DSpace logo

Use este identificador para citar ou linkar para este item: http://repositorioinstitucional.uea.edu.br//handle/riuea/2413
Registro completo de metadados
Campo DCValorIdioma
dc.contributor.authorReis, André Henrique Araujo-
dc.date.available2012-03-19-
dc.date.available2020-03-20T00:27:53Z-
dc.date.issued2012-06-13-
dc.identifier.urihttp://repositorioinstitucional.uea.edu.br//handle/riuea/2413-
dc.description.abstractThe UV / visible norharmana (9H-pyrido [3,4-b] indole) (NH) and aniline dissolved in ethanol were studied. The NH is found in cigarette smoke in high concentrations, cooked meat, cooked fish, and was detected in the urine of people and in breast milk, and is also found in some plants of the Amazon, for example, chacrono (Psychotria viridis) , and is known for its active principle hallucinogen. The aniline is present in cigarette smoke in concentrations too high, and is an important raw material in the chemical industry. Were calculated excitation energies, forces the oscillator to NH, and aniline (9-(4'-Aminophenyl)-9H-pyrido [3,4-b] indole) (APNH) with the Density Functional Theory dependent time using the B3LYP functional and basis set 6-31G *. The spectra of the molecules were simulated and compared with the experimental spectra to analyze and interpret the observed spectra. The mutagenic / carcinogenic of APNH was discussed based on the RHF/6-31G * ab initio calculations made to determine the molecular structure and atomic charges Key words: APNH, UV absorption spectra, Time Dependent Density Functional Theory -TFDDT, ab inítio method.pt_BR
dc.languageporpt_BR
dc.publisherUniversidade do Estado do Amazonaspt_BR
dc.rightsAcesso Abertopt_BR
dc.rightsAtribuição-NãoComercial-SemDerivados 3.0 Brasil*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/br/*
dc.subjectNorharmanapt_BR
dc.subjectAnilinapt_BR
dc.subjectorbitais molecularespt_BR
dc.subjectQuímica computacionalpt_BR
dc.titleEstudo Espectroscópio experimental e Teórico do novo mutagênico /carcinogênico aminofenilnorharmanapt_BR
dc.typeDissertaçãopt_BR
dc.date.accessioned2020-03-20T00:27:53Z-
dc.contributor.advisor1Marques, Alberto dos Santos-
dc.contributor.advisor1Latteshttp://lattes.cnpq.br/9942676168552776pt_BR
dc.contributor.referee1Marques, Alberto dos Santos-
dc.contributor.referee1Latteshttp://lattes.cnpq.br/9942676168552776pt_BR
dc.contributor.referee2Nunez, Cecilia Veronica-
dc.contributor.referee2Latteshttp://lattes.cnpq.br/2046473694108264pt_BR
dc.contributor.referee3Pereira, Luiza Gabriel-
dc.contributor.referee3Latteshttp://lattes.cnpq.br/8481836940473225pt_BR
dc.creator.Latteshttp://lattes.cnpq.br/9577717582190721pt_BR
dc.description.resumoOs espectros UV/Visivel da norharmana (9H-pyrido[3,4-b]indol) (NH) e da anilina dissolvidas em etanol, foram estudados. A NH é encontrada na fumaça de cigarro em alta concentração, carne cozinhada, peixe assado, e foi detectado na urina de pessoas e no leite materno, e também é encontrada em algumas plantas da Amazônia como, por exemplo, a chacrono (Psichotria viridis), e è conhecida por seu principio ativo alucinógeno. A anilina está presente na fumaça de cigarro em alta concentração também, e é uma importante matéria prima na indústria