DSpace logo

Use este identificador para citar ou linkar para este item: http://repositorioinstitucional.uea.edu.br//handle/riuea/3264
Registro completo de metadados
Campo DCValorIdioma
dc.contributor.authorSilva, Marcos Cunha da-
dc.date.available2021-02-24-
dc.date.available2021-02-24T15:32:43Z-
dc.date.issued2021-01-05-
dc.identifier.citationSILVA, Marcos Cunha da. O Tamanho de crenuchus spilurus influencia na tolerância e ajustes metabólicos após exposição à hipóxia? 2021. 29 f. TCC (Graduação em Ciências Biológicas) - Universidade do Estado do Amazonas, Manaus. 2021.pt_BR
dc.identifier.urihttp://repositorioinstitucional.uea.edu.br//handle/riuea/3264-
dc.description.abstractOne of the main parameters that affects the distribution of aquatic organisms is the Dissolved oxygen. In the aquatic systems of the Amazon, fish find regularly hypoxic environments, thus having developed a series of adaptations to survive in these environments. Crenuchus spilurus is a species that occurs in environments with a wide range of oxygen variation, being found more frequently in hypoxic places as a juvenile. Thus, the objective of this study was to evaluate the tolerance and metabolic adjustments to hypoxia in C. spilurus of different sizes; adults and youth. For this, we evaluate the tolerance of the animal, which was determined by measuring the oxygen concentration in which loss of balance occurs (LOE, from English Loss of Equilibrium), and also investigated metabolic adjustments, such as metabolic rate (MO2) and activity enzymes of the energy and antioxidant metabolism of animals. Our results of LOE show that C. spilurus is a hypoxia-tolerant species and that exposure prior to hypoxia in both sizes increases their tolerance to low concentrations of oxygen. The results presented here show a metabolic regulation of animals after exposure to hypoxia, as observed by the decrease in the rate metabolic. However, this regulation does not seem to be related to the enzymes of the energy metabolism and neither to the antioxidant system, since these parameters were little affected by hypoxia, probably in response to an adjustment adaptive after seven days of exposure. We suggest, from the tolerance data, that metabolic regulation after exposure to hypoxia in C. spilurus must be associated with greater efficiency in oxygen uptake and delivery to cells, reflecting in a more effective capacity in the uptake of oxygen by the gills, as well as in the transport of this gas via the circulatory system.pt_BR
dc.languageporpt_BR
dc.publisherUniversidade do Estado do Amazonaspt_BR
dc.rightsAcesso Abertopt_BR
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/br/*
dc.subjectHipóxiapt_BR
dc.subjectHypoxiapt_BR
dc.subjectPeixes de igarapépt_BR
dc.subjectIgarapé fishpt_BR
dc.subjectAjustes metabólicospt_BR
dc.subjectMetabolic adjustmentspt_BR
dc.subjectTolerância a hipóxiapt_BR
dc.subjectTolerance to hypoxiapt_BR
dc.titleO tamanho de crenuchus spilurus influencia na tolerância e ajustes metabólicos após exposição à hipóxia?pt_BR
dc.title.alternativeThe size of crenuchus spilurus influences tolerance and metabolic adjustments after exposure to hypoxia?pt_BR
dc.typeTrabalho de Conclusão de Cursopt_BR
dc.date.accessioned2021-02-24T15:32:43Z-
dc.contributor.advisor-co1Mota, Susana Braz-
