DSpace logo

Use este identificador para citar ou linkar para este item: http://repositorioinstitucional.uea.edu.br//handle/riuea/2392
Registro completo de metadados
Campo DCValorIdioma
dc.contributor.authorRocha, Elerson Matos-
dc.date.available2020-03-20-
dc.date.available2020-03-19T01:13:47Z-
dc.date.issued2015-05-29-
dc.identifier.urihttp://repositorioinstitucional.uea.edu.br//handle/riuea/2392-
dc.description.abstractMalaria is a disease responsible for thousands of deaths worldwide every year. The etiologic agents are protozoa of the genus Plasmodium that are transmitted by female Anopheles mosquitos, considered vector in these conditions. Despite several measures are employed to control malaria and also of many international control programs being implemented, with the focus always returned to mosquito vectors, which each decade exhibit marked resistance to conventional insecticides, the disease remains very common and It presents thousands of cases, a fact that leads to the search for new vector mosquito control methods. Research based on biological control using micro-organisms, are becoming alternatives for controlling these most frequent form of vectors. Little is known about microbial communities that live in symbiosis with the larvae of Anopheles. Know and understand the functions of the diversity of bacteria that live associated with the malaria vector, will allow to understand how the relationship between bacteria, insects and protozoa happen and extensive research may be used such information for future work in order to control this disease in the world. Molecular methodologies contribute to this development analysis of microbial diversity and can reveal a scenario of the distribution of bacteria in the natural habitat of larval breeding of the malaria vector. This study aimed to make a comparative analysis of cultivable bacterial groups associated with larvae and pupae of Anopheles darlingi and their habitat in the city of Coari and Manaus in Amazonas state. Sampling was carried out in the city of Coari and Manaus. Bacteria were inoculated and purified in selective media. DNA extractions were performed and the identification was carried out from the amplification and sequencing of the 16S rDNA fragment. In this study, 1,845 were isolated bacteria from the city of Coari and Manaus. They were identified from water samples, 3rd and 4th larval and pupal stages of A. darlingi, 46 different species of bacteria belonging to 23 genera phyla Proteobacteria, Actinobacteria, Firmicutes and Bacteroidetes. The species Bacillus sp., Chromobacterium sp., Chromobacterium violaceum, Bacillus thuringiensis and Pseudomonas sp had the highest percentage of isolates obtained. It was obtained a collection that makes the first step towards a promising control study involving malaria bacteria associated with A. darlingi and their habitat in the Brazilian Amazon region. The next step will be to use the isolates identified in this study work aimed at understanding the relationship of bacteria with the malaria parasite in the midgut of the mosquito A. darlingi. Keywords: Bacterial microbiota - Anopheles darlingi - Malaria - Amazon.pt_BR
