DSpace logo

Use este identificador para citar ou linkar para este item: http://repositorioinstitucional.uea.edu.br//handle/riuea/3631
Registro completo de metadados
Campo DCValorIdioma
dc.contributor.authorMaciel, Joyce Belentani de Souza-
dc.date.available2021-01-10-
dc.date.available2022-01-10T13:09:59Z-
dc.date.issued2019-11-13-
dc.identifier.citationMACIEL, Joyce Belentani de Souza. Identificação e caracterização de bactérias com potencial para controle biológico. 2019. 35 f. TCC (Graduação em Ciências Biológicas) - Universidade do Estado do Amazonas, Manaus.pt_BR
dc.identifier.urihttp://repositorioinstitucional.uea.edu.br//handle/riuea/3631-
dc.description.abstractBiological control through the use of microorganisms is an alternative to reduce the use of pesticides in the control of plant pathogens, which affect plants of agricultural interest. In this context, the objective of this work was to identify and quantify the inhibition potential of previously selected bacteria against phytopathogenic fungi. Eight microorganisms were evaluated: three endophytic isolates obtained from guaranazeiro roots (PcA1, PcA2, PcA3)) and five isolates from Madeira River sediments, from these four actinobacteria (MAD 24, MAD 42, MAD 51 and MAD 189). bacteria (MAD 207)). These were identified by morphomolecular analysis based on scanning electron microscopy and 16S rDNA region sequencing data. Inhibition potential (PIC) against four phytopathogens: Colletotricum siamense, Pseudopestalotiopsis gilvanis sp. nov., Neopestalotiopsis formicarum and Fusarium decemcellulare, were obtained in vitro using the double culture methodology in BDA medium. The mean percentage inhibition (PIC) after 10 days ranged from 46% to 74% depending on the bacteria tested. The isolates PcA1, PcA2, PcA3 and MAD207 performed better against F. decemcellulare (71% ± 2.8, 64% ± 1.7, 72 ± 4.5 and 78% ± 1, respectively). The MAD24 isolate showed better performance against N. formicarum (72% ± 0.5), MAD42 and MAD51 against C. siamense (72% ± 0.5; 74% ± 2.4), and MAD189 against N. formicarum (69% ± 0.5). PcA1, PcA2, PcA3 and MAD207 isolates were identified, based on sequence analysis of the 16S rRNA gene, as members of the Bacillus genus, which were phylogenetically related to B. amyloliconefaciens, B. subtilis, B. nakamurai and B. velezensis respectively. . Scanning electron microscopy data revealed different morphology for each isolate, suggesting that they belong to different species. Isolates MAD24, MAD42, MAD 51 and MAD189 were identified as members of the genus Streptomyces. Samples MAD189 and MAD42 were more phylogenetically related to each other and formed a separate clade, MAD51 showed low phylogenetic relationships with the analyzed species and MAD24 was grouped in the constraricanus clade, S. griseofuscusmurinus. The morphological data corroborate the molecular inferences and differences in size and shape were identified in all isolates.. Keywords: Actinobacteria; Antimicrobials; Biological control.pt_BR
dc.languageporpt_BR
dc.publisherUniversidade do Estado do Amazonaspt_BR
dc.rightsAcesso Abertopt_BR
dc.subjectActinobactériaspt_BR
dc.subjectAntimicrobianospt_BR
dc.subjectControle biológicopt_BR
dc.subjectBiological controlpt_BR
dc.subjectAntimicrobialspt_BR
dc.titleIdentificação e caracterização de bactérias com potencial para controle biológicopt_BR
dc.title.alternativeIdentification and characterization of bacteria with potential for biological controlpt_BR
dc.typeTrabalho de Conclusão de Cursopt_BR
dc.date.accessioned2022-01-10T13:09:59Z-
dc.contributor.advisor-co1Silva, Gilvan Ferreira da-
dc.contributor.advisor-co1Latteshttp://lattes.cnpq.br/1000535673605322pt_BR
dc.contributor.advisor1Batista, Ieda Hortêncio-
