DSpace logo

Use este identificador para citar ou linkar para este item: http://repositorioinstitucional.uea.edu.br//handle/riuea/2385
Registro completo de metadados
Campo DCValorIdioma
dc.contributor.authorSouza, Beatriz Blenda Pinheiro de-
dc.date.available2020-03-20-
dc.date.available2020-03-19T00:53:00Z-
dc.date.issued2015-01-28-
dc.identifier.urihttp://repositorioinstitucional.uea.edu.br//handle/riuea/2385-
dc.description.abstractAmphibians are a large part of the global animals biodiversity. The order Anura stands out among amphibians for its diversity in many places in the world. The anuros immune system based on the expression, production, accumulation and release of secretions containing biologically active substances is a major defense strategie developed through the course of evolution in response to biotic and abiotic pressure of the environments in which those animals live. The bioactive peptides released by granular glands of the anuros are the subjects of intense research in order to discover the chemical composition, the action mechanisms and the biological activities of these molecules . Several peptide molecules have been isolated and characterized from different species of anuros. Animals from the families Ranidae and Hylidae are the most studied regarding to the knowledge about these molecules. The Hypsiboas boans species is a Hilídeo, described in 1758 by Linnaeus which until this work had no reported study on their skin secretions. Knowing the peptides produced and secreted by this species is the objective of this paper. The specimens were collected on the banks of “Tinga Igarapé”, inside the “Reserva Florestal Adolpho Ducke”, Manaus, AM. The secretions were obtained by electrical stimulation , freeze dried, purified by RP-HPLC and characterized as the primary structure of the peptides by mass spectrometry (MALDI -TOF- TOF - MS / MS) , sequenced again by Edman degradation and sequencing of the genes whitch encode the peptides . The peptide profile of these species showed a variety of peptides with potential biological activity, among which seven peptides were characterized.pt_BR
dc.languageporpt_BR
dc.publisherUniversidade do Estado do Amazonaspt_BR
dc.rightsAcesso Abertopt_BR
dc.rightsAtribuição-NãoComercial-SemDerivados 3.0 Brasil*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/br/*
dc.subjectAnfíbiospt_BR
dc.subjectPeptídeospt_BR
dc.subjectAnuropt_BR
dc.titlePeptídeos bioativos do Anuro Hypsiboas boanspt_BR
dc.typeDissertaçãopt_BR
dc.date.accessioned2020-03-19T00:53:00Z-
dc.contributor.advisor-co1Costa, Túlio de Orleans Gadelha-
dc.contributor.advisor-co1Latteshttp://lattes.cnpq.br/0456779846309312pt_BR
dc.contributor.advisor1Rezende , Cleiton Fantin-
dc.contributor.advisor1Latteshttp://lattes.cnpq.br/3982396993273580pt_BR
dc.contributor.referee1Albuquerque , Patricia Melchionna-
dc.contributor.referee1Latteshttp://lattes.cnpq.br/1177407730126204pt_BR
dc.contributor.referee2Junior, Valdir Florencio da Veiga-
dc.contributor.referee2Latteshttp://lattes.cnpq.br/0581412073128121pt_BR
dc.contributor.referee3Costa, Túlio de Orleans Gadelha-
dc.contributor.referee3Latteshttp://lattes.cnpq.br/0456779846309312pt_BR
dc.creator.Latteshttp://lattes.cnpq.br/3172495796013421pt_BR
dc.description.resumoOs anfíbios compõem uma grande parte da biodiversidade mundial de animais. A ordem Anura se destaca dentre os anfíbios por sua diversidade em vários lugares do mundo. O sistema imune de anuros baseado na expressão, produção, acúmulo e liberação de secreções contendo substâncias biologicamente ativas é uma das principais estratégias de defesa desenvolvida ao curso da evolução em resposta às pressões bióticas e abióticas dos ambientes nos quais estes animais habitam. Os peptídeos bioativos liberados pelas glândulas granulares de anuros são alvos de intensas pesquisas que visam conhecer a composição química, os mecanismos de ação e as respectivas atividades biológicas destas moléculas. Diversas moléculas de natureza peptídica têm sido isoladas e caracterizadas a partir de distintas espécies de anuros. Indivíduos das famílias