dc.languageporpt_BR
dc.publisherUniversidade do Estado do Amazonaspt_BR
dc.rightsAcesso Abertopt_BR
dc.rightsAtribuição-NãoComercial-SemDerivados 3.0 Brasil*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/br/*
dc.subjectMicrobiota bacterianapt_BR
dc.subjectAnopheles darlingipt_BR
dc.subjectMaláriapt_BR
dc.subjectAmazôniapt_BR
dc.titleEstudo comparativo da microbiota bacteriana cultivável associada à Anopheles darlingi Root, 1926, e seu hábitatpt_BR
dc.typeDissertaçãopt_BR
dc.date.accessioned2020-03-19T01:13:47Z-
dc.contributor.advisor-co1Souza, Antonia Queiroz Lima de-
dc.contributor.advisor-co1Latteshttp://lattes.cnpq.br/8499987875894209pt_BR
dc.contributor.advisor1Tadei, Wanderli Pedro-
dc.contributor.advisor1Latteshttp://lattes.cnpq.br/6806722604010480pt_BR
dc.contributor.referee1Tadei, Wanderli Pedro-
dc.contributor.referee1Latteshttp://lattes.cnpq.br/6806722604010480pt_BR
dc.contributor.referee2Silva , Ademir Castro e-
dc.contributor.referee2Latteshttp://lattes.cnpq.br/5162043375426666pt_BR
dc.contributor.referee3Pessoa, Marcos Cézar Fernandes-
dc.contributor.referee3Latteshttp://lattes.cnpq.br/6237137010678999pt_BR
dc.creator.Latteshttp://lattes.cnpq.br/2384273331719764pt_BR
dc.description.resumoA malária é uma doença responsável por milhares de mortes no mundo a cada ano. Os agentes etiológicos são protozoários do gênero Plasmodium que são transmitidos pela fêmea de mosquitos do gênero Anopheles, considerada vetor nessas condições. Apesar de várias medidas serem empregadas para o controle da malária e também de diversos programas internacionais de controle sendo implantados, com o foco sempre voltado aos mosquitos vetores, que a cada década apresentam acentuadas resistências aos inseticidas convencionais, a doença continua a ser muito frequente e apresenta milhares de casos, fato este que acarreta na busca de novos métodos de controle do mosquito vetor. Pesquisas com base em controle biológico, utilizando micro-organismos, vêm se tornando alternativas para o controle desses vetores de forma mais frequente. Pouco se conhece a respeito de comunidades microbianas que convivem em simbiose com as larvas de anofelinos. Conhecer e entender as funções da diversidade de bactérias que vivem associadas ao vetor da malária, possibilitará entender como as relações entre bactérias, insetos e protozoário acontecem e inúmeras pesquisas poderão se utilizar dessas informações para futuros trabalhos com a finalidade de controlar esta doença no mundo. Metodologias moleculares contribuem para esse desenvolvimento de análises da diversidade microbiana e podem revelar um cenário da distribuição de bactérias no hábitat natural de procriação larval do vetor da malária. Este estudo teve por objetivo fazer uma análise comparativa de grupos bacterianos cultiváveis associados a larvas e pupa de Anopheles darlingi e seu hábitat no Município de Coari e Manaus no Estado do Amazonas. Foram realizadas coletas no município de Coari e Manaus. As bactérias foram inoculadas e purificadas em meios seletivos. Foram realizadas extrações de DNA e a identificação foi realizada a partir da amplificação e