrasilpt_BR
dc.publisher.programPROGRAMA DE PÓS-GRADUAÇÃO EM CIÊNCIAS APLICADAS À HEMATOLOGIApt_BR
dc.relation.references29 described in both genes, with at least 569 and 504 mutations already reported in ACVRL1 and ENG genes respectively (arup.utah.edu/database). In our study, ACVRL1 mutations are far more frequent than ENG mutations, especially in exons 7 and 8. Many other SNPs were also found in introns. Our results corroborate with the literature regarding this mutations proportion between ENG/ACVRL, with ratio varies from 0.4 to 2.1 (Tables 5) (47). Those same authors and often works offer several hypotheses to explain these differences. We believe that an identical and unique mutation of these genes in different countries is unlikely. Different and random variations between series cannot be excluded, since this has already been demonstrated in countries such as France, Holland and England. In our study, we found that both ENG and ACVRL-1 genes showed mutations associated with a more severe phenotype, including early onset of epistaxis and increased occurrence of Pulmonary arteriovenous malformations (PAVMs) (48,49). Conclusion We present a comprehensive clinical description of 40 individuals with HHT who represent the totality of patients followed in two geographically distinct centers of Brazil. Our results show a high frequency of cutaneomucous vascular lesions, compatible with that described in the international literature, associated with similar rates of AVM. Regarding severity, the distribution observed in our populations was similar to that described in other countries. These characteristics may reveal differences in the molecular pathophysiology of HHT in Brazil - that our phenotypic database opens the way to be studied, or indicate limitations in the care of these patients, who need a multidisciplinary attention to prevent and treat the complications of this condition. This study was the first to concomitantly carry out a clinical characterization with molecular study of all exons (ENG/ACVRL1 genes) of patients with HTH from Brazil. Our results, combined with our previous data with patients presenting mutation rate to 93,75% (n=15/16) in Brazilians patients with a confirmed clinical diagnosis. Also emphasize the higher numbers of intronic mutations and three large deletions 5ÙTR regions and the predominance of ACVRL1 over ENG mutations. 28 Conflict of interest: None. The sponsors of this study were public or non-profit organizations that support science in general. They had no role in gathering, analysing or interpreting the data. Ethical approval: The study was approved by The National Committee of Ethics and Research, Manaus, Amazon, and provided written informed consent in accordance with the Declaration of Helsinki. Sponsorships: Fundação de Amparo a Pesquisa do Estado do Amazonas (FAPEAM) – Processo: 1094/2013-FAPEAM. Author contributions AS contributed to study design, recruited patients, performed molecular analysis, analyzed the data and drafted the manuscript; GYH assisted and recruited patients; EVDP and JMPN contributed to study design, recruited patients, analyzed the data and drafted the manuscript. 