Ranidae e Hylidae são os mais estudados no que se refere ao conhecimento destas moléculas. A espécie Hypsiboas boans é um Hilídeo, descrito em 1758 por Linnaeus, que até o presente trabalho não teve nenhum estudo relatado sobre suas secreções cutâneas. Conhecer os peptídeos produzidos e secretados por esta espécie constitui o objetivo deste trabalho. Os espécimes foram coletados às margens do Igarapé Tinga, na Reserva Florestal Adolpho Ducke, Manaus, AM. As secreções foram obtidas por estimulação elétrica, liofilizadas, purificadas por RP-HPLC e caracterizadas quanto à estrutura primária dos peptídeos por Espectrometria de Massa (MALDI-TOF-TOF - MS/MS), sequenciamento de novo por degradação de Edman e sequenciamento dos genes codificadores dos peptídeos. O perfil peptídico desta espécie demonstrou uma variedade de peptídeos com potenciais atividades biológicas, dos quais sete peptídeos foram caracterizados.pt_BR
dc.publisher.countryBrasilpt_BR
dc.publisher.programPrograma de Pós-Graduação em Biotecnologia e Recursos Naturais da Amazôniapt_BR
dc.relation.referencesBDEL-WAHAB, Y. H. A.; POWER, G. J.; FLATT, P. R.; WOODHAMS, D. C.; ROLLINS-SMITH, L. A.; CONLON, J. M. A peptide of the phylloseptin family from the skin of the frog Hylomantis lemur (Phyllomedusinae) with potent in vitro and in vivo insulin-releasing activity. Peptides, 29: 2136 – 2143, 2008. AMICHE, M.; AURELIA, A. S.; THIERRY, N. P. & NICOLAS,P. The dermaseptin precursors: A protein family with a common preproregion and a variable C-terminal antimicrobial domain. FEBS Letters, 456: 352-356. 1999. AMICHE, M.; LADRAM, A.; NICOLAS, P. Review A consistent nomenclature of antimicrobial Peptides isolated from frogs of the subfamily Phyllomedusinae. Peptides, 29: 2074 – 2082, 2008. AMNH (AMERICAN MUSEUM OF NATURAL HISTORY). Amphibian Species of the Worl 6.0, an Online Reference. Disponível em: <research.amnh.org/vz/herpetology/amphiabia/Anura/Hylidae/Hylinae/Hypsiboas>. Acesso em: 27 jan. 2014. AMPHIBIAWEB: Information on amphibian biology and conservation. [web application]. 2014. Berkeley, California: AmphibiaWeb. Available: http://amphibiaweb.org/. (Accessed: Dec 26, 2014). AMPHIBIAWEB: Wallacean Biome Map of Amphibian Species in Decline. [web application]. 2014. UC Regents, Berkeley, CA. Available: http://amphibiaweb.org/declines/. ANASTASI, A.; ERSPAMER, V.; BUCCI, M. Isolation and amino acid sequence of alytesin and bombesin,two analogous active tetradecapeptides from the skin of European discoglossid frogs. Archives of Biochemistry and Biophysics, 148: 443-446, 1972. ANASTASI, A.; ERSPAMER, V.; BUCCI, M. Isolation and structure of bombesin and alytesin, 2 analogous active peptides from the skin of the European amphibian Bombinaand Alytes. Experientia, 27: 166-167, 1971. ANASTASI, A.; ERSPAMER, V.; ENDEAN, R. Isolation and amino acid sequence of caerulein, the active peptide in the skin of Hyla caerulea. Archives Biochemistry and Biophysics, 125:57-68, 1968. ARAKI, K.; TACHIBANA, S.; UCHIYAMA, M.; NAKAJIMA, T.; YASUHARA, T. Isolation and structure of a new active peptide xenopsin on rat stomach strip and some some biogenic in the skin of Xenopus laevis. Chemical Pharmaceutical Bulletin, 23:3132-3140, 1973. BAKER, M.A.; MALOY, W.L.; ZASLOFF, M.; JACOB, L.S. Anticancer of magainina 2 and analogue Peptides. Cancer Research, 53: 3052-3057, 1993. BARBOSA, E. A. Estrutura gênica, indução, expressão e processamento de peptídeos bioativos isolados a partir da secreção cutânea de Phyllomedusa azurea e Physalaemus 43 nattereri. Tese (Doutorado) em Biologia Molecular. Departamento de Biologia Celular.Universidade de Brasília, 2014. BARRA, D.; MIGNOGNA, G.; SIMMACO, M.; PUCCI, P.; SEVERINI, C.; FALCONIERI–ERSPAMER, G.; NEGRI, L.; ERSPAMER, V. [D-eu2] deltorphin, a 17 amino acid opioid peptide from the skin of the Brazilian hylid frog, Phyllomedusa burmeisteri. Peptides, 15: 199–202. 