sequenciamento do fragmento do rDNA 16S. Neste estudo, foram isoladas 1.845 bactérias do Município de Coari e Manaus. Foram identificadas entre as amostras de água, larva de 3° e 4° estádio e pupa de A. darlingi, 46 diferentes espécies de bactérias de 23 gêneros pertencentes aos filos Proteobacteria, Actinobacteria, Firmicutes, e Bacteroidetes. As espécies Bacillus sp., Chromobacterium sp., Chromobacterium violaceum, Bacillus thuringiensis e Pseudomonas sp apresentaram a maior porcentagem dos isolados obtidos. Foi obtida uma coleção que se torna o passo inicial para um estudo promissor de controle da malária envolvendo bactérias associadas a A. darlingi e seu hábitat na Região Amazônica Brasileira. O próximo passo será utilizar os isolados identificados neste estudo em trabalhos que visam compreender a relação das bactérias com o parasita da malária no intestino médio do mosquito A. darlingi. Palavras-chave: Microbiota bacteriana - Anopheles darlingi – malária – Amazônia.pt_BR
dc.publisher.countryBrasilpt_BR
dc.publisher.programPrograma de Pós-Graduação em Biotecnologia e Recursos Naturais da Amazôniapt_BR
dc.relation.referencesABALLAY, A. & AUSUBEL, F.M. Caenorhabditis elegans as a host the study of host-pathogen interaction. Curr. Opin. Microbiol. 5, 97-101. 2002. AGOGUE H, CASAMAYOR EO, JOUX F, OBERNOSTERER I, DUPUY C, LANTOINE F et al. (2004). Comparison of samplers for the biological characterization of the sea surface microlayer. Limnol Oceanogr Meth 2: 213–225. AKSOY, S., WEISS, B., ATTARDO, G., 2008. Paratransgenesis applied for control of tsetse transmitted sleeping sickness. Adv. Exp. Med. Biol. AMANN, R. I.; LUDWIG, W. & SCHLEIFER, K. H. Phylogenetic identification and in situ detection of individual microbial cells without cultivation. Microbiological Reviews, v. 59, p. 143-169, 1995. BACKHED F, LEY RE, SONNENBURG JL, PETERSON DA, GORDON JI., 2005 Host-bacterial mutualism in the human intestine. Science 307: 1915-1920. doi:10.1126/science.1104816. PubMed: 15790844. BANDO H, K OKADO, GUELBEOGO WM, BADOLO A, AONUMA H, NELSON B, et al. Diversidade específica Intra-de Serratia marcescens em Anopheles intestino médio do mosquito define Plasmodium capacidade de transmissão. Sci Rep 2013; 3:. 1641. doi: 10.1038 / srep01641. PMID: 23571408. BEARD C. B, CORDON-ROSALES C, DURVASULA R. V. (2002). Bacterial symbionts of the triatominae and their potential use in control of Chagas disease transmission. Annu Rev Entomol. BOICHENKO, V.A. KLIMOV, V. V. MIYASHITA, H. and MIYACHI, S (2000). Functional characteristics of chlorophyll d-predominanting photosynthetic aooaratus in intact cells of Acaryochloris marina. Photosynth. Res. 65: 269-277 BOISSIÈRE A, TCHIOFFO M. T, BACHAR D, ABATE L, MARIE A. Midgut Microbiota of the Malaria Mosquito Vector Anopheles gambiae and Interactions with Plasmodium falciparum Infection. PLoS Pathog 8(5): e1002742. doi:10.1371/journal.ppat.1002742, 2012. BOLETIM EPIDEMIOLÓGICO. Secretaria de Vigilância em Saúde − Ministério da Saúde – Brasil- Volume 44 N° 1 - 2013 BORNEMAN, JAMES; TRIPLETT, ERIC W. 1997. Molecular Microbial Diversity in Soils from Eastern Amazonia: Evidence for Unusual Microorganisms and Microbial Population Shifts Associated with Deforestation. Brock Institute for Environmental Microbiology and the Department of Agronomy, University of Wisconsin-Madison, Madison. 