34 References 1. McDonald J, Bayrak-Toydemir P, Pyeritz RE. Hereditary hemorrhagic telangiectasia: an overview of diagnosis, management, and pathogenesis. Genet Med. 2011;13:607–16. 2. Nguyen H-L, Boon LM, Vikkula M. Genetics of vascular malformations. Semin Pediatr Surg [Internet]. 2014 Aug [cited 2017 Sep 2];23(4):221–6. Available from: http://www.ncbi.nlm.nih.gov/pubmed/25241102 3. Murakami M. Signaling Required for Blood Vessel Maintenance: Molecular Basis and Pathological Manifestations. Int J Vasc Med [Internet]. 2012 [cited 2017 Oct 30];2012:1–15. Available from: http://www.hindawi.com/journals/ijvm/2012/293641/ 4. Braverman IM, Keh A, Jacobson BS. Ultrastructure and three-dimensional organization of the telangiectases of hereditary hemorrhagic telangiectasia. J Invest Dermatol [Internet]. 1990 Oct 1 [cited 2018 Aug 18];95(4):422–7. Available from: http://www.ncbi.nlm.nih.gov/pubmed/2212727 5. Shovlin CL. Hereditary haemorrhagic telangiectasia: Pathophysiology, diagnosis and treatment. Blood Rev [Internet]. 2010 Nov [cited 2017 Sep 2];24(6):203–19. Available from: http://www.ncbi.nlm.nih.gov/pubmed/20870325 6. Fleagle JM, Bobba RK, Kardinal CG, Freter CE. Iron Deficiency Anemia Related to Hereditary Hemorrhagic Telangiectasia: Response to Treatment With Bevacizumab. Am J Med Sci [Internet]. 2012 Mar [cited 2018 Aug 8];343(3):249–51. Available from: http://www.ncbi.nlm.nih.gov/pubmed/22227516 7. Dupuis-Girod S, Bailly S, Plauchu H. Hereditary hemorrhagic telangiectasia: from molecular biology to patient care. J Thromb Haemost [Internet]. 2010 Jul [cited 2016 Mar 8];8(7):1447–56. Available from: http://www.ncbi.nlm.nih.gov/pubmed/20345718 8. Fuchizaki U, Miyamori H, Kitagawa S, Kaneko S, Kobayashi K, Guttmacher A, et al. Hereditary haemorrhagic telangiectasia (Rendu-Osler-Weber disease). Lancet [Internet]. 2003 Nov 1 [cited 2016 Mar 27];362(9394):1490–4. Available from: http://www.thelancet.com/article/S014067360314696X/fulltext 9. TUENTE W. [CLINICAL ASPECTS AND GENETICS OF OSLER’S DISEASE]. Z Mensch Vererb Konstitutionsl [Internet]. 1963 Dec 17 [cited 2017 Oct 30];37:221–50. Available from: http://www.ncbi.nlm.nih.gov/pubmed/14112869 10. Plauchu H, De Chadarevian JP, Bideau A, Robert JM. Age-related clinical profile of heredity hemorrhagic telangiectasia in an epidemiologically recruited population. Am J Med Genet [Internet]. 1989 Mar [cited 2017 Oct 30];32(3):291–7. Available from: http://doi.wiley.com/10.1002/ajmg.1320320302 11. Vase P, Grove O. Gastrointestinal lesions in hereditary hemorrhagic telangiectasia. Gastroenterology [Internet]. 1986 Nov [cited 2017 Oct 30];91(5):1079–83. Available from: http://www.ncbi.nlm.nih.gov/pubmed/3489651 12. Ramakrishnan Y, Iqbal IZ, Puvanendran M, ElBadawey MR, Carrie S. A postal survey of hereditary hemorrhagic telangectasia in the northeast of England. Allergy Rhinol (Providence) [Internet]. 2015 Jan 1 [cited 2017 Sep 2];6(1):20–7. Available from: http://openurl.ingenta.com/content/xref?genre=article&issn=2152- 6575&volume=6&issue=1&spage=20 13. Marchuk DA, Guttmacher AE, Penner JA, Ganguly P. Report on the workshop on Hereditary Hemorrhagic Telangiectasia, July 10-11, 1997. Am J Med Genet 34 [Internet]. 