1994. BATISTA, C. V. F; ROSENDO DA SILVA, L. A; SEBBEN, A.; SCALONI, FERRARA, L.; PAIVA, G.R.; OLAMENDI–PORTUGAL, T.; POSSANI L.D.; BLOCH JR, C. Antimicrobial peptides from the Brazilian frog Phyllomedusa distincta. Peptides, 20: 679–686, 1999. BEATTIE, R.C.; TYLER-JONES, R.; BAXTER, M.J. The effects of pH, aluminium concentration and temperature on the embryonic development of the European common frog, Rana temporaria. Journal Zoology, London 228:557-70, 1992. BECHINGER, B. & LOHNER, K. Detergent-like actions oflinear amphipathic cationic antimicrobial peptides. Biochimica et Biophysica Acta, 1758: 1529-1539. 2006. BÍBLIA, Português. Bíblia de Jerusalém. Paulus, p. 2206, 2002. BOMAN, H. G.; NILSSON, I. & RASMUNSON,B. Inducible antibacterial defence system in Drosophila. Nature, 237: 232–235. 1972. BOMAN, H. G. Antibacterial Peptides: Key components needed in immunity, Cell, Vol. 65, 205-207, April 19,1991. BRAND, D. G.; LEITE, J. R. S. A.; MANDEL, S. M. S.; MESQUITA, D. A.; SILVA, L. P.; PRATES, M. V.; BARBOSA, E. A.; VINECKY, F.; MARTINS, G. R.; GALASSO, J. H.; KUCKELHAUS, S. A. S.; SAMPAIO, R. N. R.; JUNIOR, J. R.; ANDRADE, A. C.; JUNIOR, C. B. Novel dermaseptins from Phyllomedusa hypochondrialis (Amphibia). Biochemical and Biophysical Research Communications, 347: 739–746, 2006. BRAND, G. D.; LEITE, J. R. S. A.; SILVA, L. P.; ALBUQUERQUE, S.; PRATES, M. V.; AZEVEDO, R. B.; CARREGARO, V.; SILVA, J. S.; SÁ, V. C. L.; BRANDÃO, R. A.; BLOCH JUNIOR, C. Dermaseptins from Phyllomedusa oreades and Phyllomedusa distincta: ANTI-TRYPANOSOMA CRUZIACTIVITY WITHOUT CYTOTOXICITY TO MAMMALIAN CELLS. The Journal of Biological Chemistry, 277:49332-49340, 2002. BRANDÃO, R. A. Rapid ecological assessment of the herpetofauna in Pedras Negras and Curralinho extractive reserves, Costa Marques, RO. Brasil Florestal, 74: 61-73, 2002. BROGDEN, K. A. Antimicrobial peptides: pore formers or metabolic inhibitors in bacteria? Nature Reviews Microbiology, 3: 238–250. 2005. CARRAWAY, R.; LEEMANN, S. The isolation of a new hypotensive peptide neurotensin from bovine hypothalami. Journal of Biological Chemistry, 248:6854-6861, 1973. 44 CARRAWAY, R.; RUANE, S.E.; FEURLE, G.E.; TAYLOR, S. Amphibian neurotensina (NT) is not xenopsin (XP): Dual presence of NT-like and XP-like peptides in various amphibia. Endocrinology, 110:1094-1101, 1982. CASTRO, M. S.; FERREIRA, T. C.; CILLI, E. M.; JUNIOR, E. C.; MENDES-GIANNINI, M. J. S.; SEBBEN, A.; RICART, C. A. O.; SOUSA, M. V.; FONTES,W. Hylin a1, the first cytolytic peptide isolated from the arboreal South American frog Hypsiboas albopunctatus („„spotted treefrog‟‟). Peptides, 30: 291-296, 2009. CASTRO, M. S.; MATSUSHITA, R. H.; SEBBEN, A.; SOUSA, M.V.; FONTES, W. Hylins: bombinins H structurally related peptides from the skin secretion of the Brazilian treefrog Hyla biobeba. Protein Pept Let,12: 89 – 93, 2005. CHARPENTIER, S.; AMICHE, M.; MESTER, J.; VOUILLE, V.; Le CAER, Jean-Pierre; NICOLAS, P. & DELFOUR, A. Structure,synthesis, and molecular cloning of dermaseptins B, a family of skin peptide antibiotics. The Journal Biological Chemistry, 273: 14690–14697. 1998. CHEN, T. B.; XUE, Y. Z.; ZHOU, M.; SHAW, C. Molecular cloning of mRNA from toad granular gland secretion and lyophilized skin: identification of Bo8 – a novel prokineticin from Bombina orientalis. Peptides, 26:377–83. 2005. CHEN, X.; WANG, L.; CHEN, H.; ZHOU, M.; CHEN, T.; SHAW, C. A fish bradykinin (Arg0, Trp5, Leu8-bradykinin) from the defensive skin secretion of the European edible frog, Pelophylax kl. esculentus: structural characterization; molecular cloning of skin kininogen cDNA and pharmacological effects on mammalian smooth muscle. Peptides, v. 32, n. 1, p. 26-30, Jan 2011. CHEN, F. Y.; LEE, M. T. & HUANG, H. W. Evidence for membrane thinning effect as the mechanism for peptide-induced pore formation. Biochimica et Biophysica Acta, 84: 3751-3758. 2003. CHEN, F. Y.; LEE, M. T. & HUANG, H. W. Sigmoidal concentration dependence of antimicrobial peptide activities: a case study on alamethicin. Biochimica et Biophysica Acta, 82: 908-14. 