63: 2647-2653 pp. 54 BRIONES A. M; SHILILU. J; GITHURE. J; NOVAK R; RASKIN. L.; Thorsellia anophelis is the dominant bacterium in a Kenyan population of adult Anopheles gambiae mosquitoes. The ISME Journal (2008) 2, 74–82. BRUNA RAQUEL WOLFARTH, Análise epidemiologica espacial, temporal e suas relações com as variáveis ambientais sobre a incidência da malária no período de 2003 a 2009 em 4 municípios do estado do Amazonas, Brasil. Dissertação de mestrado (INPA). Manaus: [s.n.], 2011. CDC – CENTERS FOR DESEASE CONTROL AND PREVENTION. Biology parasites. Aboutt Malaria (2010). CANHOS, V. P; MANFIO, G. P; VAZOLLER, R. F.; PELLIZARE, V. H. Diversidade no Domínio Bactéria. In: Joly, C. A.; Bicudo, C. E. M. (orgs). Biodiversidade do Estado de São Paulo, Brasil: síntese do conhecimento ao final do século XX. São Paulo: FAPESP, 1999. CARDOSO, A.M; CLEMENTINO, M.M; VIEIRA, R.P; CALVACANTE, J.J.V, ALBANO, R,M; MARTINS, O.B. 2010. Archaeal Metagenomics: Bioprospecting Novel genes and Exploring New Concepts. In: MARCO, D. (Org). Metagenomics: Theory, Methods, and Applications. Wymondham: Caister Academic Press, v.1, p. 159-169. CARDOSO, A.M et al. 2012. Gut Bacterial Communities in the Giant Land Snail Achatina fulica and their Modification by Sugarcane-Based. Diet. PLos ONE. 7: e33440. CARVALHO, M. P.; ABRAHAM, W. R.; MACEDO, A. J. Microrganismos em favor da saúde humana. Revista Liberato, Novo Hamburgo, v. 9, n. 11, p. 77-81, 2008. CHAVSHIN, A.R; OSHAGHI MA, V.H; POURMAND, M.R; RAEISI A, E.A.A; MARDANI N, G.S. Identification of Bacterial Microflora in the Midgut of the Larvae and Adult of Wild Caught Anopheles stephensi: a step toward finding suitable paratransgenesis candidates. Acta Tropical, v. 121, n.23, p.129–134. 2012. CIRIMOTICH, C.M, DONG Y, CLAYTON, A.M, SANDIFORD, S.L, SOUZA NETO, J.A, MULENGA M, et al. Natural micróbio mediada por refratariedade ao Plasmodium infecção em Anopheles gambiae. Science. 2011; 332: 855-858. doi: 10.1126/science.1201618. PMID: 21566196. COENYE, T. GEVERS, D. VANS DE PEER, Y. VANDAMME, P. SWINGS, J. Towards a prokaryotic genomic taxonomy. FEMS Microbiology Reviews. 29: 147-167. 2005 CONSOLI, R.A.G.B.; LOURENÇO-DE-OLIVEIRA, R. Principais mosquitos de importância sanitária no Brasil. Editora FIOCRUZ, 228p. 1994. 55 CONTE JE. (1997). A novel approach to preventing insect borne diseases. N Engl J Med 337: 785–786. CONTI, R; GUIMARÃES, D.O; PUPO, M. T. Aprendendo com as Interações da Natureza: microrganismos simbiontes como fontes de produtos naturais bioativos. Ciência e Cultura,v.64, n.3. São Paulo.2012. COSTA, E.L.N., LUCH, O.P.R., FRITZ, L.L., FIUZA, L.M., 2009/2010. Artrópodes e Bactérias Entomopatogênicas, Biotecnologia Ciência & Desenvolvimento. Brasilia/DF. COUTINHO-ABREU, I.V., ZHU, K.Y., RAMALHO-ORTIGAO, M., 2009. Transgenesis and paratransgenesis to control insect-borne diseases: current status and future challenges. Parasitol. Int. 59, 1–8. DE MAAGD, R.A.; BRAVO, A.; BERRY, C.; CRICKMORE, N.; SCHNEPF, H.E. Structure, diversity, and evolution of protein toxins from spore forming entomopathogenic bacteria. Annu. Rev. Genet. 