dc.contributor.advisor1Latteshttp://lattes.cnpq.br/5290529604475961pt_BR
dc.contributor.referee1Santos, Josenilda Carlos dos-
dc.contributor.referee1Latteshttp://lattes.cnpq.br/1101479829656159pt_BR
dc.contributor.referee2Lima Júnior, Raimundo Sousa-
dc.contributor.referee2Latteshttp://lattes.cnpq.br/2055426262014670pt_BR
dc.creator.Latteshttp://lattes.cnpq.br/5908436186574161pt_BR
dc.description.resumoO controle biológico por meio do uso de microrganismos é uma alternativa para diminuir o uso de defensivos químicos no controle de fitopatógenos, que afetam plantas de interesse agrícola. Neste contexto, o objetivo do trabalho foi identificar e quantificar o potencial de inibição de bactérias previamente selecionadas contra fungos fitopatogênicos. Foram avaliados oito microrganismos, sendo três isolados endofíticos obtidos de raízes do guaranazeiro (PcA1, PcA2, PcA3) e cinco isoladas de sedimentos do Rio Madeira (MAD 24, MAD 42, MAD 51, MAD 189 e MAD 207). Estes foram identificados por meio de análise morfomolecular, com base em dados de microscopia eletrônica de varredura e sequenciamento da região 16S rDNA. O potencial de inibição (PIC) contra quatro fitopatógenos: Colletotricum siamense, Pseudopestalotiopsis gilvanis sp. nov., Neopestalotiopsis formicarum e Fusarium decemcellulare, foi obtido in vitro por meio da metodologia de cultura dupla, em meio BDA. A média do percentual de inibição (PIC) após 10 dias variou de 46% a 74% dependendo da bactéria testada. Os isolados PcA1, PcA2, PcA3 e MAD207 apresentaram melhor desempenho contra F. decemcellulare (71%±2.8, 64%±1.7, 72±4.5 e 78%±1, respectivamente). O isolado MAD24 apresentou melhor desempenho contra N. formicarum (72% ±0.5), MAD42 e o MAD51 contra C. siamense (72% ±0.5; 74% ±2.4), e MAD189 contra N. formicarum (69% ±0.5). Os isolados PcA1, PcA2, PcA3 e MAD207 foram identificados, com base na análise de sequência região 16S, como membros do gênero Bacillus, estes foram relacionados filogeneticamente a B. amyloliquenfaciens, B. subtilis, B. nakamurai e B. velezensis respectivamente. Dados de microscopia eletrônica de varredura revelaram morfologia diferente para cada isolado, o que sugere que estes pertencem a diferentes espécies. Os Isolados MAD24, MAD42, MAD 51 e MAD189 foram identificados como membros do gênero Streptomyces. As amostras MAD189 e MAD42 foram filogeneticamente mais relacionadas entre si e formaram um clado separado, MAD51 mostrou baixa relações filogenéticas com as espécies analisadas e MAD24 foi agrupado no clado de S. costaricanus, S. griseofuscusmurinus. Os dados morfológicos corroboram com as inferências moleculares e diferenças de tamanho e forma foram identificadas em todos os isolados. Palavras-chave: Actinobactérias; Antimicrobianos; Controle biológico.pt_BR
dc.publisher.countryBrasilpt_BR
dc.relation.referencesADAMY, Amilcar. Dinâmica Fluvial do Rio Madeira. 2016 AZURA, AB Nur et al. Streptomyces sanglieri which colonised and enhanced the growth of Elaeis guineensis Jacq. seedlings was antagonistic to Ganoderma boninense in in vitro studies. Journal of industrial microbiology & biotechnology, v. 43, n. 4, p. 485-493, 2016. BARDIN, Marc et al. Is the efficacy of biological control against plant diseases likely to be more durable than that of chemical pesticides. Frontiers in plant science, v. 6, p. 566, 2015. BARROS, Fernanda Carvalho et al. Indução de resistência em plantas contra fitopatógenos. Bioscience Journal, v. 26, n. 2, p. 231-239, 2010. BOTTONE, Edward J. Bacillus cereus, a volatile human pathogen. Clinical microbiology reviews, v. 23, n. 2, p. 382-398, 2010. BOTTONE, Edward J. Bacillus cereus, a volatile human pathogen. Clinical microbiology reviews, v. 23, n. 2, p. 382-398, 2010. CAMPANILE, Grazia; RUSCELLI, Angela; LUISI, Nicola. Antagonistic activity of endophytic fungi towards Diplodia corticola assessed by in vitro and in planta tests. European Journal of Plant, 2007. CARVALHO, Fernando P. Pesticides, environment, and food safety. Food and Energy Security, v. 6, n. 2, p. 48-60, 2017. CAZORLA, F.M.et al.