2002. COMELISSE, L. N.; DEUMENS, R.; COENEN, J. J.; ROUBOS, E. W.; GIELEN, C. C. A. M.; YPEY, D. L. JENKS, B. G.; SCHEENEN, W. J. J. M. Sauvagine Regulates Ca2+ Oscillations and Electrical Membrane Activity of Melanotrope Cells of Xenopus laevis. Journal of Neuroendocrinology, 14: 778-787, 2002. CONCEICAO, K.; KONNO, K.; MELO, R. L.; ANTONIAZZI, M. M.; JARED, C.; SCIANI, J. M.; CONCEIÇÃO, I. M.; PREZOTO, B. C.; CAMARGO, A. C. M.; PIMENTA, D. C. Isolation and characterization of a novel bradykinin potentiating peptide (BPP) from the skin secretion of Phyllomedusa hypochondrialis. Peptides, v. 28, n. 3, p. 515-523, Mar 2007. CONLON, J. M.; JOUENNE, T.; COSETTE, P.; COSQUER, D.; VAUDRY, H.; TAYLOR, C. K.; ABEL, P. W. Bradykinin-related peptides and tryptophyllins in the skin secretions of the most primitive extant frog, Ascaphus truei. Gen Comp Endocrinol [S.I.], v. 143, n. 2, p. 193-9, 2005b. 45 CONLON, J. M. Bradykinin and its receptors in non-mammalian vertebrates. Regul Pept, v. 79, n. 2-3, p. 71-81, Feb 5 1999. CONLON, J. M.; ABRAHAM, B.; SONNEVEND, A.; JOUENNE, T.; COSETTE, P.; LEPRINCE, J.; VAUDRY, H.; BEVIER, C. R. Purification and characterization of antimicrobial peptides from the skin secretions of the carpenter frog Rana virgatipes (Ranidae, Aquarana). Regul Pept [S.I.], v. 131, n. 1-3, p. 38-45, 2005a. CONLON, J. M.; KOLODZIEJEK, J.; NOWOTNY, N. Antimicrobial peptides from the skins of North American frogs. Biochimica et Biophysica Acta, 1788: 1556 – 1563, 2009. COSTA, T. O. G. Purificação e Determinação Estrutural de Substâncias Bioativas em Três Espécies de Osteocephalus (Amphibia:Anura:Hylidae). Tese (Doutorado) em Ciências. Instituto de Química. Universidade Federal do Rio de Janeiro, 2005. COUTURE, R.; HARRISSON, M.; VIANNA, R. M.; CLOUTIER, F. Kinin receptors in pain and inflammation. Eur J Pharmacol. 429:161–76. 2001. CRUCIANI, R.A.; BARKER, J.L.; ZASLOFF, M.; CHEN, H.C. Antibiotic magainins exert cytolytic activity against transformed cell lines through channel formation. Proc. Natl. Acad. Sci. USA, 88:3792-3796, 1991. CSORDAS, A.; MICHL, H. Primary struture of two oligopeptides of the toxin of Bombina variegata. Toxicon, 7: 103-108, 1969. CUNLIFFE, R. N.; MAHIDA, Y. R. Expression and regulation of antimicrobial peptides in the gastrointestinal tract. Journal of Leukocyte Biology, 75: 49-58. 2004. DELFINO, G. DREWES, R. C.; MAGHERINI, S.; MALENTACCHI, C.; NOSI, D.; TERRENI, A. Serous cutaneous glands of the Pacific tree-frog Hyla regilla (Anura, Hylidae): patterns of secretory release induced by nor-epinephrine. Tissue Cell, v. 38, n. 1, p. 65-77, Feb 2006. DELFINO, G.; BRIZZI, R.; NOSI, D.; TERRENI, A. Serous cutaneous glands in new world hylid frogs: an ultrastructural study on skin poisons confirms phylogenetic relationships between Osteopilus septentrionalis and Phrynohyas venulosa. J Morphol, v. 253, n. 2, p. 176-86, Aug 2002. DENVER, R. J. Evolution of the Corticotropin-releasing Hormone Signalling System and Its Role in Stress-induced Phenotypic Plasticity. Annals of the New York Academy of Sciences, 897:46-53, 1999. DOCKRAY, G. J.; HOPKINS, C. R. Caerulein Secretion by Dermal Glands in Xenopus-Laevis. Journal of Cell Biology, v. 64, n. 3, p. 724-733, 1975. DORNELLES, M. F.; MARQUES, M. G. B.; RENNER, M. F. Revisão sobre toxinas de Anura (Tetrapoda, Lissamphibia) e suas aplicações biotecnológicas. Ciência Em Movimento, XII, nº 24, 2010/2. 46 DUELLMAN, W.E.; TRUEB, L. Biology of Amphibians. New York: McGraw-Hill Book Company Publ. 228 p., 1986. EGAL, M.; CONRAD, M.; MacDONALD, D.; MALOY, W. L.; MOTLEY, M.; GENCO, C. A. Antiviral effects of synthetic membrane-active peptides on Herpes Simplex Virus, Type 1. International Journal of Antimicrobial Agents, Volume 13, Issue 1, Pages 57-60. 1999. ERSPAMER, V.; MELCHIORRI, P.; NAKAJIMA, T.; YASUHARA, T.; ENDEAN, R. Amino acid composition and sequence of crinia-angiotensin, an angiotensin II-like endecapeptide from the skin of the Australian frog Crinia georgiana. Cell Mol Life Sci, 35:1132–3. 1979. ERSPAMER, V. Bioactive secretions of the amphibian integument. In: Heatwole H, Barthalmus GT, editors. Amphibian biology: the integument, vol. 1. ChippingNorton: Surrey Beatty and Sons. p. 178–350. 1994. ERSPAMER, V.; MELCHIORRI, P.; ERSPAMER, G. F.; MONTECUCCHI, P. C; DECASTIGLIONE, R. Phyllomedusa skin – a huge factory and store-house of a variety of active peptides. Peptides, 6:7–12. 