1998 Mar 19 [cited 2016 Jun 3];76(3):269–73. Available from: http://www.ncbi.nlm.nih.gov/pubmed/9508248 14. Pierucci P, Lenato GM, Suppressa P, Lastella P, Triggiani V, Valerio R, et al. A long diagnostic delay in patients with Hereditary Haemorrhagic Telangiectasia: a questionnaire-based retrospective study. Orphanet J Rare Dis [Internet]. 2012 Jun 7 [cited 2018 Jul 10];7(1):33. Available from: http://ojrd.biomedcentral.com/articles/10.1186/1750-1172-7-33 15. Shovlin CL, Guttmacher AE, Buscarini E, Faughnan ME, Hyland RH, Westermann CJ, et al. Diagnostic criteria for hereditary hemorrhagic telangiectasia (Rendu-Osler- Weber syndrome). Am J Med Genet [Internet]. 2000 Mar 6 [cited 2016 Jun 3];91(1):66–7. Available from: http://www.ncbi.nlm.nih.gov/pubmed/10751092 16. Gallione CJ, Repetto GM, Legius E, Rustgi AK, Schelley SL, Tejpar S, et al. A combined syndrome of juvenile polyposis and hereditary haemorrhagic telangiectasia associated with mutations in MADH4 (SMAD4). Lancet (London, England) [Internet]. 2004 Mar 13 [cited 2016 Mar 8];363(9412):852–9. Available from: http://www.thelancet.com/article/S0140673604157322/fulltext 17. Faughnan ME, Palda VA, Garcia-Tsao G, Geisthoff UW, McDonald J, Proctor DD, et al. International guidelines for the diagnosis and management of hereditary haemorrhagic telangiectasia. J Med Genet [Internet]. 2011 Feb 1 [cited 2016 Jun 3];48(2):73–87. Available from: http://jmg.bmj.com/cgi/doi/10.1136/jmg.2009.069013 18. Fernandez-L A, Sanz-Rodriguez F, Zarrabeitia R, Perez-Molino A, Morales C, Restrepo CM, et al. Mutation study of Spanish patients with hereditary hemorrhagic telangiectasia and expression analysis of Endoglin and ALK1. Hum Mutat [Internet]. 2006 Mar 1 [cited 2017 Oct 11];27(3):295–295. Available from: http://doi.wiley.com/10.1002/humu.9413 19. Berg J, Porteous M, Reinhardt D, Gallione C, Holloway S, Umasunthar T, et al. Hereditary haemorrhagic telangiectasia: a questionnaire based study to delineate the different phenotypes caused by endoglin and ALK1 mutations. J Med Genet [Internet]. 2003 Aug [cited 2017 Sep 2];40(8):585–90. Available from: http://www.ncbi.nlm.nih.gov/pubmed/12920067 20. Mallet C, Lamribet K, Giraud S, Dupuis-Girod S, Feige JJ, Bailly S, et al. Functional analysis of endoglin mutations from hereditary hemorrhagic telangiectasia type 1 patients reveals different mechanisms for endoglin loss of function. Hum Mol Genet. 2015;24(4):1142–54. 21. Mcdonald J, Damjanovich K, Millson A, Wooderchak W, Jm C. Molecular diagnosis in hereditary hemorrhagic telangiectasia : findings in a series tested simultaneously by sequencing and deletion / duplication analysis. 2011;335–44. 22. McDonald J, Wooderchak-Donahue W, VanSant Webb C, Whitehead K, Stevenson DA, Bayrak-Toydemir P. Hereditary hemorrhagic telangiectasia: Genetics and molecular diagnostics in a new era. Front Genet [Internet]. 2015;5(JAN):1–8. Available from: http://journal.frontiersin.org/article/10.3389/fgene.2015.00001/abstract 23. Yu Q, Shen X-H, Li Y, Li R-J, Li J, Luo Y-Y, et al. An intron mutation in the ACVRL1 may be associated with a transcriptional regulation defect in a Chinese family with hereditary hemorrhagic telangiectasia. El-Maarri O, editor. PLoS One [Internet]. 