(2007) Isolation and characterization ofantagonisticBacillus subtilisstrains from the avocado rhizoplanedisplaying biocontrol activity.J. Appl. Microbiol.103, 1950–1959 CELESTINO, Jessyca et al. Bioprospecting of Amazon soil fungi with the potential for pigment production. Process Biochemistry, v. 49, n. 4, p. 569-575, 2014. CRESCI, Gail A.; BAWDEN, Emmy. Gut microbiome: what we do and don't know. Nutrition in Clinical Practice, v. 30, n. 6, p. 734-746, 2015. CUTTING, Simon M. Bacillus probiotics. Food microbiology, v. 28, n. 2, p. 214-220, 2011. DE ARAÚJO, Gabrielly Beatriz da Silva. FISIOGRAFIA DO RIO MADEIRA: UMA ANÁLISE SOBRE A FORMAÇÃO, ESTRUTURA E PROCESSOS FLUVIAIS. ARIGÓ Revista do Grupo PET e Acadêmicos de Geografia da Ufac, v. 1, n. 01, p. 118-127, 2018. DENNIS, C.; WEBSTER, J. Antagonistic properties of species-groups of Trichoderma: I. Production of non-volatile antibiotics. Transactions of the British Mycological Society, v. 57, n. 1, p. 25-IN3, 1971. DOYLE, Jeff J. Isolation of plant DNA from fresh tissue. Focus, v. 12, p. 13-15, 1990. EARL, Ashlee M.; LOSICK, Richard; KOLTER, Roberto. Ecology and genomics of Bacillus subtilis. Trends in microbiology, v. 16, n. 6, p. 269-275, 2008. ESNARD, Joseph; POTTER, Thomas L.; ZUCKERMAN, Bert M. Streptomyces costaricanus sp. nov., isolated from nematode-suppressive soil. International Journal of Systematic and Evolutionary Microbiology, v. 45, n. 4, p. 775-779, 1995. FAN, Ben et al. Bacillus amyloliquefaciens, Bacillus velezensis, and Bacillus siamensis form an “operational group B. amyloliquefaciens” within the B. subtilis species complex. Frontiers in microbiology, v. 8, p. 22, 2017. FERRAZ, Hélvio Gledson Maciel et al. Elaboração de um meio semi-seletivo com base na resistência múltipla constitutiva de Pseudomonas putida (UFV-0073) a antibióticos. Revista Trópica: Ciências Agrárias e Biológicas, v. 4, n. 1, 2010. FILIZOLA, Heloisa Ferreira. Manual de procedimentos de coleta de amostras em áreas agrícolas para análise da qualidade ambiental: solo, água e sedimentos. Jaguariúna: Embrapa Meio Ambiente, 2006. GEBREYOHANNES, Gebreselema et al. Isolation and characterization of potential antibiotic producing actinomycetes from water and sediments of Lake Tana, Ethiopia. Asian pacific journal of tropical biomedicine, v. 3, n. 6, p. 426-435, 2013. GORDON, R. E. et al. The genus bacillus. US Department of Agriculture handbook, n. 427, p. 109-26, 1973. HALFELD-VIEIRA, Bernardo A.; NECHET, Kátia L. Elaboração e validação de escala diagramática para avaliação da mancha-de-cercospora em melancia. Fitopatologia Brasileira, v. 31, n. 1, p. 46-50, 2006. HANKIN, Lester; ANAGNOSTAKIS, S. L. The use of solid media for detection of enzyme production by fungi. Mycologia, v. 67, n. 3, p. 597-607, 1975. HODGSON, David A. Primary metabolism and its control in streptomycetes: a most unusual group of bacteria. 2000. HUGH-JONES, Martin; BLACKBURN, Jason. The ecology of Bacillus anthracis. Molecular aspects of medicine, v. 30, n. 6, p. 356-367, 2009. JAYARAJ, Ravindran; MEGHA, Pankajshan; SREEDEV, Puthur. Organochlorine pesticides, their toxic effects on living organisms and their fate in the environment. Interdisciplinary toxicology, v. 9, n. 3-4, p. 90-100, 2016. JAYASREE, D. et al. Enhancement of alkaline protease production isoloated from Streptomyces pulveraceus using response surface methodology. International Journal of Pharmacy and Pharmaceutical Sciences, v. 4, n. 4, p. 1-6, 