1985. ERSPAMER, V.; MELCHIORRI, P. Active polypeptides of amphibian skin and their synthetic analogues. Pure and applied Chemistry, 35: 463-494,1973. ERSPAMER, V.; MELCHIORRI, P. Active polypeptides: from amphibian skin to gastrointestinal tract and brain of mammals. Trends Pharmacology Sciences, 1: 391 – 395, 1980. ERSPAMER, V.; MELCHIORRI, P. Proceedings: Amphibian skin polypeptides active on the gut. J Endocrinol., 70: 12o−13p, 1976. FEDER, R.; NEHUSHTAI, R.; MOR, A. Affinity driven molecular transfer from erythrocyte membrane to target cells. Peptides, 22: 1683-1690, 2001. FEURLE, G. E. Xenin – A review. Peptides, 19:609-615, 1998. FEURLE, G. E.; HAMSCHER, G.; KUSIEK, R.; MEYER, H. E.; METZGER, J.W. Identification of xenin, a xenopsin-related peptide, in the human gastric mucosa and its effect on exocrine pancreatic secretion. Journal Biological Chemistry, 267:22305-22309, 1992. FLUCHER, B. E.; LENGLACHNER-BACHINGER, C.; FEURLE, G. E. Immunocytochemical evidence for the colocalization of neurotensin/xenopsin- and gastrin/caerulein-immunoreactive substances in Xenopus laevis gastrointestinal tract. General and Comparative Endocrinology, 72:54-62, 1988. GILLILLAND, C. D.; SUMMER, C. L.; GILLILLAND, M. G.; KANNAN, K.; VILLENEUVE, D. L.; COADY, K. K.; MUZZALL, P.; MEHNE, C.; GIESY, J. P. Organochlorine insecticides, polychlorinated biphenyls, and metals in water, sediment, and green frogs from southwestern Michigan. Chemosphere, 44:327-339, 2001. 47 HANCOCK, R. E. W. & CHAPPLE, D. S. Peptides Antibiotics. Antimicrobial Agents and Chemotherapy, 43: 1317–1323. 1999. HAUGER, R. L.; GRIGORIADIS, D. E.; DALLMAN, M. F.; PLOTSKY, P. M.; VALE, W. W.; DAUTZENBERG, F. M. Current Status of the nomenclature for receptors for Corticotropin-Releasing Fator and their ligands. International Union of Pharmacology. XXXVI, 55: 21-26, 2003. HAYES, T. B.; COLLINS, A.; LEE, M.; MENDOZA, M.; NORIEGA, N.; STUART, A.; VONK, A. Hermaphroditic, demasculinized frog after exposure to the herbicide atrazine at low ecologically relevant doses. PNAS (Proceedings of the National Academy of Sciences of the United States of America), 99:5476-5480, 2002. HECNAR, S.J.; M‟CLOSKEY, R.T. Regional dynamics and the status of amphibians. Ecology, 77: 2091-97, 1996. HILDEBRAND, M.; GOSLOW, G. Análise da estrutura dos vertebrados. Tradução Ana Maria de Souza, Érica Schlenz. 2. ed . São Paulo: Atheneu Editora, 2006. HOFFMANN, W.; BACH, T. C.; SELIGER, H.; KREIL, G. Biosynthesis of caerulein in the skin of Xenopus laevis – partial sequences of precursors as deduced from cDNA clones. EMBO J, 2:111–4. 1983. HOLZER-PETSCHE, U.; LEMBECK, F.; SEITZ, H. Contractile effects of substance P and neurokinin A on rat stomach in vivo and in vitro. British Journal of Pharmacology, 90:273–279, 1987. HOSKIN, D. W.; RAMAMOORTHY, A. Review Studies on anticancer activities of antimicrobial peptides. Biochim Biophys Acta, 1778: 357 – 375, 2008. HUANG, H. W. Molecular mechanism of antimicrobial peptides: the origin of cooperativity. Biochim Biophys Acta, 1758 (9): 1292 302, 2006. IZADPANAH, A. & GALLO, R. L. Antimicrobial peptides. Journal of the American Academy of Dermatology, 52: 381–390, 2005. JACKSON, I. M. D.; REICHLIN, S. Thyrotropin-releasing hormone abundance in the skin of the frog Rana pipiens. Science, 198:414–5, 1977. JACKWAY, R. J.; PUKALA, T. L.; MASELLI, V. M.; MUSGRAVE, I. F.; BOWIE, J. H, LIU, Y.; SURINYA-JOHNSON, K. H.; DONNELLAN, S.C.; DOYLE, J.R.; LLEWELLYN, L.E.; TYLER, M.J. Disulfide-containing peptides from the glandular skin secretions of froglets of the genus Crinia: structure, activity and evolutionary trends. Regul Pept, 151:80–7, 2008. KÖNIG, E.; BININDA-EMONDS, O. R. P.; SHAW, C. The diversity and evolution of anuran skin peptides. Peptides, 63, p. 96–117, 2015. KREIL, G. D-amino acids in animal peptides. Annu Rev Biochem [S.I.], v. 66, p. 337-45, 1997. 