DSpace logo

Use este identificador para citar ou linkar para este item: http://repositorioinstitucional.uea.edu.br//handle/riuea/3645
Registro completo de metadados
Campo DCValorIdioma
dc.contributor.authorSouza, Anne Terezinha Fernandes de-
dc.date.available2022-01-10-
dc.date.available2022-01-10T14:50:07Z-
dc.date.issued2021-07-12-
dc.identifier.citationSOUZA, Anne Terezinha Fernandes de. Efeitos da aclimatação à hipóxia crônica e intermitente na tolerância do ciclídeo-anão Apistogramma agassizii. 2021. 34 f. TCC (Graduação em Ciências Biológicas) - Universidade do Estado do Amazonas, Manaus.pt_BR
dc.identifier.urihttp://repositorioinstitucional.uea.edu.br//handle/riuea/3645-
dc.description.abstractAmazonian fish have numerous strategies linked to capture of oxygen in response to periods of scarcity in the aquatic environment, leading them to the development of various adaptive mechanisms, whether they are physiological, morphological, biochemical or genetic. Amazon fish find absence of oxygen in their habitats during the seasonal and/or daily period and as responses to these variations, the physiological effects of chronic hypoxia and intermittent are still poorly understood. This study sought to assess the responses metabolic effects of Apistogramma agassizii dwarf cichlid affected by exposure to chronic and intermittent hypoxia. Groups of adult cichlid were exposed to hypoxia (below 1 mgO2.L -1 ) or normoxia (6.48 ± 0.04 mgO2.L -1 ) for periods that range from 96 hours for chronic hypoxia and 1 to 4 weeks for hypoxia intermittent. Subsequently the time of loss of balance in hypoxia, consumption of oxygen and activity of lactate dehydrogenase and citrate synthase enzymes were measured after the hypoxia acclimation time of each experimental group. At Cichlid exposures to low oxygen concentrations showed an increase gradual in the time of loss of balance of the species, adults acclimated for 4 weeks to intermittent hypoxia had greater reductions in metabolic rate than 46% (P=<0.0017, F=38.80) and the highest LOE that reached 90 minutes (P=<0.04, F= 12.265). The reduction in the activity of the citrate synthase enzyme, accompanied by the increased activity of the lactate dehydrogenase enzyme demonstrates that the dwarf cichlid does not increase its anaerobic potential as the species is exposed to hypoxia chronic and intermittent. When undergoing intermittent hypoxia for 4 weeks species has been shown to activate the anaerobic metabolism more efficiently, where managed to regulate oxygen consumption and metabolic pathways, while being submitted to chronic hypoxia, the cichlid activates only the metabolic pathways. This one study shows that the dwarf cichlid Apistogramma agassizii has a large phenotypic plasticity to deal with changes in dissolved oxygen. Keywords: Hypoxia; Apistogramma agassizii; anaerobic metabolism and aerobic.pt_BR
dc.languageporpt_BR
dc.publisherUniversidade do Estado do Amazonaspt_BR
dc.rightsAcesso Abertopt_BR
dc.subjectHipóxiapt_BR
dc.subjectApistogramma agassiziipt_BR
dc.subjectMetabolismo anaeróbico e aeróbicopt_BR
dc.subjectAnaerobic and Aerobic Metabolismpt_BR
dc.titleEfeitos da aclimatação à hipóxia crônica e intermitente na tolerância do ciclídeo-anão Apistogramma agassiziipt_BR
dc.title.alternativeEffects of acclimatization to chronic and intermittent hypoxia on the tolerance of the dwarf cichlid Apistogramma agassiziipt_BR
dc.typeTrabalho de Conclusão de Cursopt_BR
dc.date.accessioned2022-01-10T14:50:07Z-
dc.contributor.advisor-co1Caldas, Waldir Heinrichs-
dc.contributor.advisor-co1Latteshttp://lattes.cnpq.br/5386740013056961pt_BR
dc.contributor.advisor1Buhrnheim, Cristina Motta-
dc.contributor.advisor1Latteshttp://lattes.cnpq.br/6552256507605884pt_BR
dc.contributor.referee1Barros, André de Lima-
dc.contributor.referee1Latteshttp://lattes.cnpq.br/9175217134135270pt_BR
dc.contributor.referee2Dantas, Yasmin Tavares-