2013 Feb 27 [cited 2017 Sep 2];8(2):e58031. Available from: 34 http://dx.plos.org/10.1371/journal.pone.0058031 24. McDonald J, Pyeritz RE. Hereditary Hemorrhagic Telangiectasia [Internet]. GeneReviews(®). University of Washington, Seattle; 1993 [cited 2017 Oct 13]. Available from: http://www.ncbi.nlm.nih.gov/pubmed/20301525 25. Tørring PM, Larsen MJ, Kjeldsen AD, Ousager LB, Tan Q, Brusgaard K. Global gene expression profiling of telangiectasial tissue from patients with hereditary hemorrhagic telangiectasia. Microvasc Res [Internet]. 2015 May [cited 2017 Oct 30];99:118–26. Available from: http://www.ncbi.nlm.nih.gov/pubmed/25892364 26. Abdalla SA, Pece-Barbara N, Vera S, Tapia E, Paez E, Bernabeu C, et al. Analysis of ALK-1 and endoglin in newborns from families with hereditary hemorrhagic telangiectasia type 2. Hum Mol Genet [Internet]. 2000 May 1 [cited 2017 Oct 30];9(8):1227–37. Available from: http://www.ncbi.nlm.nih.gov/pubmed/10767348 27. Conway EM, Collen D, Carmeliet P. Molecular mechanisms of blood vessel growth. Cardiovasc Res [Internet]. 2001 Feb 16 [cited 2017 Sep 2];49(3):507–21. Available from: http://www.ncbi.nlm.nih.gov/pubmed/11166264 28. Potente M, Gerhardt H, Carmeliet P. Basic and therapeutic aspects of angiogenesis. Vol. 146, Cell. 2011. p. 873–87. 29. Welti J, Loges S, Dimmeler S, Carmeliet P. Recent molecular discoveries in angiogenesis and antiangiogenic therapies in cancer. J Clin Invest [Internet]. 2013 Aug 1 [cited 2017 Sep 2];123(8):3190–200. Available from: http://www.ncbi.nlm.nih.gov/pubmed/23908119 30. Murakami M. Signaling Required for Blood Vessel Maintenance: Molecular Basis and Pathological Manifestations. Int J Vasc Med [Internet]. 2012 [cited 2017 Oct 13];2012:1–15. Available from: http://www.ncbi.nlm.nih.gov/pubmed/22187650 31. Cai J, Pardali E, Sánchez-Duffhues G, ten Dijke P. BMP signaling in vascular diseases. FEBS Lett [Internet]. 2012 Jul 4 [cited 2016 Mar 8];586(14):1993–2002. Available from: http://www.ncbi.nlm.nih.gov/pubmed/22710160 32. Jain RK, Carmeliet P. SnapShot: Tumor Angiogenesis. Cell [Internet]. 2012 Jun [cited 2015 Oct 18];149(6):1408–1408.e1. Available from: http://www.sciencedirect.com/science/article/pii/S0092867412006423 33. Assis AM, Costa FF, Arruda AVR, Annichino-Bizzacchi AJM, Bertuzzo ACS, Arruda VR, et al. Three novel mutations in the activin receptor-like kinase 1 (ALK- 1) gene in hereditary hemorrhagic telangiectasia type 2 in Brazilian patients. J Hum Genet [Internet]. 2007 Feb 16 [cited 2016 Mar 8];52(3):237–43. Available from: http://www.nature.com/doifinder/10.1007/s10038-006-0104-3 34. Westermann CJJ, Rosina AF, de Vries V, Coteau PA de. The prevalence and manifestations of hereditary hemorrhagic telangiectasia in the Afro-Caribbean population of the Netherlands Antilles: A family screening. Am J Med Genet [Internet]. 2003 Feb 1 [cited 2018 Jul 3];116A(4):324–8. Available from: http://doi.wiley.com/10.1002/ajmg.a.10002 35. Porteous MEM, Burn J, Proctor SJ, Porteous M. Hereditary haemorrhagic telangiectasia: a clinical analysis. I Med Genet [Internet]. 