química. Foram calculadas as energias de excitação, força do oscilador, para a NH, anilina e (9-(4'-aminophenyl)-9H-pyrido[3,4-b]indol) (APNH) com a Teoria Funcional da Densidade dependente do tempo usando o funcional B3LYP e o conjunto de bases 6-31G*. Os espectros das moléculas foram simulados e comparados com os espectros experimentais para analisar e interpretar os espectros observados. A atividade mutagênica/carcinogênica da APNH foi discutida com base nos cálculos ab inítio RHF/6-31G* feitos para determinação da estrutura molecular e cargas atômicas. Palavras chaves: APNH, Espectros de absorção UV, Teoria Funcional da Densidade dependente do tempo- TFDDT, método ab inítio.pt_BR
dc.publisher.countryBrasilpt_BR
dc.publisher.programPrograma de Pós-Graduação em Biotecnologia e Recursos Naturaispt_BR
dc.relation.referencesATKINS, P. W. Physical Chemistry. 5ª edição, New York: Oxford University Press. 597, 1994. ATKINS, P. W.; PAULA, J. Físico – Química Vol. 2, LTC, Rio de Janeiro - RJ, 7ª edição, 16, 2002. BALON, M., J. HIDALGO, P. GUARDANO, M.A. MUNOZ and C. CARMONA (1993b) Acid-base and spectral properties of b-carbolines. Part II. Dehydro and fully aromatic/3-carbo-lines. Journal of the Chemical Society, Perkin Transactions, 99-104, 1993. BECKE, A.D. Density-functional thermochemistry III. The role of exact exchange. J. Chem. Phys. 98: 5648-5652, 1993. BIONDIC, M.C.; ERRA-BALSELLS, R. Photochemical behaviour of β-carbolines. Part 4.1 Acid–base equilibria in the ground and excited states in organic media. Journal of the Chemical Society, Perkin Transactions 2., 0, 1323-1328, 1997. BREALEY, G.J.; KASHA, M. The role of hydrogen bonding in the n* blue - shift phenomenon. J. Am. Chem. Soc. 77 (17): 4462-4468, 1955. BURAWOY, A. Studies in the light absorption of organic compounds. Part IX. Unsaturated carbonyl compounds and semicarbazones. J. Chem. Soc.: 20 - 24, 1941. BURAWOY, A. The light absorption of organic compounds, and the nature of unsaturated linkages. Journal of the Chemical Society (Resumed) 20: 1177-1188, 1939. BURAWOY, A. Theory of electronic spectra of organic molecules Tetrahedron, 2 (1-2): 122-139, 1958. 66 CANGEMI, J. M.; SANTOS, A. M.; NETO, S. C. Quím. Nova na Escola 31, 159, 2009. CAO, R.; PENG, W.; WANG, Z. and XU, A. β-Carboline Alkaloids: Biochemical and Pharmacological Functions. Current Medicinal Chemistry, 14, 479-500, 2007. CAREY, F. A.; SUNDBERG, R. J.; Advanced Organic Chemistry, Part A: Structure and Mechanism, 4a. Ed., Springer Science + Business Media, LLC: New York, 2000. CASIDA, M.E.; CHONG, D.P.(Ed.) Recent Advances in Density Functional Methods. Part I, Wolrd Scientific Publishing Company, Singapore, 155, 1995. CHAUDHURI, A.; SAHU, P. K.; LEE, S. Mandy-body interaction in glycine–(water)3 complex using density functional theory method. J. Chem. Phys. 120-170, 2004. COSTA, M. C. MERES; FIGUEIREDO, M. CECCHETTO; CAZENAVE, SILVIA DE O. SANTOS. Ayahuasca: Uma abordagem toxicológica do uso ritualístico. Rev. Psiq. Clín. 32 (6); 310-318, 2005 COSTA, P. R. R.; FERREIRA, V. F.; ESTEVES, P. M.; VASCONCELLOS, M. L. A. A.; Ácidos e Bases em Química Orgânica, Editora Bookman: Porto Alegre, 2005. CRAMER, C. J. Essentials of Computational Chemistry. Theories and Models: John Wiley & Sons 471, 48552, 7153–189, 2002. DEWAR, M.J.S.; ZOEBISCH, E.G.; HEALY, E.F.; STEWART, J.J.P. Development and use of quantum mechanical molecular models. 