2012. JOGAIAH, Sudisha et al. Isolation and evaluation of proteolytic actinomycete isolates as novel inducers of pearl millet downy mildew disease protection. Scientific reports, v. 6, p. 30789, 2016 JOKANOVIĆ, Milan. Neurotoxic effects of organophosphorus pesticides and possible association with neurodegenerative diseases in man: A review. Toxicology, v. 410, p. 125-131, 2018. KIM, Jong-Shik et al. Bacterial diversity of terra preta and pristine forest soil from the Western Amazon. Soil Biology and Biochemistry, v. 39, n. 2, p. 684-690, 2007. KUNST, F. et al. The complete genome sequence of the gram-positive bacterium Bacillus subtilis. Nature, v. 390, n. 6657, p. 249, 1997. KÜSTER, E.; WILLIAMS, S. T. Selection of media for isolation of streptomycetes. Nature, v. 202, n. 4935, p. 928-929, 1964. LABEDA, David P. Taxonomic evaluation of putative Streptomyces scabiei strains held in the ARS Culture Collection (NRRL) using multi-locus sequence analysis. Antonie van Leeuwenhoek, v. 109, n. 3, p. 349-356, 2016. LAM, Kin S. Discovery of novel metabolites from marine actinomycetes. Current opinion in microbiology, v. 9, n. 3, p. 245-251, 2006. LANNA FILHO, Roberto; FERRO, Henrique Monteiro; DE PINHO, Renata Silva Canuto. Controle biológico mediado por Bacillus subtilis. Revista Trópica: Ciências Agrárias e Biológicas, v. 4, n. 2, 2010. LI, Huifen et al. Biosorption of Zn (II) by live and dead cells of Streptomyces ciscaucasicus strain CCNWHX 72-14. Journal of hazardous materials, v. 179, n. 1- 3, p. 151-159, 2010. LOBO, Igor Kelvyn Cavalcante et al. Análise do transcriptoma de Fusarium decemcellulare agente causal do superbrotamento em guaranazeiro (Paullinia cupana var. sorbilis). 2016. LUDWIG, Wolfgang; SCHLEIFER, Karl-Heinz; WHITMAN, William B. Revised road map to the phylum Firmicutes. In: Bergey’s Manual® of Systematic Bacteriology. Springer, New York, NY, 2009. p. 1-13. MICHEREFF, Sami J. Fundamentos de fitopatologia. Universidade Federal Rural de Pernambuco, Departamento de Agronomia–Área de Fitossanidade, Recife–PE, 2001 MOTTA, Amanda S.; CLADERA-OLIVERA, Florencia; BRANDELLI, Adriano. Screening for antimicrobial activity among bacteria isolated from the Amazon basin. Brazilian Journal of Microbiology, v. 35, n. 4, p. 307-310, 2004. MUNIZ, Luciana da Silva et al. Análise dos padrões fluviométricos da Bacia do Rio Madeira-Brasil. 2013. Nagorska, K.et al.(2007) Multicellular behaviour and production of awide variety of toxic substances support usage of Bacillus subtilis as a powerful biocontrol agent. Acta Biochim. Pol.54, 495–508 NOUROZIAN, Javad et al. Biological control of Fusarium graminearum on wheat by antagonistic bacteria. Songklanakarin J. Sci. Technol, v. 28, n. Suppl 1, p. 29-38, 2006. NYLANDER, J. A. A. MrModeltest v2. Program distributed by the author, 2004. PARRA, JOSÉ ROBERTO P. et al. Controle biológico: terminologia. Controle Biológico no Brasil: parasitóides e predadores. São Paulo. Manole editora, p. 1-16, 2002. PRIEST, Fergus G. Extracellular enzyme synthesis in the genus Bacillus. Bacteriological reviews, v. 41, n. 3, p. 711, 1977. RAMBAUT, Andrew. FigTree, version 1.3. 1. Computer program distributed by the author, website: http://treebioedacuk/software/figtree/[accessed January 4, 2011], 2009. RÊGO, MCF; ALMEIDA, C. M. Controle biológico. 