48 LAI, R.; LIU, H.; LEE, W.H.; ZHANG, Y. A novel proline rich bombesin-related peptide (PR-bombesina) from toad Bombina maxima. Peptides, 23: 437-442, 2002. LEITE, J. R. S. A.; SILVA, L. P.; RODRIGUES, M. I. S.; PRATES, M. V.; BRAND, G. D.; LACAVA, B. M.; AZEVEDO, R. B.; BOCCA, A. L.; ALBUQUERQUE, S.; BLOCH Jr., C. Phylloseptins: a novel class of anti-bacterial and anti-protozoan peptides from the Phyllomedusa genus. Peptides, USA, v. 26 (4), p. 565-573, 2005. LI, L.; BJOURSON, A. J.; HE, J.; CAI, G.; RAO, P.; SHAW, C. Bradykinins and their cDNA from piebald odorous frog, Odorrana schmackeri, skin. Peptides, v. 24, n. 6, p. 863-872, Jun 2003. LIEM, K. F.; BEMIS, W. E.; WALKER JR, W. F.; GRANDE, L. Anatomia funcional dos vertebrados: uma perspectiva evolutiva. Tradução EZ2 Translate. 3. ed. norte-americana. São Paulo: Cengage Learning, 2012. LIMA, A. P.; MAGNUSSON, W. E.; MENIN, M.; ERDTMAN, L. K.; RODRIGUES, D. J.; KELLER, C.; HODI, W. Guia de sapos da Reserva Adolpho Ducke, Amazônia Central. Áttema Design Editorial, 168p, 2008. MAGALHÃES, B. S.; MELO, J. A. T.; LEITE, J. R. S. A.; SILVA, L. P.; PRATES, M. V.; VINECKY, F.; BARBOSA, E. A.; VERLY, R. M.; MEHTA, A.; NICOLI, J. R.; BEMQUERER, M. P.; ANDRADE, A. C.; JUNIOR, C. B. Post-secretory events alter the peptide content of the skin secretion of Hypsiboas raniceps. Biochemical and Biophysical Research Communications, 377: 1057–1061, 2008. MAGALHÃES, M. T. Q.; BARBOSA, E. A.; PRATES, M. V.; VERLY, R. M.; MUNHOZ, V. H, O.; ARAÚJO, I. E.; BLOCH JR., C. Conformational and Functional Effects Induced by D- and L-Amino Acid Epimerization on a Single Gene Encoded Peptide from the Skin Secretion of Hypsiboas punctatus. PLOS ONE. 2013. MANDEL, S. M. S. Prospecção de peptídeos antimicrobianos da secreção cutânea de anfíbios do gênero Phyllomedusa. 2008 . 82f. Dissertação (Mestrado em Biologia Animal) - Universidade de Brasília – UnB, Brasília, 2008. MANGONI, M. L.; PAPO, N.; SAUGAR, J. M.; BARRA, D.; SHAI, Y. SIMMACO, M. RIVAS, L. Effect of natural L- to D-amino acid conversion on the organization, membrane binding, and biological function of the antimicrobial peptides bombinins H. Biochemistry. 45: 4266–4276, 2006. MASELLI, V. M.; BRINKWORTH, C. S.; BOWIE, J. H.; TYLER, M. J. Host-defence skin peptides of the Australian Common Froglet Crinia signifera: sequence determination using positive and negative ion electrospray mass spectra. Rapid Commun Mass Spectrom,18:2155–61, 2004. MASELLI, V.; BILUSICH, D.; BOWIE, J., TYLER, M. Host-defence skin peptides of the Australian Streambank Froglet Crinia riparia: isolation and sequence determination by positive and negative ion electrospray mass spectrometry. Rapid Commun Mass Spectrom, 20:797–803, 2006. 49 McDONALD, T. J.; JORNVALL, H.; NILSSON, G.; VAGNE, M.; GHATEI, M.; BLOOM, S. R.; MUTT, V. Characterization of a gastrin releasing peptide from porcine non-antral gastric tissue. Biochem Biophys Res Commun, 90:227–33, 1979. MIELE, R.; PONTI, D.; BOMAN, H.G.; BARRA, D.; SIMMACO, M. Molecular cloning of a bombinin gene from Bombina orientalis: detection of NF- ĸB and NF- IL6 binding sites in its promoter. FEBS Letters, 431:23-28, 1998. MINAMINO, N.; KANGAWA, K.; MATSUO, H. Neuromedin-B: a novel bombesinlike peptide identified in porcine spinal cord. Biochemical and Biophysical Research Communications, 114: 541-548, 1983. MOLLAY, C.; WECHSELBERGER, C.; MIGNOGNA, G.; NEGRI, L.; MELCHIORRI, P.; BARRA, D.; KREIL, G. Bv8, a small protein from frog skin and its homologue from snake venom induce hyperalgesia in rats. Eur J Pharmacol, 374:189–96. 1999. MONTECUCCHI, P. C.; HENSCHEN, A.; ERSPAMER, V. Structure of sauvagine, a vasoactive peptide from the skin of a frog. Hoppe-Seyler‟s Z Physiol Chem, 360:1178, 1979. MONTECUCCHI, P. C. Isolation and primary structure determination of amphibian skin tryptophyllins. Peptides, v. 6 Suppl 3, p. 187-95, 1985. MONTECUCCHI, P. C.; GOZZINI, L.; ERSPAMER, V.; MELCHIORRI, P. Primary structure of tryptophan-containing peptides from skin extracts of Phyllomedusa rhodei. Int J Pept Protein Res, 23: 276-281, 1984.1984. MOR A, N. V. H.; DELFOUR, A.; MIGLIORE-SAMOUR, D.; NICOLAS, P. Isolation, aminoacide sequence and synthesis of dermaseptin, a novel antimicrobial peptide of amphibian skin. Biochemistry. 