76. AM1: a new general purpose quantum mechanical molecular model. J. Am. Chem. Soc. 107 (13):3902-3909, 1985. DURK, F.; ADRIAAN, T.; ISAAC, B.; LOLKE, P. Pharmacokinetics of the b-carboline norharman in man. Elsevier Sciences (69) 2113–2121, 2001. 67 EL-SAYED, M.A. Intramolecular Heavy-Atom Effect on the Polarization of Naphthalene Phosphorescence. J. Chem. Phys. 39 (7): 1899, 1963. EL-SAYED, M.A. Restore Desktop View Theoretical Considerations Concerning the Intramolecular Heavy-Atom Effect on the Phosphorescence Process C2v Symmetric Dihalonaphthalene. J. Chem. Phys. 43, 2864, 1965. FREIRE, R. O.; DA COSTA, N. B.; ROCHA, G. B.; SIMAS, A. M. Sparkle/AM1 Structure Modeling of Lanthanum (III) and Lutetium (III) Complexes. J. Phys. Chem. 2006. JEFFREY, G. A., SAENGER, W. Hydrogen Bonding in Biological Structures, Springer-Verlag, Berlin, 1991. GILLI, P.; FERRETTI, V., GILLI, G., Fundamental Principles of Molecular Modelling, Ed. Werner Gans et. al. Plenum Press, N.Y. ,1996. GOULD, R. G.; JACOBS, W. A. The Synthesis of Certain Substituted Quinolines and 5,6 - Benzoquinolines. J. Am. Chem. Soc. v. 61, p. 2980-2985, 1939. GRABOWSKI, S. J. Ab Initio Calculations on Conventional and Unconventional Hydrogen Bonds – Study of the Hydrogen Bond Strenght. J. Phys. Chem. A. 105, 10739, 2001. HADA, N.; TOTSUKA, Y.; ENYA, T.; TSURUMAKI, K.; NAKASAWA, M.; KAWAHARa, N.; MURAKAMI, Y.; YOKOYAMA, Y.; SUGIMURA, T.; WAKABAYASHI, K. Structures of mutagens produced by the co-mutagen norharman with o- and m- toluidine isomers. Mutation Research 493, 115-126. 2001. HASANEIN, A. A.; EVANS, M. W. Computational Methods in Quantum Chemistry, World Scientific, New Jersey, 1999. 68 HE, Y.; WU, C.; KONG, W. A Theoretical and Experimental Study of Water Complexes of m-Aminobenzoic Acid MABA· (H2O)n (n = 1 and 2). J. Phys. Chem. A 109 -748, 2005. HERAIZ, T.; GUILL, H.; ARAN, V.J. Oxidative metabolism of the bioactive and naturally occurring β-carboline alkaloids, norharman and harman, by human cytochrome P450 enzymes. Chem. Res. Toxicol. 21(11), 2172-2180. 2008. HOHENBERG, P.; KOHN, W. Inhomogeneous electons gas. J. Phys. Rev. 136, 864. 1964. HOHENBERG, P.; KOHN, W. Theory Including Spin Magnetism and Magnetic Fields; International Journal of Quantum Chemistry 100: 20–21, 2004. HOHENBERG, P.; KOHN, W. Theory of magnetism of rotation and magnetic fields Int. J. Quantum Chem.100, 20. 2003. INTERNATIONAL AGENCY FOR RESEARCH ON CANCER (IARC) Aniline and aniline hydrochloride. IARC Monographs on the Evaluation of Carcinogenic Risk to Humans IARC, IARC Scientific Publication, Lyon, 27, 39 – 61, 1982. JEFFREY, G.A., An introduction to hydrogen bond, Oxford University Press, Oxford, 1997. JENKINS, F. P.; ROBINSON, J. A.; GELLETLY, J. B. M.; SALMOND, G. W. A. The No-effect Dose of Aniline in Human Subjects and a Comparison of Aniline Toxicity in Man and the Rat. Fd Cosmet. Toxicol. Vol. 10, pp. 671-679, 1972. KAHL, T.; SCHRÖDER, K.; Ullmann's Encyclopedia of Industrial Chemistry, John Wiley & Sons: New York, 2007. KASHA, M. Characterization of electronic transitions in complex molecules. Discuss. Faraday Soc. 9: 14 - 19, 1950. 