dc.contributor.advisor-co1Latteshttp://lattes.cnpq.br/1619385871631270pt_BR
dc.contributor.advisor1Bührnheim, Cristina Motta-
dc.contributor.advisor1Latteshttp://lattes.cnpq.br/6552256507605884pt_BR
dc.contributor.referee1Bührnheim, Cristina Motta-
dc.contributor.referee1Latteshttp://lattes.cnpq.br/6552256507605884pt_BR
dc.contributor.referee2Oliveira, Edinbergh Caldas de-
dc.contributor.referee2Latteshttp://lattes.cnpq.br/1240545486112135pt_BR
dc.contributor.referee3Oliveira, Rafael Lopes e-
dc.contributor.referee3Latteshttp://lattes.cnpq.br/4950481491863642pt_BR
dc.creator.Latteshttp://lattes.cnpq.br/4571126636442937pt_BR
dc.description.resumoUm dos principais parâmetros que afeta a distribuição dos organismos aquáticos é o oxigênio dissolvido. Nos sistemas aquáticos da Amazônia os peixes encontram regularmente ambientes hipóxicos, tendo, assim, desenvolvido uma série de adaptações para sobreviver nesses ambientes. Crenuchus spilurus é uma espécie que ocorre em ambientes com uma ampla faixa de variação de oxigênio, sendo encontrado com maior frequência em locais hipóxicos quando juvenil. Deste modo, o objetivo deste estudo foi avaliar a tolerância e os ajustes metabólicos à hipóxia em C. spilurus de diferentes tamanhos; adultos e juvenis. Para isso, nós avaliamos a tolerância fisiológica do animal, a qual foi determinada pela medida da concentração de oxigênio em que ocorre perda de equilíbrio (LOE, do inglês Loss of Equilibrium), e também investigamos os ajustes metabólicos, tais como a taxa metabólica (MO2) e a atividade das enzimas do metabolismo energético e antioxidante dos animais. Nossos resultados de LOE mostram que C. spilurus é uma espécie tolerante à hipóxia e que a exposição prévia à hipóxia em ambos os tamanhos aumenta sua tolerância a baixas concentrações de oxigênio. Os resultados aqui apresentados mostram uma regulação metabólica dos animais após a exposição à hipóxia, tal como observado pela diminuição da taxa metabólica. Porém, essa regulação não parece estar relacionada nem às enzimas do metabolismo energético e tampouco ao sistema antioxidante, uma vez que estes parâmetros foram pouco afetados pela hipóxia, provavelmente em resposta a um ajuste adaptativo após os sete dias de exposição. Sugerimos, a partir dos dados de tolerância, que a regulação metabólica após exposição à hipóxia em C. spilurus deve estar associada a uma maior eficiência na tomada de oxigênio e entrega para as células, refletindo em uma capacidade mais efetiva na captação de oxigênio pelas brânquias, bem como no transporte desse gás via sistema circulatório.pt_BR
dc.publisher.countryBrasilpt_BR
dc.relation.referencesALMEIDA-VAL, V.M.F. VAL, A.L. WALKER, I. Respiratory Metabolism. Pp. 137-181. In: VAL, A.L., ALMEIDA-VAL, V.M.F. Fishes of the Amazon and their Environment: Physiological and Biochemical Aspects. Manaus: Springer, 1995. ALMEIDA-VAL, V.M.F., VAL, A.L., DUNCAN, W.P., SOUZA, F.C.A., PAULASILVA, M.N., LAND, S. Scaling effects on hypoxia tolerance in the Amazon fish Astronotus ocellatus (Perciformes: Cichlidae): contribution of tissue enzyme levels. Comparative Biochemistry and Physiology, Part B, vol. 125, p. 219–226, 2000. BARNES, R.; KING H.; CARTER, C.G. Hypoxia tolerance and oxygen regulation in Atlantic salmon, Salmo salar from a Tasmanian population. Aquaculture, vol. 318, p.397-401, 2011. BEUTLER, E. Red cell metabolism: a manual of biochemical methods. 