1992 [cited 2018 Jul 3];29:527–30. Available from: https://jmg.bmj.com/content/jmedgenet/29/8/527.full.pdf 36. Gu Y, Jin P, Zhang L, Zhao X, Gao X, Ning Y, et al. Functional analysis of mutations in the kinase domain of the TGF-beta receptor ALK1 reveals different mechanisms for induction of hereditary hemorrhagic telangiectasia. Blood [Internet]. 34 2006 Mar 1 [cited 2018 Jun 25];107(5):1951–4. Available from: http://www.ncbi.nlm.nih.gov/pubmed/16282348 37. Ruiz-Llorente L, Gallardo-Vara E, Rossi E, Smadja DM, Botella LM, Bernabeu C. Endoglin and alk1 as therapeutic targets for hereditary hemorrhagic telangiectasia. Expert Opin Ther Targets [Internet]. 2017 Oct 3 [cited 2017 Nov 28];21(10):933–47. Available from: http://www.ncbi.nlm.nih.gov/pubmed/28796572 38. Giordano P, Lenato GM, Pierucci P, Suppressa P, Altomare M, Del Vecchio G, et al. Effects of VEGF on phenotypic severity in children with hereditary hemorrhagic telangiectasia. J Pediatr Hematol Oncol [Internet]. 2009 Aug [cited 2018 Jul 3];31(8):577–82. Available from: https://insights.ovid.com/crossref?an=00043426- 200908000-00009 39. Ojeda-Fernandez L, Barrios L, Rodriguez-Barbero A, Recio-Poveda L, Bernabeu C, Botella LM. Reduced plasma levels of Ang-2 and sEng as novel biomarkers in hereditary hemorrhagic telangiectasia (HHT). Clin Chim Acta [Internet]. 2010 Apr 2 [cited 2017 Sep 2];411(7–8):494–9. Available from: http://linkinghub.elsevier.com/retrieve/pii/S0009898110000082 40. Latino GA, Kim H, Nelson J, Pawlikowska L, Young W, Faughnan ME. Severity score for hereditary hemorrhagic telangiectasia. 2014;1–6. 41. Silva BM, Hosman AE, Devlin HL, Shovlin CL. Lifestyle and Dietary Influences on Nosebleed Severity in Hereditary Hemorrhagic Telangiectasia. Laryngoscope [Internet]. 2013 May [cited 2018 Jul 10];123(5):1092–9. Available from: http://doi.wiley.com/10.1002/lary.23893 42. Duarte CW, Murray K, Lucas FL, Fairfield K, Miller H, Brooks P, et al. Improved survival outcomes in cancer patients with hereditary hemorrhagic telangiectasia. Cancer Epidemiol Biomarkers Prev [Internet]. 2014 Jan [cited 2018 Aug 7];23(1):117–25. Available from: http://www.ncbi.nlm.nih.gov/pubmed/24192008 43. Hosman AE, Shovlin CL. Cancer and hereditary haemorrhagic telangiectasia. J Cancer Res Clin Oncol [Internet]. 2017 Feb 11 [cited 2018 Aug 7];143(2):369–70. Available from: http://www.ncbi.nlm.nih.gov/pubmed/27837281 44. Cherif H, Karlsson T. Combination treatment with an erythropoiesis-stimulating agent and intravenous iron alleviates anaemia in patients with hereditary haemorrhagic telangiectasia. Ups J Med Sci [Internet]. 2014 Nov 4 [cited 2018 Aug 8];119(4):350–3. Available from: http://www.ncbi.nlm.nih.gov/pubmed/25188751 45. Donaldson JW, McKeever TM, Hall IP, Hubbard RB, Fogarty AW. Complications and mortality in hereditary hemorrhagic telangiectasia: A population-based study. Neurology [Internet]. 2015 May 5 [cited 2018 Aug 8];84(18):1886–93. Available from: http://www.ncbi.nlm.nih.gov/pubmed/25862798 46. Bernabéu C, Blanco FJ, Langa C, Garrido-Martin EM, Botella LM. Involvement of the TGF-β superfamily signalling pathway in hereditary haemorrhagic telangiectasia. J Appl Biomed [Internet]. 