69 KATZUNG. B. G. Farmacologia Básica & Clínica, Guanabara: Rio de Janeiro, p. 332, 1994. KOCH, W.; HOLTHAUSEN, M.C. A Chemist's Guide to Density Functional Theory, Wiley-VCH, Weinheim, 2ª ed. 2002. KOHN, W.; SHAM, L.; J. Solvent Effect in Mixtures Phys. Ver. 140-1133, 1965. KOCH, W.; HOLTHAUSEN, M.C.; A Chemist's Guide to Density Functional Theory, 2ª ed., Wiley-VCH: Weinheim, 2002. KOHN, W.; SHAM, L. Self-Consistent Equations Including Exchange and Correlation Effects. J. Physical Review 140 (4a), 1133-1136, 1965. LAI, B. T. I; LIM, B.T.; LIM, E.C.T.; Photophysical properties of biologically important molecules related to proximity effects: psoralens. .J. Am. Chem. Soc. 104- 7631, 1982. LEE, C.; YANG, W.; PARR, R.G. Development of the colle-salvetti correlation-energy formula into a functional of the electron density. Phys. Rev. 37-785, 1988. LEVINE, I. N.; Quantum Chemistry, 5 ed., Prentice-Hall: New Jersey, EUA. p. 423-425. 2000. LILLIAN S. DeBruin; PERRY A. Martos; DAVID, P.Josephy. Detection of monocyclic aromatic amines, possible mammary carcinogens, in human milk. Chem Res Toxicol; 12:78–82, 1999. LIU, T, HAN, W-G.; HIMO, F.; ULLMANN,G. M.; BASHFORD, D. TOUTCHKINE, A.; HAHN, K. M.; NOODLEMAN, L. Density Functional Vertical Self-Consistent Reaction Field Theory for Solvatochromism Studies of Solvent-Sensitive Dyes. J. Phys. Chem. 108, 3545-3555, 2004. 70 LIU, T.; HAN, W-G.; HIMO, F.; ULLMANN,G. M.; BASHFORD, D. TOUTCHKINE, A.; HAHN, K. M.; NOODLEMAN, L. Density Functional Methods – B3LYP. J. Phys. Chem. 108, 3545, 2004. LOWER, S.K.; EL-SAYED, M.A. The triplet state and molecular electronic processes in organic molecules. Chemical Reviews 66 (2):199-241, 1966. MALLICK, A.; CHATTOPADHYAY, N.; BIOPHYS. Spectroscopic Investigation on the Interaction of ICT Probe 3-Acetyl-4-oxo-6,7-dihydro-12H Indolo-[2,3-a] Quinolizine with Serum Albumins. Journal of Physical Chemistry B, 109, 14683 14690, 2005. MARQUES, A.D.S. ; TAKAHATA, Y. ; LUCENA JUNIOR, J. R. ; SOUZA, M. C. ; SIMÕES, S. S. ; AZEVEDO, W. M. ; SÁ, G. F. . The species of 8-methoxy-psoralen in hydrophobic and hydrophilic environments and its solubilization in neutral and charged micelles. Journal of Luminescence, v. 97, p. 237-249, 2002. MCCONNELL, H. Effect of polar solvents on the absorption frequency of n→ electronic transitions. The Journal of Chemical Physics 20 (4): 700-704, 1952. MCGLYNN, S.P.; AZUMI, T.; KINOSHITA, M.; Spectroscopy of the Triplet State; Prentice-Hall: Englewood Cliffs, p. 261, 1969. MENGOD, M. O. A., Apostila de Toxicologia e Higiene Industrial. Disponível em: <http://pt.scribd.com/doc/58895983/2/Propriedades-gerais-usos-e-fontes-deexposicao >. Acesso em: 14 Dez. 2011. NISHIGAKI, R.; TOTSUKA, Y.; KATAOKA, H.; USHIYAMA, H.; GOTO, S.; AKASU, T.; WATANABE, T.; SUGIMURA, T. and WAKABAYASHI, K. Detection of aminophenylnorharman, a possible endogenous mutagenic and carcinogenic compound, in human urine samples, Cancer Epidemiology Biomakers and Prevention 16, 151-156. 2007. 71 NISHIGAKI, R.; TOTSUKA, Y.; TAKAMURA-ENYA, T.; SUGIMURA, T.; WAKABAYASHI, K. Identification of cytochrome P-450s involved in the formation of APNH from norharman with aniline. Mutation Research 562, 19–25. 