2003, 37, 409–433. DILLON, R. J., DILLON, V. M., 2004. The gut bacteria of insects: non-pathogenic interactions. Annu. Rev. Entomol. DONG, Y. MANFREDINI, F. DIMOPOULOS, G. (2009) Implication of the Mosquito Midgut Microbiota in the Defense against Malaria Parasites. PLoS Pathog 5(5): e1000423. doi:10.1371/journal.ppat.1000423. ENAYATI, A. & HEMINGWAY, J. Malaria management: past, present, and future. Annual review of entomology. 2010; 55:569-591. ENGEL P, KWONG W. K & MORAN N. A. (2013) Frischella perrara gen. nov., sp. nov., a gammaproteobacterium isolated from the gut of the honey bee, Apis mellifera. Int J Syst Evol Microbiol, doi: Epub ahead of print. FAVIA, G. RICCI, I. DAMIANI, C., RADDADI, N., CROTTI, E., MARZORATI, M., RIZZI, A., URSO, R., BRUSETTI, L., BORIN, S., MORA, D., SCUPPA, P., PASQUALINI, L., CLEMENTI, E., GENCHI, M., CORONA, S., NEGRI, I., GRANDI, G., ALMA, A., KRAMER, L., ESPOSITO, F., BANDI, C., SACCHI, L., DAFFONCHIO, D., 2007. Bacteria of the genus Asaia stably associate with Anopheles stephensi, an Asian malarial mosquito vector. Proc. Natl. Acad. Sci. U.S.A. 104, 9047–9051. FALCON, L. A. 1971. Use of bacteria for microbial control. Microbial Control of Insects and Mites. New Iork, Academic Press, 67-95p. FARAN, M. E. & LINTHICUM, K. J. A handbook of the Amazonian species of Anopheles (Nyssorhynchus) (Diptera: Culicidae). Mosquito Systematics, 13 (1): 01-81. 1981. 56 FERREIRA, M. U. FORRONDA, A. S. SCHUMAKER, T. T. S. Fundamentos Biológicos da Parasitologia Humana. Editora Manole. Barueri – SP, 2003. FLEMING, G., 1992. Biología y ecología de los vectores de la malaria en las Américas. in: Washington, D.O.P.d.l.S., 1986. (Eds.). FORATTINI, O.P, 2002. Culicidologia Médica. São Paulo. FORATTINI, O. P., 1973. Entomologia médica, São Paulo. FORST S, DOWDS B, BOEMARE NE, STACKEBRANDT E: Xenorhabdus and Photorhabdus spp.: bugs that kill bugs. Annu Rev Microbiol 1997, 51:47-72. GLARE, T.; CARADUS, J.; GELERNTER, W.; JACKSON, T.; KEYHANI, N.; KOHL, J.; MARRONE, P.; MORIN, L.; STEWART, A. Have biopesticides come of age? Trends Biotechnol. 2012, 30, 250–258 GRASSI, B.; BIGNAMI, A.; BASTIANELLI, G.; Ulteriore ricerche sul ciclo dei parassiti malarici umani sul corpo del zanzarone. Atti Reale Accad Lincei. v. 8: p. 21-28, 1899. GONZALEZ-CERON, L., SANTILLAN, F., RODRIGUEZ, M.H., MENDEZ, D., HERNANDEZ-AVILA, J.E., 2003. Bacteria in midguts of field-collected Anopheles albimanus block Plasmodium vivax sporogonic development. J. Med. Entomol. GUSMÃO, D.S; SANTOS, A.V; MARINI, D.C; BACCI M, J.R; BERBERT-MOLINA, M.A; LEMOS, F.J.A. Culture-Dependent And Culture-Independent Characterization of Microorganisms Associated with Aedes aegypti (Diptera: Culicidae) (L.) and Dynamics of Bacterial Colonization in the Midgut. Acta Tropical. v.115, n.15, p.275–281. 2010. HAWKER, L. E.; LINTON, A. H.; FOLKES, B. F.; CARLILE, M. J. An introduction to the biology of micro-organisms. London, 1960. HILL, C.A., KAFATOS, F.C., STANSFIELD, S.K., COLLINS, F.H., 2005. Arthropod-borne diseases: vector control in the genomics era. Nat. Rev. Microbiol. 