2a. ed. New York: Grune & Stratton, 1975. BRADFORD, M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, vol. 72, n. 1-2, p. 248-254, 1976.. BOROWIEC, B.G.; DARCY, K.L.; GILLETTE, D.M.; SCOTT, G.R. Distinct physiological strategies are used to cope with constant hypoxia and intermittent hypoxia in killifish (Fundulus heteroclitus). The Journal of Experimental Biology, vol. 218: p.1198-1211, 2015. BOROWIEC, B. G., MCCLELLAND, G. B., REES, B. B.; SCOTT, G. R. Distinct metabolic adjustments arise from acclimation to constant hypoxia and intermittent hypoxia in estuarine killifish (Fundulus heteroclitus). The Journal of Experimental Biology, vol. 221, jeb190900, 2019. BUCKUP, P.A. Family Crenuchidae (South American darters). Pp. 87-95. In: Reis, R. E., S. O. Kullander; C. J. Ferraris Jr. (Eds.). Check List of the Freshwater Fishes of South and Central America. Porto Alegre: Edipucrs, p. 729, 2003. CAMPOS, D.F.; BRAZ-MOTA, S.; VAL, A.L.; ALMEIDA-VAL, V.M.F. Predicting thermal sensitivity of three Amazon fishes exposed to climate change scenarios. Ecological Indicators. vol. 101, p. 533-540, 2019. CHAPMAN, L.J.; CHAPMAN, C.A.; NORDLIE, F.G.; ROSENBERGER, A.E. Physiological refugia: swamps, hypoxia tolerance and maintenance of fish diversity in the Lake Victoria region. Comparative Biochemistry and Physiology. Part A vol. 133, p. 421–437, 2002. COOPER, R.U.; CLOUGH, L.M.; FARWELL M.A.; WEST, T.L. Hypoxia-induced metabolic and antioxidant enzymatic activities in the estuarine fish Leiostomus xanthurus. Journal of Experimental Marine Biology and Ecology, 2002, 279:1-20. COSTANTINI, D. Understanding diversity in oxidative status and oxidative stress: the opportunities and challenges ahead. The Journal of Experimental Biology. vol. 222, jeb194688, 2019. COUTO, T. B. d’A., ESPÍRITO-SANTO, H.M.V., LEITÃO, R.P., BASTOS, D.A., DIAS, M.S., ZUANON, J. Os peixes e as poças: o uso de áreas marginais alagáveis por peixes de igarapés amazônicos. Boletim da Sociedade Brasileira de Ictiologia. n. 116, p.31-40, 2015. DRIEDZIC, W. R.; ALMEIDA-VAL, V. M. F. Enzymes of cardiac energy metabolism in Amazonian teleosts and the fresh-water stingray (Potamotrygon hystrix). Journal of Experimental Zoology. vol. 274, p. 327–333,1996. FERREIRA, A.L.A.; MATSUBARA, L.S. Radicais livres: conceitos, doenças relacionadas, sistema de defesa e estresse oxidativo. Revista da Associação Médica Brasileira. 43(1):61-8, 1997. FOURNIER, D., BRIDE, J.M., POIRIE, M., BERGE, J.B., PLAPP, F.W., Insect glutathione s-transferases: biochemical characteristics of the major forms of houseflies susceptible and resistant to insecticides. Journal of Biological Chemistry. vol. 267, p. 1840-1845,1992. HOCHACHKA, P.W., BUCK, L.T., DOLL, C.J., LAND, S.C. Unifying theory of hypoxia tolerance: molecular/ metabolic defense and rescue mechanisms for surviving oxygen lack. Proceedings of National Academy of Sciences. vol. 93 p. 9493 – 9498, 1996. JIANG, Z.Y., WOOLLARD, A.C.S., WOLFF, S.P., Lipid hydroperoxide measurement by oxidation of Fe2+ in the presence of xylenol orange. Comparison with the TBA assay and an iodometric method. Lipids, vol. 26, n. 