1998. ROONEY, Alejandro P. et al. Phylogeny and molecular taxonomy of the Bacillus subtilis species complex and description of Bacillus subtilis subsp. inaquosorum subsp. nov. International journal of systematic and evolutionary microbiology, v. 59, n. 10, p. 2429-2436, 2009. RUIZ-GARCIA, Cristina et al. Bacillus velezensis sp. nov., a surfactant-producing bacterium isolated from the river Velez in Malaga, southern Spain. International Journal of Systematic and Evolutionary Microbiology, v. 55, n. 1, p. 191-195, 2005. SABRA, Farid Soliman; MEHANA, E. S. E. D. Pesticides toxicity in fish with particular reference to insecticides. Asian Journal of Agriculture and Food Sciences (ISSN: 2321–1571), v. 3, n. 01, 2015. SANKOH, Alhaji I. et al. An assessment of the impacts of pesticide use on the environment and health of rice farmers in Sierra Leone. Environment international, v. 94, p. 458-466, 2016. SCHILLINGER, U.; GEISEN, R.; HOLZAPFEL, W. H. Potential of antagonistic microorganisms and bacteriocins for the biological preservation of foods. Trends in Food Science & Technology, v. 7, n. 5, p. 158-164, 1996. SCHNIETE, Jana K. et al. Expanding primary metabolism helps generate the metabolic robustness to facilitate antibiotic biosynthesis in Streptomyces. MBio, v. 9, n. 1, p. e02283-17, 2018. SILVA, Célia CG; SILVA, Sofia PM; RIBEIRO, Susana C. Application of Bacteriocins and Protective Cultures in Dairy Food Preservation. Frontiers in microbiology, v. 9, p. 594, 2018. SILVA, Juliana Resende Campos et al. Bactérias endofíticas no controle e inibição in vitro de Pseudomonas syringae pv. tomato, agente da pinta bacteriana do tomateiro. Ciência e agrotecnologia, v. 32, n. 4, p. 1062-1072, 2008 SLEPECKY, Ralph A.; HEMPHILL, H. Ernest. The genus Bacillus—nonmedical. The Prokaryotes: Volume 4: Bacteria: Firmicutes, Cyanobacteria, p. 530-562, 2006. SOUZA, W. (ed). Técnicas Básicas de Microscopia Eletrônica Aplicadas às CiênciasBiológicas. Rio de Janeiro, Sociedade Brasileira de Microscopia Eletrônica, 1998 STEIN, Torsten. Bacillus subtilis antibiotics: structures, syntheses and specific functions. Molecular microbiology, v. 56, n. 4, p. 845-857, 2005 TAMURA, Koichiro et al. MEGA6: molecular evolutionary genetics analysis version 6.0. Molecular biology and evolution, v. 30, n. 12, p. 2725-2729, 2013. TORRES, Duilio; CAPOTE, Tarcicio. Agroquímicos un problema ambiental global: uso del análisis químico como herramienta para el monitoreo ambiental. Revista Ecosistemas, v. 13, n. 3, 2004. TURNBULL, Peter CB; KRAMER, J. M.; MELLING, J. Bacillus. Manual of clinical microbiology, v. 5, p. 296-303, 1991. UZMA, Fazilath et al. Endophytic Fungi—Alternative Sources of Cytotoxic Compounds: A Review. Frontiers in pharmacology, v. 9, 2018. VAN DEN BOSCH, Robert. The cost of poisons. Environment: Science and Policy for Sustainable Development, v. 14, n. 7, p. 18-31, 1972. VIAENE, Tom et al. Streptomyces as a plant's best friend. FEMS microbiology ecology, v. 92, n. 8, 2016. WANG, Weiyi et al. Proteomic analysis of murine testes lipid droplets. Scientific reports, v. 5, p. 12070, 2015. WILLERDING, André Luis et al. Lipase activity among bacteria isolated from Amazonian soils. Enzyme research, v. 2011, 2011 Wink J.; Mohammadipanah F.; Javad Hamedi; Biology and Biotechnology of Actinobacteria, 2017. XIANG, Jingyu et al. CXCR4 protein epitope mimetic antagonist POL5551 disrupts metastasis and enhances chemotherapy effect in triple-negative breast cancer. Molecular cancer therapeutics, v. 14, n. 11, p. 2473-2485, 2015. YUAN, Yuan et al. Potential of endophytic fungi isolated from cotton roots for biological control against verticillium wilt disease. PloS one, v. 12, n. 1, p. e0170557, 2017.pt_BR
dc.subject.cnpqCiências Biológicaspt_BR
dc.subject.cnpqBiologia molecularpt_BR
dc.publisher.initialsUEApt_BR
Aparece nas coleções:ENS - Trabalho de Conclusão de Curso de Graduação

Arquivos associados a este item:
Arquivo Descrição TamanhoFormato 
Identificação e caracterização de bactérias com potencial para controle biológico.pdf3,15 MBAdobe PDFVisualizar/Abrir


Os itens no repositório estão protegidos por copyright, com todos os direitos reservados, salvo quando é indicado o contrário.