30: 8824-8830, 1991. NAGALLA, S. R.; GIBSON, B. W.; TANG, D. Z.; REEVE, J. R.; SPINDEL, E. R. Gastrin-releasing peptide (GRP) is not mammalian bombesin – identification and molecularcloning of a true amphibian GRP distinct from amphibian bombesin in Bombina orientalis. J Biol Chem. 67:6916–22, 1992. NAKAJIMA, T.; TANIMURA, T.; PISANO, J. J. Isolation and structure of a new vasoactive peptide. Feder. Proc., 29: 282, 1972. NEGRI, L.; LATTANZI, R.; GIANNINI, E.; MELCHIORRI, P. Bv8/prokineticin proteins and their receptors. Life Sci, 81:1103–16, 2007. NELSON, D. L.; COX M. M. Lehninger Princípios de Bioquímica. Traduzido por Arnaldo Antonio Simões, Wilson Roberto Navega Lodi 3. ed. São Paulo. Sarvier, 2002. NICOLAS, P.; AMIRI, C. E. The dermaseptin superfamily: A gene-based combinatorial library of antimicrobial peptides. Biochimica et Biophysica Acta. 1788: 1537 – 1550, 2009. NICOLAS, P.; VANHOYE, D.; AMICHE, M. Molecular strategies in biological evolution of antimicrobial peptides. Peptides, 24: 1669 – 1680, 2003. 50 OHSAKI, Y.; GAZDAR, A. F.; CHEN, H. C.; JOHNSON, B. E. Antitumor activity of magainin analogues against human lung cancer cell lines. Cancer Research, 52:3534-3538, 1992. OKADA, R.; YAMAMOTO, K.; KODA, A.; ITO, Y.; HAYASHI, H.; TANAKA, S.; HANAOKA, Y.; KIKUYAMA, S. Development of radioimmunoassay for bullfrog Thyroid-stimulating hormone (TSH): effects of hypothalamic realing hormones on the release of TSH from the the pituitary in vitro. General and Comparative Endocrinology, 2003. PIERRE, T. N.; SEON, A. A.; AMICHE, M.; NICOLAS, P. Phylloxin, a novel peptide antibiotic of the dermaseptin family of antimicrobial/opioid peptide precursors. Eur J Biochem, 267:370–8. 2000. PIRES JÚNIOR, O. Ocorrência de tetrodotoxina e derivados em três espécies de Brachycephalus (Amphibia: anura: Brachycephalidae). Tese, Brasília. Biologia Amimal. Universidade de Brasília, 2002. POHL, S.; DARLISON, M.G.; CLARKE, W.G.; LEDERIS, K.; RICHTER, D. Cloning and functional pharmacology of two corticotropin-releasing factor receptors from a teleost fish. European journal of Pharmacology, 430: 193-202, 2001. POWERS, J. P. & HANCOCK, R. E. The relationship between peptide structure and antibacterial activity. Peptides, 24: 1681–1691, 2003. PRATES, M. V.; FORÇA, M. L. S.; REGIS, W. C. B.; LEITE, J. R. S. A.; SILVA, L. P.; PERTINHEZ, T. A.; ARAÚJO, A. L. T.; AZEVEDO, R. B.; SPISNI, A.; AND JR, C. B. The NMR-derived Solution Structure of a New Cationic Antimicrobial Peptide from the Skin Secretion of the Anuran Hyla punctata. The Journal of Biological Chemistry. Vol. 279, Nº 13: 13018 – 13026, 2004. PRATES, M. V. Peptídeos catiônicos de Phyllomedusa tarsius (Amphibia): estrutura e atividade biológica. Dissertação (Mestrado) em Biologia Molecular. Departamento de Biologia Celular. Universidade de Brasília, 1999. PRATES, M. V.; BLOCH JÚNIOR, C. Peptídeos Antimicrobianos. Biotecnologia Ciência & Desenvolvimento, Nov/Dez 17: 30-36, 2000. PUKALA, T. L.; BOWIE, J. H.; MASELLI, V. M.; MUSGRAVE, I. F. & TYLER, M. J. Host-defense peptides from the glandular secretions of amphibians: structure and activity. Natural Products Report,23: 368–393, 2006. RANG, H. P.; DALE, M. M.; RITTER, J. M. Pharmacology. Churchill Livingstone, a division of Copyright Harcourt Publisheers Limited, 2000. RENDA, T.; D‟ESTE, L.; BUFFA, R.; USELLINI, L.; CAPELLA, C.; VACCARO, R.; MELCHIORRI, P. Tryptophyllinlike immunoreactivity in rat adenohypophysis. Peptides, 6:197–202, 1985. RINALDI, A. C. Antimicrobial peptides from amphibian skin: an expanding scenario. Current Opinion in Chemical Biology, 6: 799–804, 2002. 51 ROLLINS-SMITH, L. A. The role of amphibian antimicrobial peptides in protection of amphibians from pathogens linked to global amphibian declines. Biochimica et Biophysica Acta, 1788: 1593-1599, 2009. ROLLINS-SMITH, L. A.; CONLON, J. M. Review Antimicrobial peptide defenses against chytridiomycosis, an emerging infectious disease of amphibian populations. Developmental and Comparative Immunology. 