3 HILLIS, DAVID M.; BULL, JAMES J. 1993. An Empirical Test of Bootstrapping as a Method for Assessing Confidence in Phylogenetic Analysis. Systematic Biology, 42 (2): 182-192. HOYLE, D. C.; HIGGS, P. G. 2003. Factors Affecting the Errors in the Estimation of Evolutionary Distances Between Sequences. Molecular Biology Evolution, 20 (1):1-9. 57 ITO, J; GHOSH, A; MOREIRA, L.A; WIMMER, E.A; JACOBS-LORENA, M. (2002). Transgenic anopheline mosquitoes impaired in transmission of a malaria parasite. Nature 417, 452–455. ITURBE-ORMAETXE, I; WALKER, T; O’ NEILL, S.L. Wolbachia and the Biological Control of Mosquito-Borne Disease. EMBO Reports, v.12, n.6, p.508–518. 2011. KAMPFER, P., LINDH, J. M., TERENIUS, O., HAGHDOOST, S., FALSEN, E., BUSSE, H.-J., AND FAYE, I. "Thorsellia anophelis gen. nov., sp. nov., a new member of the Gammaproteobacteria." Int. J. Syst. Evol. Microbiol. (2006) 56:335-338. Published online 23 September 2005. doi:10.1099/ijs.0.63999-0 KLEPZIG, K.D., ADAMS, A.S., HANDELSMAN, J., RAFFA, K.F., 2009. Symbioses: a key driver of insect physiological processes, ecological interactions, evolutionary diversification, and impacts on humans. Env. Entomol. 38, 67–77. KUMAR, S. MOLINA-CRUZ, A. GUPTA, L. RODRIGUES, J. BARILLAS-MURY, C. A Peroxidase/dual oxidase system modulates midgut epithelial immunity in Anopheles gambiae. Science. 2010 Mar 26;327(5973):1644-8. doi: 10.1126/science.1184008. Epub 2010 Mar 11. LACEY, L.A.; FRUTOS, R.; KAYA, H.K.; VAIL, P. Insect pathogens as biological control agents: Do they have a future? Biol. Control 2001, 21, 230–248. LACEY, L.A., 2007. Bacillus thuringiensis serovariety israelensis and Bacillus sphaericus for mosquito control. J Am Mosq Control Assoc 23, 133-163. LINDH, J.M; TERENIUS, O; FAYE, I. 16S rRNA Gene-Based Identification of Midgut Bacteria from Field-Caught Anopheles gambiae Sensu Lato and A. funestus Mosquitoes Reveals New Species Related to Known Insect Symbionts. Applied and Environmental Microbiology, v. 71, n.2, p.7217–7223. 2005. MALAJOVICH, M. A. Biotecnologia: Fundamentos. Edições Biblioteca Max Feffer do Instituto de Tecnologia ORT, Rio de Janeiro, 2009. Appl. Environ. Microbiol. MERRITT, R. W; DADD, R. H; WALKER, E. D. Feeding Behavior, Natural Food, and Nutritional Relationships of Larval Mosquitoes. Annual Review of Entomology, v. 37, n.7, p. 349 – 376. 1992. NARTEY, R; OWUSU-DABO, E; KRUPPA, T; BAFFOUR-AWUAH, S; ANNAN, A; OPPONG, S; BECKER, N; OBIRI-DANSO, K. (2013). Use of Bacillus thuringiensis var israelensis as a viable option in an Integrated Malaria Vector Control Programme in the Kumasi Metropolis, Ghana. Parasit Vectors 6: 116. NGO, C. T., AUJOULAT, F., VEAS, F., JUMAS-BILAK, E., & MANGUIN, S. (2015). Bacterial Diversity Associated with Wild Caught Anopheles Mosquitoes 58 from Dak Nong Province, Vietnam Using Culture and DNA Fingerprint. PLoS ONE,10(3), e0118634. http://doi.org/10.1371/journal.pone.0118634. OLIVEIRA-FERREIRA, J.; LACERDA, M. V. G.; BRASIL, P.; LADISLAU, J. L. B.; TAUIL, P. L.; DANIEL-RIBEIRO, C. T. Malaria in Brazil: An overview. Malaria