2010 [cited 2017 Sep 2];8(3):169–77. Available from: http://linkinghub.elsevier.com/retrieve/pii/S1214021X14600302 47. Brusgaard K, Kjeldsen A, Poulsen L, Moss H, Vase P, Rasmussen K, et al. Mutations in endoglin and in activin receptor-like kinase 1 among Danish patients with hereditary haemorrhagic telangiectasia. Clin Genet [Internet]. 2004 Sep 21 [cited 2018 Aug 20];66(6):556–61. Available from: http://www.ncbi.nlm.nih.gov/pubmed/15521985 48. Berg JN, Gallione CJ, Stenzel TT, Johnson DW, Allen WP, Schwartz CE, et al. The 34 Activin Receptor-Like Kinase 1 Gene: Genomic Structure and Mutations in Hereditary Hemorrhagic Telangiectasia Type 2. Am J Hum Genet [Internet]. 1997 Jul [cited 2018 Aug 20];61(1):60–7. Available from: http://www.ncbi.nlm.nih.gov/pubmed/9245985 49. Letteboer TGW, Zewald RA, Kamping EJ, de Haas G, Mager JJ, Snijder RJ, et al. Hereditary hemorrhagic telangiectasia: ENG and ALK-1 mutations in Dutch patients. Hum Genet [Internet]. 2005 Jan 23 [cited 2018 Aug 20];116(1–2):8–16. Available from: http://link.springer.com/10.1007/s00439-004-1196-5 50. Guichard C, Amaddeo G, Imbeaud S, Ladeiro Y, Pelletier L, Maad I Ben, et al. Integrated analysis of somatic mutations and focal copy-number changes identifies key genes and pathways in hepatocellular carcinoma. Nat Genet [Internet]. 2012 May 6 [cited 2018 Aug 20];44(6):694–8. Available from: http://www.nature.com/articles/ng.2256 51. Bossler AD, Richards J, George C, Godmilow L, Ganguly A. Novel mutations in ENG and ACVRL1 identified in a series of 200 individuals undergoing clinical genetic testing for hereditary hemorrhagic telangiectasia (HHT): correlation of genotype with phenotype. Hum Mutat [Internet]. 2006 Jul [cited 2018 Aug 20];27(7):667–75. Available from: http://doi.wiley.com/10.1002/humu.20342 52. Richards-Yutz J, Grant K, Chao EC, Walther SE, Ganguly A. Update on molecular diagnosis of hereditary hemorrhagic telangiectasia. Hum Genet [Internet]. 2010 Jul 23 [cited 2018 Aug 20];128(1):61–77. Available from: http://link.springer.com/10.1007/s00439-010-0825-4 53. Cymerman U, Vera S, Karabegovic A, Abdalla S, Letarte M. Characterization of 17 novel endoglin mutations associated with hereditary hemorrhagic telangiectasia. Hum Mutat [Internet]. 2003 May [cited 2018 Aug 20];21(5):482–92. Available from: http://doi.wiley.com/10.1002/humu.10203 54. Abdalla SA, Cymerman U, Rushlow D, Chen N, Stoeber GP, Lemire EG, et al. Novel mutations and polymorphisms in genes causing hereditary hemorrhagic telangiectasia. Hum Mutat [Internet]. 2005 Mar [cited 2018 Aug 20];25(3):320–1. Available from: http://www.ncbi.nlm.nih.gov/pubmed/15712271 55. Kjeldsen AD, Møller TR, Brusgaard K, Vase P, Andersen PE. Clinical symptoms according to genotype amongst patients with hereditary haemorrhagic telangiectasia. J Intern Med [Internet]. 2005 Oct [cited 2018 Aug 20];258(4):349–55. Available from: http://doi.wiley.com/10.1111/j.1365-2796.2005.01555.x 56. Fontalba A, Fernandez-L A, García-Alegria E, Albiñana V, Garrido-Martin EM, Blanco FJ, et al. Mutation study of Spanish patients with Hereditary Hemorrhagic Telangiectasia. BMC Med Genet [Internet]. 