29: 589 – 598, 2005. ROLLINS-SMITH, L.A.; DOERSAM, J.K.; LONGCORE, J.E.; TAYLOR, S.K.; SHAMBLIN, J.C.; CAREY, C.; ZASLOFF, M.A. Antimicrobial peptide defenses against pathogens associated with global amphibian declines. Developmental & Comparative Immunology, 26:63-72, 2002. SAMGINA, T. Y. et al. Mass spectrometric study of bradykinin-related peptides (BRPs) from the skin secretion of Russian ranid frogs. Rapid Commun Mass Spectrom, v. 25, n. 7, p. 933-40, Apr 15 2011. SANDBERG, K.; JI, H. Comparative analysis of amphibian and mammalian angiotensin receptors. Comparative Biochemistry and Physiology (CBP), Part A, 128:53-75, 2001. SEBBEN, A.; SCHWARTZ, C. A.; CRUZ, J. S. A defesa química dos anfíbios. Ciência Hoje, 15: 25-33, 1993. SEGALLA, M. V.; CARAMASCHI, U.; CRUZ, C. A. G.; GRANT, T.; HADDAD, C. F. B.; LANGONE, J. A.; GARCIA, P. C. A. Brazilian Amphibians: List of Species. Herpetologia Brasileira, v. 3, nº 2, 2014. SHAI, Y. Mode of action of membrane active antimicrobial peptides. Biopolymers, 66: 236-48. 2002. SHAW, C.; McKAY, D.M.; HALTON, D.W.; THIM, L.; BUCHANAN, K.D. Isotion and primary structure of an amphibian neurotensin. Regulatory Peptides, 38:23-31, 1992. SIMON T. STEINBORNER, C. G., MARK J. RAFTERY, RUSSELL J. WAUGH, THOMAS BLUMENTHAL, JOHN H. BOWIE, JOHN C. WALLACE AND MICHAEL J. TYLE. The Structures of Four Tryptophyllin and Three Rubellidin Peptides from the Australian Red Tree Frog Litoria rubella. Aust. J. Chem, v. 47, p. 2099-2108, 1994. SLIVKOFF, M. D.; WARBURTON, S. J. An endocrinological update in toads: disparity between the cardiovascular effects of two angiotensin II analogs. General and Comparative Endocrinology, 132:125-132, 2003. STEINBORNER , S. T.; WABNITZ, P. A.; WAUGH, R. J.; BOWIE, J. H.; GAO, C. W, TYLER, M. J.; WALLACE, J. C. The structures of new peptides from the Australian red tree frog „Litoria rubella‟. The skin peptide profile as a probe for the study of evolutionary trends of amphibians. Aust J Chem . 49:955–63, 1996. TERRENI, A.; NOSI, D.; GREVEN, H.; DELFINO, G. Development of serous cutaneous glands in Scinax nasica (Anura, Hylidae): patterns of poison biosynthesis and 52 maturation in comparison with larval glands in specimens of other families. Tissue Cell, v. 35, n. 4, p. 274-87, Aug 2003. TOLEDO, R. C.; JARED, C. REVIEW Cutaneous granular glands and amphibian venoms. Camp. Biochem. Physiol. Vol. IIIA, No. I, pp. 1 – 29, 1995. TSUSHIMA, H.; MORI, M.; FUJIWARA, N.; MORIYAMA, A. Pharmacological characteristics of bombesin receptor mediating hypothermia in the central nervous system of rats. Brain Research, 969: 88-94, 2003. VANHOYE, D.; BRUSTON, F.; NICOLAS, P.; AMICHE, M. Antimicrobial peptides from hylid and ranin frogs originated from a 150-milionyear-old ancestral precursor with a conserved with signal peptide but a hypermutable antimicrobial domain. European Journal of Biochemistry, 270: 2068-81, 2003. VON EULER, U. S.; GADDUM, J. H. An unidentified depressor substance in certain tissue extracts. Journal Physiology (Lond.), 72: 74-87, 1931. XIAO, D.; QU, X.; WEBER, H. C. Activation of extracellular signal-regulated kinase mediates bombesin-induced mitogenic responses in prostate cancer cells. Cellular Signalling, 15: 945-953, 2003. YANG, Y.; YAO, K.; LI, Z. Similarities of SP-, NKA- and NKB-induce currents in rat dorsal root ganglion neurons. Brain Research, 991:18-25, 2003. YASUHARA, T.; NAKAJIMA, T. Occurrence of Pyr-His-Pro-NH2 in the frog skin. Chem Pharm Bull, 23:3301–3, 1975. YEAMAN, M. R.; YOUNT, N. Y. Mechanisms of antimicrobial peptide action and resistance. Pharmacological Reviews, 55: 27–55. 2003. ZASLOFF, M. Antibiotic peptides as mediators of innate immunity. Current Opinion in Immunology, 4:3-7. 1992. ZETLER, G. Cpt_BR
dc.subject.cnpqBiotecnologiapt_BR
dc.publisher.initialsUEApt_BR
Aparece nas coleções:DISSERTAÇÃO - MBT Programa de Pós-Graduação em Biotecnologia e Recursos Naturais da Amazônia

Arquivos associados a este item:
Arquivo Descrição TamanhoFormato 
Peptídeos Bioativos do Anuro Hypsiboas boans..pdf1,67 MBAdobe PDFVisualizar/Abrir


Este item está licenciada sob uma Licença Creative Commons Creative Commons