Journal, v. 9: p. 115, 2010. OLIVEIRA-FERREIRA, J., NAKAIE, C. R., DANIEL-RIBEIRO, C., 1992. Low frequency of anti-Plasmodium falciparum circumsporozoite repeat antibodies and rate of high malaria transmission in endemic areas of Rondonia State in northwestern Brazil. Am J Trop Med Hyg. PEIXOTO, J.C.C. (2009). Análise da diversidade bacteriana de rios Negro e Solimões pela abordagem metagenômica. Tese (Doutorado em Biotecnologia). Universidade Federal do Amazonas. PUMPUNI, C.B. DEMAIO, J. KENT, M. DAVIS, J.R. BEIER, J.C. (1996). Bacterial population dynamics in three anopheline species: the impact on Plasmodium sporogonic development. Am. J. Trop. Med. Hyg. RAGHAVENDRA, K. BARIK, T.K. REDDY, B.P.N. SHARMA, P. DASH, A.P. Malaria vector control: from past to future. Parasitology research. 2011;108(4):757– 779. RAHME, L.G et al. Use of model plant hosts to identify Pseudomonas aeruginosa virulence factors. Proc. Nati Acad. Sci. USA 94, 13245-13250. 1997. RAMIREZ JL, SHORT SM, BAHIA AC, SARAIVA RG, DONG Y, ET AL. (2014) Chromobacterium Csp_P Reduces Malaria and Dengue Infection in Vector Mosquitoes and Has Entomopathogenic and In Vitro Anti-pathogen Activities. PLoS Pathog 10(10): e1004398. doi:10.1371/journal.ppat.1004398. RANI, A; SHARMA, A; RAJAGOPAL, R; ADAK, T; BHATNAGAR, R.K. Bacterial diversity analysis of larvae and adult midgut microflora using culture-dependent and culture-independent methods in lab-reared and field-collected Anopheles stephensi-an Asian malarial vector. BMC Microbiol. 2009; 9: 96. doi: 10,1186 / 1471-2180-9-96. PMID: 19450290. READ, A.F. LYNCH, P.A. THOMAS, M.B. How to make evolution-proof insecticides for malaria control. PLoS biology. 2009;7(4):e1000058. REY, LUIS. Parasitologia. Editora Guanabara Koogan S.A. Rio de Janeiro, RJ. p. 335-347, 2001. RIEHLE M. A., MOREIRA C. K., LAMPE D., LAUZON C., AND JACOBS-LORENA M. (2007). Using bacteria to express and display anti-Plasmodium molecules in the mosquito midgut. International Journal of Parasitology. 37(6). 595-603. 59 ROSS, R. The role of the mosquito in the evolution of the malaria parasite. v. ii: p. 489, 1898. RUIU, L; SATTA, A; FLORIS, I. Emerging entomopathogenic bacteria for insect pest management. Bull. Insectol. 2013, 66, 181–186. SANTOS, S; AS, D; BASTOS, E; GUEDES-PINTO, H; GUT, I; GARTNER, F; CHAVES, R. (2008). An efficient protocol for genomic DNA extraction from formalin-fixed paraffin-embedded tissues. Res Vet Sci. SINDEN, R. E., 2002. Molecular interactions between Plasmodium and its insect vectors. Cell. Microbiol. 4, 713–724. SMITH, R. C; CHRISTOPHER, K.; JASON, L. R; JACOBS-LORENA. M. Transgenic Mosquitoes Expressing a Phospholipase A2 Gene Have a Fitness Advantage When Fed Plasmodium falciparum-Infected Blood. Published: October 01, 2013. DOI: 10.1371/journal.pone.0076097. STEELE, D. B; STOWERS, M. D. Techniques for selection of industrially important microorganisms. Annual Review of Microbiology, v. 45, p. 89-106, 1991. STRAIF, S. C; MBOGO, C.N; TOURE, A. M; WALKER, E. D; KAUFMAN, M; TOURE, Y. T., et al. Bacteria in the midgut Anopheles gambiae and An. funestus (Diptera: Culicidae) from Kenya and Mali. J. Med Entomol. 