2008 Dec 1 [cited 2018 Aug 20];9(1):75. Available from: http://www.ncbi.nlm.nih.gov/pubmed/18673552 57. Letteboer TGW, Benzinou M, Merrick CB, Quigley DA, Zhau K, Kim I-J, et al. Genetic variation in the functional ENG allele inherited from the non-affected parent associates with presence of pulmonary arteriovenous malformation in hereditary hemorrhagic telangiectasia 1 (HHT1) and may influence expression of PTPN14. Front Genet [Internet]. 2015 Mar 12 [cited 2018 Aug 20];6:67. Available from: http://www.frontiersin.org/Genetic_Disorders/10.3389/fgene.2015.00067/abstract 58. Shovlin CL, Hughes JMB, Scott J, Seidman CE, Seidman JG. Characterization of Endoglin and Identification of Novel Mutations in Hereditary Hemorrhagic Telangiectasia. Am J Hum Genet [Internet]. 1997 Jul [cited 2018 Aug 20];61(1):68– 34 79. Available from: http://www.ncbi.nlm.nih.gov/pubmed/9245986 59. Lastella P, Sabbà C, Lenato GM, Resta N, Lattanzi W, Gallitelli M, et al. Endoglin gene mutations and polymorphisms in Italian patients with hereditary haemorrhagic telangiectasia. Clin Genet [Internet]. 2003 Jun [cited 2018 Aug 20];63(6):536–40. Available from: http://www.ncbi.nlm.nih.gov/pubmed/12786761 60. Lenato GM, Lastella P, Di Giacomo MC, Resta N, Suppressa P, Pasculli G, et al. DHPLC-based mutation analysis of ENG and ALK-1 genes in HHT Italian population. Hum Mutat [Internet]. 2006 Feb [cited 2018 Aug 20];27(2):213–4. Available from: http://doi.wiley.com/10.1002/humu.9400 61. Canzonieri C, Centenara L, Ornati F, Pagella F, Matti E, Alvisi C, et al. Endoscopic evaluation of gastrointestinal tract in patients with hereditary hemorrhagic telangiectasia and correlation with their genotypes. Genet Med [Internet]. 2014 Jan 30 [cited 2018 Aug 20];16(1):3–10. Available from: http://www.nature.com/articles/gim201362 62. Komiyama M, Ishiguro T, Yamada O, Morisaki H, Morisaki T. Hereditary hemorrhagic telangiectasia in Japanese patients. J Hum Genet [Internet]. 2014 Jan 7 [cited 2018 Aug 20];59(1):37–41. Available from: http://www.nature.com/articles/jhg2013113 63. Prigoda NL, Savas S, Abdalla SA, Piovesan B, Rushlow D, Vandezande K, et al. Hereditary haemorrhagic telangiectasia: mutation detection, test sensitivity and novel mutations. J Med Genet [Internet]. 2006 Sep 5 [cited 2018 Aug 20];43(9):722–8. Available from: http://jmg.bmj.com/cgi/doi/10.1136/jmg.2006.042606 64. Simon M, Franke D, Ludwig M, Aliashkevich AF, Köster G, Oldenburg J, et al. Association of a polymorphism of the ACVRL1 gene with sporadic arteriovenous malformations of the central nervous system. J Neurosurg [Internet]. 2006 Jun [cited 2018 Aug 20];104(6):945–9. Available from: http://www.ncbi.nlm.nih.gov/pubmed/16776339 65. Smoot LB, Obler D, McElhinney DB, Boardman K, Wu B-L, Lip V, et al. Clinical features of pulmonary arterial hypertension in young people with an ALK1 mutation and hereditary haemorrhagic telangiectasia. Arch Dis Child [Internet]. 2009 Jul 1 [cited 2018 Aug 20];94(7):506–11. Available from: http://adc.bmj.com/cgi/doi/10.1136/adc.2007.133082 66. Pawlikowska L, Tran MN, Achrol AS, Ha C, Burchard E, Choudhry S, et al. Polymorphisms in transforming growth factor-beta-related genes ALK1 and ENG are associated with sporadic brain arteriovenous malformations. Stroke [Internet]. 