2004. O´NEIL, M. J.; Merck Index, 14a. ed., MERCK: Whitehouse Station, 2006; b) Sítio da Enciclopedia.com. Disponível em: <http://www.encyclopedia.com/to pic/aniline.aspx>. Acesso em: 14 Dez. 2011. ODA, Y.; TOTSUKA, Y.; WAKABAYASHi, K.; GUENGERICH, F.P.; SHIMADA, T. Activation of aminophenylnorharman, aminomethylphenylnorharman and aminophenylharman to genotoxic metabolites by human N-acetyltransferases and cytochrome P450 enzymes expressed in Salmonella typhimurium umu tester strains. Mutagenesis 21(6), 411 – 416. 2006. OKAMOTO, A.K.; GAUDIO, A.C.; DOS SANTOS MARQUES, A.; TAKAHATA, Y. QSAR study of inibition by coumarins of IQ induced mutation in S. typhimurium TA98. J. Mol. Struc. Theochem, 725, 231-238, 2005. ORIGINLAB CORPORATION. OriginPro 8SRO, v8.0724 (B720). Copyringht@, 1991-2007 PAOLONI, L. Nature of the Hydrogen Bond. J. Chem. Phys. 30, 1045; doi: 10.1063/1.1730080,1959. PARR, R. G.; YANG, W. Density-Functional Theory of Atoms and Molecules; Oxford University Press: New York, 1989. PAULING, L.; The nature of Chemical Bond, Cornell University Press, New York, 1960 PIEDADE, Claudenor de Souza. Estudo da estrutura - atividade da norharmana, DHM-cumarina e riparinas I, II, III usando espectroscopia eletrônica e cálculos teóricos. Dissertação de Mestrado, Universidade do Estado do Amazonas, Manaus, 2009. 72 PLATT, J. R. Electrochromism, a possible change of color producible in dyes by an electric field. Journal of Chemical Physics 34, 862-863, 1961. POPLE, J. A.; BEVERIDGE, D.; Approximate Molecular Orbital Theory. McGraw- Hill: New York, 1970. POPLE, J. A.; SCOTT, A. P.; WONG, M. W.; RADOM L. Scalling Factors for Obtaining Fundamental Vibrational Frequencies and Zero-Point Energies from HF/6-31G* and MP2/6-31G* Harmonic Frequencies. Isr. J. Chem. 345, 350, 1993. POPLE, J.A.; SANTRY, D.P.; SEGAl, G.A. Approximate self-consistent molecular orbital theory I invariant procedures. J. Chem. Phys. 43, S129-35, 1965. RAMAEKERS, R.; PAJAK, J.; LAMBIE, B.; MAES, G. Neutral and zwitterionic glycine.H2O complexes: A theoretical and matrix isolation Fourier transform infrared study. J. Chem. Phys 120 – 4182, 2004. REYMAN, D.; TAPIA, M.J.; CARCEDO, C.; VINÃS, M.H. Photophysical properties of methyl beta-carboline-3-carboxylate mediated by hydrogen-bonded complexes--a comparative study in different solvents. Biophysical Chemistry,104-683, 2003. ROCHA,G. B.; FREIRE, R. O.L.; SIMAS, A. M.; STEWART, J J. P.; J. Comput. Chem. 27-1101, 2006. SCHEIBE, G.; FELGOR, E.; ROSSLER, G. Types of Defects in The Solvent Ber. 59, 2619, 1926. SCHEIBE, G.; FELGOR, E.; ROSSLER, G. Pattern Hidrigenio Connection. Ber. 60, 1406, 1927. SCHEINER, S. Hydrogen Bonding: A Theoretical Perspective, Oxford University Press, Oxford, 1997. 73 SCHLEYER, P. R.; The Encyclopedia of Computational Chemistry. John Willey e Sons, N.Y. EUA 1, 801, 1986. SIDMAN, J. Electronic Transitions Due To Nonbonding Electrons Carbonyl, Aza-Aromatic, And Other Compounds. Chem. Rev. 58 (4): 689–713, 1958. SMITH, M. B.; MARCH, J.; Advanced Organic Chemistry: Part 1, 2a. Ed., John Wiley & Sons, Inc.: New Jersey, 2001. SOPER, P D.; Dupont, Initio Calculation of Vibrational- SPECTRUM. Central Research & Development, E328/123, DUCOM, ESVAX: SOPERPD, p. 695-1757. 