1998; 35: 222-226. PMID: 9615538 doi: 10.1093 / jmedent / 35.3.222. TADEI, W. P.; THATCHER, B. D.; SANTOS, J. M. M.; SCARPASSA, V. M.; RODRIGUES, I. B.; RAFAEL, M. S. 1998. Ecologic observations on anopheline vectors of malaria in the brasilian Amazon. Amer. J. Trop. Med. Hyg., 59: 325-35. TADEI, W. P. 2001. Controle da Malária e Dinâmica dos vetores na Amazônia. 7° Reunião especial em Manaus – SBPC. TADEI, W. P.; PASSOS, R. A.; RODRIGUES, I. B.; SANTOS, J. M. M.; RAFAEL, M. S. 2007. Indicadores entomológicos e o risco de transmissão de malária na área de abrangência do projeto PIATAM. In: Cavalcante, K. V.; Rivas, A. A. F.; Freitas, C. E. C. (Org.). Indicadores Socioambientais e Atributos de Referência para o trecho Urucu-Coari-Manaus, Rio Solimões, Amazônia. 160 p. TADEI, W. P.; SANTOS, J. M. M.; RODRIGUES, I. B.; RAFAEL, M. S. 2010. Malária e Dengue na Amazônia: vetores e estratégias de controle. Pesquisa Científica e Tecnologia em Saúde. Ministério da Ciência e Tecnologia. Brasília. Cap. MCT-INPA. p.112-125. TERENIUS O, DE OLIVEIRA CD, PINHEIRO WD, TADEI WP, JAMES AA, MARINOTTI O. 16S rRNA Gene Sequences from Bacteria Associated with Adult 60 Anopheles darlingi (Diptera: Culicidae) Mosquitoes. J Med Entomol, 2008 Jan; 45 (1): 172-5. VILCINSKAS, A. Coevolution between pathogen-derived proteinases and proteinase inhibitors of host insects. Virulence 2010, 1, 206–214 VILLEGAS L.M; PIMENTA, P.F. Metagenomics, paratransgenesis and the Anopheles microbiome: a portrait of the geographical distribution of the anopheline microbiota based on a meta-analysis of reported taxa. Mem Inst Oswaldo Cruz. 2014 WANG. S; GHOSH, A.K; BONGIO, N; STEBBINGS, K.A; LAMPE, D.J; JACOBS-LORENA, M. Fighting malaria with engineered symbiotic bactéria from vector mosquitoes. Proceedings of the National Academy of Sciences. 2012;109(31):12734–12739. WEISS, B. AKSOY, S. (2011). Microbiome influences on insect host vector competence. Trends Parasitol 27: 514-522. YOSEF SCHLEIN AND GÜNTER C MÜLLER; Decrease of larval and subsequent adult Anopheles sergentii populations following feeding of adult mosquitoes from Bacillus sphaericus-containing attractive sugar baits. Parasites & Vectors 2015, 8:244. DOI 10.1186/s13071-015-0845-y WHO. World Health Organization World. 2013. World Malaria Report 2013: Global malaria programme. Geneva. 284pp. WHO – World Health Organization. 2014. World Malaria Report, Geneva. 242 pp. WOLFARTH, B. R. Análise epidemiologica espacial, temporal e suas relações com as variáveis ambientais sobre a incidência da malária no período de 2003 a 2009 em 4 municípios do estado do Amazonas, Brasil. Manaus (2011). 116 f. Dissertação (mestrado)- INPA.pt_BR
dc.subject.cnpqBiotecnologiapt_BR
dc.publisher.initialsUEApt_BR
Aparece nas coleções:DISSERTAÇÃO - MBT Programa de Pós-Graduação em Biotecnologia e Recursos Naturais da Amazônia

Arquivos associados a este item:
Arquivo Descrição TamanhoFormato 
Estudo Comparativo da Microbiota Bacteriana Cultiváveis Associadas à Anopheles Darlingi e seu Habitat.pdf1,4 MBAdobe PDFVisualizar/Abrir


Este item está licenciada sob uma Licença Creative Commons Creative Commons