dc.contributor.referee2Latteshttp://lattes.cnpq.br/3177250528755773pt_BR
dc.creator.Latteshttp://lattes.cnpq.br/8087567857490880pt_BR
dc.description.resumoOs peixes amazônicos apresentam inúmeras estratégias ligadas à captação de oxigênio em respostas aos períodos de escassez do mesmo em meio aquático, levando-os ao desenvolvimento de diversos mecanismos adaptativos, sejam eles fisiológicos, morfológicos, bioquímicos ou genéticos. Peixes amazônicos encontram ausência de oxigênio nos seus habitats durante o período sazonal e/ou diário e como respostas a essas variações, os efeitos fisiológicos da hipóxia crônica e intermitente ainda são mal compreendidos. Este estudo buscou avaliar as respostas metabólicas do ciclídeo-anão Apistogramma agassizii afetadas pela exposição à hipóxia crônica e intermitente. Grupos de adultos do ciclídeo foram expostos à hipóxia (abaixo de 1 mgO2.L -1 ) ou normóxia (6,48 ± 0,04 mgO2.L -1 ) por períodos que variam de 96 horas para a hipóxia crônica e de 1 a 4 semanas para hipóxia intermitente. Posteriormente o tempo de perda de equilíbrio em hipóxia, consumo de oxigênio e atividade das enzimas lactato desidrogenase e citrato sintase foram medidos após o tempo de aclimatação em hipóxia de cada grupo experimental. As exposições de ciclídeos a baixa concentração de oxigênio mostraram um aumento gradativo no tempo de perda de equilíbrio da espécie, adultos aclimatados durante 4 semanas à hipóxia intermitente tiveram maiores reduções da taxa metabólica de 46% (P= <0,0017, F= 38,80) e maior LOE que chegou a 90 minutos (P= <0,04, F= 12,265). A redução da atividade da enzima citrato sintase, acompanhada do aumento da atividade da enzima lactato desidrogenase demonstra que o ciclídeoanão aumenta o seu potencial anaeróbico conforme a espécie é exposta à hipóxia crônica e intermitente. Ao ser submetido à hipóxia intermitente por 4 semanas a espécie mostrou ativar o metabolismo anaeróbico com maior eficiência, onde conseguiu regular o consumo de oxigênio e as vias metabólicas, enquanto ao ser submetido à hipóxia crônica, o ciclídeo ativa apenas as vias metabólicas. Este estudo demostra que o ciclídeo-anão Apistogramma agassizii possui uma grande plasticidade fenotípica para lidar com as variações de oxigênio dissolvido. Palavras-chave: Hipóxia; Apistogramma agassizii; metabolismo anaeróbico e aeróbico.pt_BR
dc.publisher.countryBrasilpt_BR
dc.relation.referencesALMEIDA-VAL, V. M. F.; VAL, A. L.; HOCHACHKA, P. W. Hypoxia tolerance in Amazon fishes: Status of a under-explored biological “goldmine”. In Surviving Hypoxia: Mechanisms of Control and Adaptation. p. 435-445. 1993. ALMEIDA-VAL, V. M. F.; FARIAS, I. P.; PAULA-SILVA, M. N.; DUNCAN, W. P.; VAL, A. L. Biochemical adjustments to hypoxia by Amazon cichlids. Brazilian Journal of Medical and Biological Research. 28: 1257-1263. 1995. ALMEIDA-VAL, V. M. F. et al. Scaling effects on hypoxia tolerance in the Amazon fish Astronotus ocellatus (Perciformes: Cichlidae): contribution of tissue enzyme levels. Comparative Biochemistry and Physiology Part B: Biochemistry and Molecular Biology. 125: 219–226. 2000. ARANA, L. V. Princípios químicos da qualidade da água em aquicultura. 1ª edição. UFSC, Florianópolis, 166p. 1997. ARANY, Z.; HUANG, L.E.; ECKNER, R. An essential role for p300/CBP in the cellular response to hypoxia. Proceedings of the National Academic of Sciences of the América, 93: 12969-12973. 1996. BICKLER, P.E.; BUCK, L.T. Hypoxia Tolerance in Reptiles, Amphibians, and Fishes: Life with Variable Oxygen Availability. Annual Review of Physiology. 69: 145-70. 2007. BOROWIEC, B.G.; DARCY, K.L.; GILLETTE, D.M.; SCOTT, G.R. Distinct physiological strategies are used to cope with constant hypoxia and intermittent hypoxia in killifish (Fundulus heteroclitus). The Journal of Experimental Biology, vol. 218: p.1198- 1211, 2015. BOROWIEC, B. G., MCCLELLAND, G. B., REES, B. B.; SCOTT, G. R. Distinct metabolic adjustments arise from acclimation to constant hypoxia and intermittent hypoxia in estuarine killifish (Fundulus heteroclitus). The Journal of Experimental Biology, vol. 221, jeb190900, 2019. BRUICK, R.K. Oxygen sensing in the hypoxic response pathway: regulation of the hypoxiainducible transcription factor. Genes Development. 