2005 Oct 1 [cited 2018 Aug 20];36(10):2278–80. Available from: http://stroke.ahajournals.org/cgi/doi/10.1161/01.STR.0000182253.91167.fa 67. Gedge F, McDonald J, Phansalkar A, Chou L-S, Calderon F, Mao R, et al. Clinical and analytical sensitivities in hereditary hemorrhagic telangiectasia testing and a report of de novo mutations. J Mol Diagn [Internet]. 2007 Apr [cited 2018 Aug 20];9(2):258–65. Available from: http://linkinghub.elsevier.com/retrieve/pii/S1525157810603881 68. Ricard N, Bidart M, Mallet C, Lesca G, Giraud S, Prudent R, et al. Functional analysis of the BMP9 response of ALK1 mutants from HHT2 patients: a diagnostic tool for novel ACVRL1 mutations. Blood [Internet]. 2010 Sep 2 [cited 2018 Aug 20];116(9):1604–12. Available from: http://www.bloodjournal.org/cgi/doi/10.1182/blood-2010-03-276881 34 69. Johnson DW, Berg JN, Gallione CJ, McAllister KA, Warner JP, Helmbold EA, et al. A second locus for hereditary hemorrhagic telangiectasia maps to chromosome 12. Genome Res [Internet]. 1995 Aug [cited 2018 Aug 20];5(1):21–8. Available from: http://www.ncbi.nlm.nih.gov/pubmed/8717052 70. Harrison RE, Flanagan JA, Sankelo M, Abdalla SA, Rowell J, Machado RD, et al. Molecular and functional analysis identifies ALK-1 as the predominant cause of pulmonary hypertension related to hereditary haemorrhagic telangiectasia. J Med Genet [Internet]. 2003 Dec [cited 2018 Aug 20];40(12):865–71. Available from: http://www.ncbi.nlm.nih.gov/pubmed/14684682 71. Olivieri C, Pagella F, Semino L, Lanzarini L, Valacca C, Pilotto A, et al. Analysis of ENG and ACVRL1 genes in 137 HHT Italian families identifies 76 different mutations (24 novel). Comparison with other European studies. J Hum Genet [Internet]. 2007 Oct 2 [cited 2018 Aug 20];52(10):820–9. Available from: http://www.nature.com/doifinder/10.1007/s10038-007-0187-5 72. Faughnan ME, Palda VA, Garcia-Tsao G, Geisthoff UW, McDonald J, Proctor DD, et al. International guidelines for the diagnosis and management of hereditary haemorrhagic telangiectasia. J Med Genet [Internet]. 2011 Feb 1 [cited 2017 Sep 2];48(2):73–87. Available from: http://www.ncbi.nlm.nih.gov/pubmed/19553198 73. Nishida T, Faughnan ME, Krings T, Chakinala M, Gossage JR, Young WL, et al. Brain arteriovenous malformations associated with hereditary hemorrhagic telangiectasia: gene-phenotype correlations. Am J Med Genet A [Internet]. 2012 Nov [cited 2018 Aug 20];158A(11):2829–34. Available from: http://doi.wiley.com/10.1002/ajmg.a.35622 74. Cymerman U, Vera S, Pece-Barbara N, Bourdeau A, White RI, Dunn J, et al. Identification of hereditary hemorrhagic telangiectasia type 1 in newborns by protein expression and mutation analysis of endoglin. Pediatr Res [Internet]. 2000 Jan [cited 2018 Aug 20];47(1):24–35. Available from: http://www.ncbi.nlm.nih.gov/pubmed/10625079pt_BR
dc.publisher.initialsUEApt_BR
Aparece nas coleções:DISSERTAÇÃO - PPCAH Programa de Pós-Graduação em Ciências Aplicadas à Hematologia



Os itens no repositório estão protegidos por copyright, com todos os direitos reservados, salvo quando é indicado o contrário.