10, p. 853–856, 1991. JOHANNSSON, O.E., GIACOMIN, M., SADAUSKAS-HENRIQUE, H., CAMPOS, D., BRAZ-MOTA, S., HEINRICHS-CALDAS, W., BAPTISTA, R., WOOD, C.M., ALMEIDA-VAL, V.M.F., VAL, A.L. Does the rate of re-oxygenation after hypoxia modify the oxidative stress response in Cyphocharax abramoides (Kner 1858), a characid fish of the Rio Negro? Comparative Biochemistry and Physiology, vol. 22, p. 53-67, 2018. JUNK, W.J., SOARES, G.M., CARVALHO, F.M. Distribution of fish species in a lake of the Amazon River floodplain near Manaus (Lago Camaleão), with special reference to extreme oxygen conditions. Amazoniana. vol. 4, p.39-431, 1983. KEEN, J. H., HABIG, H., JAKOBY, W.B., 1976. Mechanism for the several activities of the glutathione-S-transferase. Journal of Biological Chemistry 251(20):6183-8, 1976 LEVEELAHTI, L.; RYTKONEN, K.T.; RENSHAW, G.M.; NIKINMAA, M. Revisiting redox-active antioxidant defenses in response to hypoxic challenge in both hypoxia-tolerant and hypoxiasensitive fish species. Fish Physiology and Biochemistry, vol. 40, p183–191, 2014. LUSHCHAK, V.I.; BAGNYUKOVA, T.V.; HUSAK, V.V.; LUZHNA, L.I.; LUSHCHAK, O.V.; STOREY, K.B. 2005. Hyperoxia results in transient oxidative stress and an adaptive response by antioxidant enzymes in goldfish tissues. The International Journal of Biochemistry & Cell Biology. vol. 37, p.1670–1680, 2005. MENDONÇA, F.P., Ictiofauna de igarapés de terra firme: estrutura das comunidades de duas bacias hidrográficas, Reserva Florestal Adolfo Ducke, Amazônia Central. Dissertação de mestrado (Programa de Pós-Graduação em Biologia Tropical e Recursos Naturais). Manaus: INPA/UFAM, 2002. PELSTER, B.; WOOD, C. M.; JUNG, E.; VAL, A. L. Air-breathing behavior, oxygen concentrations, and ROS defense in the swimbladders of two erythrinid fish, the facultative air-breathing jeju, and the non-air-breathing traira during normoxia, hypoxia and hyperoxia. Journal of Comparative Physiology. 188(3):437-449, 2018 PIRES, T. H. S., FARAGO T. B., CAMPOS, D.F., CARDOSO, G. M. ZUANON, J. Traits of a lineage with extraordinary geographical range: ecology, behavior and lifehistory of the sailfin tetra Crenuchus spilurus. Environmental Biology of Fishes. 2016. 99:925-937 ROBB, T., ABRAHAMS, M.V. Variation in tolerance to hypoxia in a predator and prey species: an ecological advantage of being small? Journal of Fish Biology. 62:1067–1081, 2003 SLOMAN, K.A., WOOD, C.M., SCOTT, G.R., WOOD, S., KAJIMURA, M., JOHANNSSON, O.E., ALMEIDA-VAL, V.M.F., VAL, A.L. Tribute to R. G. Boutilier: the effect of size on the physiological and behavioural responses of oscar, Astronotus ocellatus, to hypoxia. The Journal of Experimental Biology, vol. 209, p. 1197-1205, 2006. WINSTON, G.W., DI GIULIO, R.T., 1991. Prooxidant and antioxidant mechanism in aquatic organism. Aquatic Toxicology., vol. 24, p. 143–152,1991.pt_BR
dc.subject.cnpqCiências Biológicaspt_BR
dc.subject.cnpqFisiologia vegetalpt_BR
dc.publisher.initialsUEApt_BR
Aparece nas coleções:ENS - Trabalho de Conclusão de Curso de Graduação

Arquivos associados a este item:
Arquivo Descrição TamanhoFormato 
O Tamanho de Crenuchus spilurus influencia na tolerância e ajustes metabólicos.pdf1,7 MBAdobe PDFVisualizar/Abrir


Este item está licenciada sob uma Licença Creative Commons Creative Commons