1997. SOUZA, V. C.; Botânica Sistemática: Guia ilustrado para identificação das famílias de Fanerógamas nativas e exóticas no Brasil, Harri Lorenzi, 2a. ed., Nova Odessa: São Paulo, 2008. STEPHENS, P. J.; DEVLIN, F. J.; CHABALOWSKI, C. F. and FRISCH, M. J. Ab Initio Calculation of Vibrational Absorption and Circular Dichroism Spectra Using Density Functional Force Fields. J. Phys. Chem. 98: 11623-11627, 1994. STEWART, J. J. P.; J. Comput. Chem. 10-209, 1989. THATCHER, R. J., DOUTHWAITE, R. F., β – Carboline (norharman), Acta Cryst. C67, 241-243, 2001. TOTSUKA, Y.; HADA, N.; MATSUMOTO, K.; KAWAHARA, N.; MURAKAMI, Y.; YOKOYAMA, Y.; SUGIMURA, T.; WAKABAYASHI K. Structural determination of a mutagenic aminophenylnorharman produced by the co-mutagen norharman with aniline. Carcinogenesis 19(11), 1995-2000.1998. TOTSUKA, Y.; TAKAMURA-ENYA, T.; KAWAHARA, N.; NISHIGAKI, R.; SUGIMURA, T.; WAKABAYASHI, K. Structure of DNA adduct formed with 74 aminophenylnorharman, being responsible for the comutagenic action of norharman with aniline. Chem. Res. Toxicol. 15, 1288 – 1294. 2002. TOTSUKA, Y.; TAKAMURA-ENYA, T.; NISHIGAKI, R.; SUGIMURA, T.; WAKABAYASHI, K. Mutagens formed from β-carbolines with aromatic amines. J. Chromatography B 802(1), 135-141. 2004. TURRO, N.J.; Modern Molecular Photochemistry, Benjamin Cummings: Menlo Park, 1978. URSULA, B.; GERLIIDE, W.; INES, S.; HANS, J. G.; GOTZ M.; KARL, M. Elevated Norharman Plasma Levels in Alcoholic Patients and Controls Resulting from Tobacco Smoking. Elsevier Sciences 1425–1432, 1996. WAMORI, T.; TOTSUKA, Y.; UCHIYa, N.; KITAMURA, T.; SHIBATA, H.; SUGIMURA, T.; WAKABAYASHI, K. Carcinogenicity of aminophenylnorharman, a possible novel endogenous mutagen, formed from norharman and aniline, in F344 rats. Carcinogenesis 25 (10), 1967–1972. 2004. WANG, Y., SAEBO, S., PITTMAN JR., C. U., The structure of aniline by abinitio studies, J. Mol. Structure (THEOCHEM), 281 (2,3), 1993. WAVEFUNCTION, Inc. 18401 Von Karman Ave. Suite 370, Irvine CA 92612, PC Spartan Pro. USA, version 2006. WELLS, C.H.J.; Introduction to Photochemistry, Chapman and Hall: London, 1972. WIEST, O.; SCHLEYER, P. R. Transition States in Organic Chemistry: Ab Initio. The Encyclopedia of Computational Chemistry, John Wiley & Sons Ltd, Athens, USA 5: 3104 – 3114, 1998. YUKARI TOTSUKA, HIROYUKI KATAOKA, TAKEJI TAKAMURA-ENYA, TAKASHI SUGIMURA, KEIJI WAKABAYASHI. In vitro and in vivo formation of 75 aminophenylnorharman from norharman and aniline. Mutation Research 506–507-49–54, 2002. ZIÓLKOWSKI, M.; GRABOWSKI, S. J.; LESZCZYNSKI, J. Cooperativity in Hydrogen - Bonded Interactions: Ab Initio and “Atoms in Molecules” Analyses J. Phys. Chem. 110-6514, 2006.pt_BR
dc.subject.cnpqBiotecnologiapt_BR
dc.publisher.initialsUEApt_BR
Aparece nas coleções:DISSERTAÇÃO - MBT Programa de Pós-Graduação em Biotecnologia e Recursos Naturais da Amazônia

Arquivos associados a este item:
Arquivo Descrição TamanhoFormato 
Estudo espectroscópico experimental e teórico do novo Mutagênico - Carcinogênico Aminofenilnorharman..pdf1,31 MBAdobe PDFVisualizar/Abrir


Este item está licenciada sob uma Licença Creative Commons Creative Commons