17: 2614–2623. 2003. BRADFORD, M. M. A rapid and sensitive method for the quantification of microgram quantities of protein utilizing the protein-dye binding. Analytical Biochemistry. 72: 248-254. 1976. BUNN, H.F. & POYTON, R.O. Oxygen sensing and molecular adaptation to hypoxia. Physiological Reviews, 76: 839-885. 1996. CAMPOS, D.F.; BRAZ-MOTA, S.; VAL, A.L.; ALMEIDA-VAL, V.M.F. Predicting thermal sensitivity of three Amazon fishes exposed to climate change scenarios. Ecological Indicators. vol. 101, p. 533-540, 2019. CHIPPARI-GOMES, A.R., PAULA-SILVA, M.N., VAI, A.L., BICUDO, I.E.P.W., ALMEIDAVAL, V.M.F. Hypoxia tolerance in amazon cichlids. In: Almeida-Val, V.M.F.; Gonzales, R.: MacKinlay, D. (Eds.). Evolution of Physilogical and Biochemistry Traits in Fish. 43-54. 2000. CHIPPARI-GOMES, A. R.; GOMES, L. C.; VAL, A. L., ALMEIDA-VAL, V. M. F. Metabolic adjustments in two Amazonian cichlids exposed to hypoxia and anoxia. Comparative Biochemistry and Physiology. 141:347-355. 2005. DE BOECK, G.; WOOD, C. M.; IFTIKAR, F. I.; MATEY, V.; SCOTT, G.R.; SLOMAN, K. A.; NAZARÉ PAULA E SILVA, M.; ALMEIDA-VAL, V. M. F. and VAL, A. L. Interactions between hypoxia tolerance and food deprivation in Amazonian oscars, Astronotus ocellatus. The Journal of Experimental Biology, vol. 216, 4590-4600, 2013. GRACEY, A. Y.; TROLL, J. V.; SOMERO, G.N. Hypoxia-induced gene expression progfiling in the euryoxic fish Gillichthys mirabilis. Proceedings of the National Academy of Sciences of the United States of America. 98, 1993-1998. 2001 HEINRICHS-CALDAS, W., CAMPOS, D.F., PAULA-SILVA, M.N., & ALMEIDA-VAL, V.M.F. Oxygen-dependent distinct expression of hif-1α gene in aerobic and anaerobic tissues of the Amazon Oscar, Astronotus crassipinnis. Comparative biochemistry and Physiology Part B: Biochemistry and Molecular Biology. 227: 31-38. 2019. HERCOS, A. P.; QUEIROZ, H. L. & ALMEIDA, H. L. Peixes Ornamentais da Reserva Anamã. Tefé: IDSM, 241 p. 2009. HO. D. H.; BURGGREN, W.W. Parental hypoxic exposure confers offspring hypoxia resistance in zebrafish (Danio rerio). Journal of Experimental Biology. 215: 4208- 4216. 2012. HOCHACHKA, P.W. & SOMERO, G.N. Biochemical Adaptation. Princenton University Press, New Jersey. 537p. 1984. JUNK, W. J., SOARES, G. M. AND CARVALHO, F. M. Distribution of fish species in a lake of the Amazon river floodplain near Manaus (Lago Catalao), with special reference to extreme oxygen conditions. Amazoniana: Limnologia e Oecologia Regional Systematis Fluminis Amazonas. 7: 397–431. 1983. MANDIC, M.; REGAN, M.D. Can variation among hypoxic environments explain why different fish species use different hypoxic survival strategies? Journal of Fish Biology. 2018. MENDONÇA, M.; CAMARGO, M. Etnoecologia da produção de peixes ornamentais num Setor do Médio Rio Solimões, Flona de Tefé e Reservas Mamirauá e Amanã – Estado do Amazonas. Uakari. 2: 53-61. 2006. METCALFE, N.B.; MONAGHAN, P. Does reproduction cause oxidative stress? An open question. Trends in Ecology & Evolution, 28: 347–350. 2013. MCNATT, R.A; RICE, J.A. Hypoxia-induced growth rate reduction in two juvenile estuarydependent fishes. Journal of Experimental Marine Biology and Ecology. 311: 147-156. 2004. NIKINMAA, M.; REES, B. B. Oxygen-dependent gene expression in fishes. American Journal Physiology- Regulatory, Integrative and Comparative Physiology. 288: 1079-1090. 2005. OBIRIKORANG, K.A.; ACHEAMPONG, J.N.; DUODU,C.P.; SKOV,P.V. Growth, metabolism and respiration in Nile tilapia (Oreochromis niloticus) exposed to chronic or periodic hypoxia. Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology, 248: 110768. OLIVEIRA, Jomara Cavalcante de. Táticas reprodutivas de Apistogramma agassizii (Perciformes: Cichlidae) em lagos e igarapés do médio Solimões, Amazonas - Brasil/ Manaus: [s.n], 2016. SALMON, A.B.; MARX, D.B.; HARSHMAN, L.G. A cost of reproduction in Drosophila melanogaster: stress susceptibility. Evolution, 55: 1600–1608. 2001. SAROGLIA, M. HIF1a mRNA levels in Eurasian perch (Perca fluviatilis) exposed to acute and chronic hypoxia. The Company of Biologists – Journal of Experimental Biology. 39: 4009–4015. 2012. SEMENZA,G.L., Roth, P.H., Fang, H.M.Transcriptional regulation of genes encoding glycolytic enzymes by hypoxia inducible factor 1. The Journal of Biological Chemistry, 269: 23757-23763. 1994. SEMENZA, G. L. Hypoxia-inducible factor 1: Master regulator of O2 homeostasis. Current Opinion in Genetics & Development. 8: 588-594. 1998. SEMENZA, G. L. HIF-1: mediator of physiological and pathophysiological responses to hypoxia. Journal of Applied. Physiology. 88: 1474–1480. 2000. SOITAMO, A. J., RABERGH, C. M. I., GASSMANN, M., SISTONEN, L., NIKINMAA, M. Characterization of a hypoxia-inducible factor (HIF-1alpha) from rainbow trout. Journal of Biological Chemistry. 276: 19699–19705. 2001. SOUZA, S.S. Respostas fisiológicas, genotóxicas, histopatológicas e genéticas da espécie Colossoma macropomum (Cuvier, 1818) contaminada por naftaleno e exposta a hipóxia/ Samara Silva de Souza. --- Manaus: [s.n], 2017. xi, 51 f. : il. color SOUZA, A.T.F; HEINRICHS-CALDAS, W.; ALMEIDA-VAL, V.M.F. Efeitos de diferentes períodos de aclimatação à hipóxia intermitente no Cichlidae Apistogramma agassizii, 2019 (in prep.) STIERHOFF, K.L.; TARGETT, T.E.; GRECAY, P.A. Hypoxia tolerance in the mummichog: the role of access to the water surface. Journal of Fish Biology. 63: 580-592. 2003. TARIQ, M. et al. Eukaryotic translation initiation factor 5A (eIF5A) is essential for HIF-1α activation in hypoxia. Biochemical and Biophysical Research Communications. 30: 1-8. 2016. THOMAS, P., RAHMAN, S., IZHAR, A., KRUMMER, K., KRUMMER, J. A. Widespread endocrine disruption and reproductive impairment in an estuarine fish population exposed to seasonal hypoxia. Proceedings of the Royal Society B. 274: 2693- 2701. 2007. VAL, A.L. Surviving low oxygen levels: Lessons from fishes of the Amazon. In: Val, A.L; Almeida-Val, V.M.F; Randall, D.J. (Eds.), Physiology and Biochemistry of the fishes of the Amazon, INPA, Manaus, Brazil, 59-73p. 1996. VAL, A. L., FEARNSIDE, P. M., ALMEIDA-VAL, V. M. F. Environmental disturbances and fishes in the Amazon. Journal of Fish Biology. 89: 192-193. 2016. WANG, G.L. & SEMENZA, G.L. General involvement of hypoxia inducible factor 1 in transcriptional response to hypoxia. Proceedings ot the National Acadeniic of Sciences of the América, 90: 4304-4308. 1993. WETZEL, R. G. Liminologia. 2ª ed. Editora Fundação Calouste Gulbenkian, Lisboa, 111p. 1993. WOOD, C. M.; IFTIKAR, F. I.; SCOTT, G. R.; DE BOECK, G.; SLOMAN, K. A.; MATEY, V.; VALDEZ DOMINGOS, F. X.; DUARTE, R. M.; ALMEIDA-VAL, V. M. F. and VAL, A. Regulation of gill transcellular permeability and renal function during acute hypoxia in the Amazonian oscar (Astronotus ocellatus): new angles to the osmorespiratory compromise. Journal of Experimental Biology. 212, 1949-1964. 2009. WU RSS. Hypoxia: from molecular responses to ecosystem responses. Mar Pollut Bull 45:35–45. 2002. YANG, H.; CAO, Z.D.; FU, S.J. The effects of diel-cycling hypoxia acclimation on the hypoxia tolerance, swimming capacity and growth performance of southern catfish (Silurus meridionalis). Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology. 165: 1949-1964. 2013.pt_BR
dc.subject.cnpqCiências Biológicaspt_BR
dc.publisher.initialsUEApt_BR
Aparece nas coleções:ENS - Trabalho de Conclusão de Curso de Graduação



Os itens no repositório estão protegidos por copyright, com todos os direitos reservados, salvo quando é indicado o contrário.