DSpace logo

Use este identificador para citar ou linkar para este item: http://repositorioinstitucional.uea.edu.br//handle/riuea/2371
Registro completo de metadados
Campo DCValorIdioma
dc.contributor.authorOliveira, Marta Rodrigues de-
dc.date.available2020-03-19-
dc.date.available2020-03-17T19:49:54Z-
dc.date.issued2015-04-15-
dc.identifier.urihttp://repositorioinstitucional.uea.edu.br//handle/riuea/2371-
dc.description.abstractMalaria is a parasitic disease responsible for millions of deaths annually around the world. Its main vector in Brazil is Anopheles darlingi, Root, 1926. According literature, these vectors are found associated with a great diversity of microorganisms, most of them acquired during immature phase through larvae feeding. Bacteria whose can interfere directly on vetorial capacity of the mosquito highlights these microorganism, and its interaction with immature forms from these vectors in their breeding sites is a relevant factor for stablishing important strategies on transmission control of this disease. Therefore, considering there are no studies about microbial biodiversity associated to A. darlingi larvae and its aquatic habitat, especially on Amazon region, this work has as objective characterize bacterial microbiota associated to these species and its natural and/or artificial breeding sites, in the state of Amazonas-AM. It was collected larvae samples from the water of breeding sites of A. darlingi in the State of Amazonas. DNA extraction from larvae samples was performed through innuPREP Plant DNA® kit, and water samples were submitted to heat shock for cellular lysis. After Genomic DNA extraction, amplification of 16S gene from rDNA was performed, through 27F (5’AGAGTTTGATCMTGGCTCAG-3’) and 1100R (5’-AGGGTTGCGCTCGTT-3’) primers. Amplified products were sequenced, and taxonomic identification was performed by comparison of obtained sequences versus database sequences of 16S rRNA RDP II through Classifier program.16S rRNA region sequencing from 37 samples of 4ºestadio larvae and of water from breeding sites of A. darlingi, generated 827.842 sequences which were grouped into 6.714 bacterial OTUs (Operational Taxonomic Unities). To perform Taxonomical analysis the 20 most significant OTUs were selected, and showed more than 10.000 sequences. From these, it was identified 11 genera, 11 families, 8 orders, 7 classes belonging to Actinobacteria, Bacteroidetes, Firmicutes, Verrucomicrobia e Proteobacteria phyla. Proteobacteria phylum was the most predominant, being present in 80% of analyzed OTUs. Thus, it is shown that A. darlingi and its aquatic habitat hosts a rich bacterial diversity. Keywords: Anopheles darlingi, Biodiversity, Bacterias.pt_BR
dc.languageporpt_BR
dc.publisherUniversidade do Estado do Amazonaspt_BR
dc.rightsAcesso Abertopt_BR
dc.rightsAtribuição-NãoComercial-SemDerivados 3.0 Brasil*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/br/*
dc.subjectAnopheles darlingipt_BR
dc.subjectBiodiversidadept_BR
dc.subjectBactériaspt_BR
dc.titleAvaliação da biodiversidade de bactérias não cultiváveis associadas a anofelinos e seu habitatpt_BR
dc.typeDissertaçãopt_BR
dc.date.accessioned2020-03-17T19:49:54Z-
dc.contributor.advisor-co1Tadei, Wanderli Pedro-
dc.contributor.advisor-co1Latteshttp://lattes.cnpq.br/6806722604010480pt_BR
dc.contributor.advisor1Souza , Antonia Queiroz Lima de-
dc.contributor.advisor1Latteshttp://lattes.cnpq.br/8499987875894209pt_BR
dc.contributor.referee1Souza , Antonia Queiroz Lima de-
dc.contributor.referee1Latteshttp://lattes.cnpq.br/8499987875894209pt_BR
dc.creator.Latteshttp://lattes.cnpq.br/2965070467655985pt_BR
dc.description.resumoA malária é uma doença parasitária responsável por milhares de mortes anualmente em todo o mundo, é transmitida por mosquitos do gênero Anopheles. Tem como principal vetor no Brasil o Anopheles darlingi, Root, 1926. Segundo a literatura estes vetores encontram-se associados a uma grande diversidade de micro-organismos, adquiridos principalmente durante a fase imatura por meio da alimentação larval, dentre os quais se destacam as bactérias, que podem interferir diretamente na capacidade vetorial do mosquito. A interação destas bactérias com as formas imaturas desses vetores em seus criadouros é um fator relevante para estabelecer importantes estratégias de controle da transmissão desta doença. Portanto, considerando que não há estudos sobre a biodiversidade microbiana associada a larvas do A. darlingi e seu habitat aquático, especialmente na Região Amazônica, este trabalho teve como objetivo caracterizar a microbiota bacteriana associada a esta espécie e os seus criadouros naturais e/ou artificiais, no estado do Amazonas-AM. Foram coletadas amostras de larvas e de água dos criadouros de A. darlingi no estado de Amazonas. A extração de DNA das amostras de larvas foi realizada pelo kit innuPREP Plant DNA®, e as amostras de água foram submetidas a choques térmicos para a lise celular. Após a obtenção do DNA genômico, realizou-se a amplificação do gene 16S do rDNA com os primers 27F (5’AGAGTTTGATCMTGGCTCAG-3’) e 1100R (5’-AGGGTTGCGCTCGTT-3’). Os produtos de amplificação obtidos foram sequenciados e a identificação taxonômica foi feita a partir da comparação das sequências obtidas com as sequências depositadas no banco de dados de sequências de 16S rRNA RDP II pelo programa Classifier. O sequenciamento da região 16S rRNA das 37 amostras provenientes de larvas de 4° estádio e de água de criadouros de A. darlingi, gerou 827.842 sequências que foram agrupadas em 6.714 OTUs (Unidades Taxonômicas Operacionais) bacterianas. Para a realização das análises taxonômicas foram selecionadas as 20 OTUs mais representativas, que apresentaram mais de 10.000 sequências. Destas, foram identificados 11 gêneros, 11 famílias, 8 ordens, 7 classes pertencentes aos filos Actinobacteria, Bacteroidetes, Firmicutes, Verrucomicrobia e Proteobacteria. O filo Proteobacteria foi o mais predominante, estando presente em 80% das OTUs analisadas. Desta forma demonstrou-se que as larvas de A. darlingi e seu habitat aquático abrigam uma rica diversidade bacteriana. Palavras-Chave: Anopheles darlingi, Biodiversidade, Bactérias.pt_BR
dc.publisher.countryBrasilpt_BR
dc.publisher.programPrograma de Pós-Graduação em Biotecnologia e Recursos Naturaispt_BR
dc.relation.referencesAYDOA.N.M; YUMUK, Z; DÜNDAR, V; ARISOY, E.S. Sphingobacterium multivorum septicemia in an infant: Report of a case and review of the literature. Türk Mikrobiyol, v. 36, n.345, p.36-44, 2006. BOISSIÈRE, A; TCHIOFFO, M.T; BACHAR, D; ABATE, L; MARIE, A; NSANGO, S.E; SHAHBAZKIA, H.R; AWONO-AMBENE, P.H; LEVASHINA, E.A; CHRISTEN, R; 68 MORLAIS, I. Midgut microbiota of the malaria mosquito vector Anopheles gambiae and interactions with Plasmodium falciparum infection. PLoS Pathoge, v. 8, n.8, p.1-11, 2012. CIRIMOTICH,C.M; DONG, Y; CLAYTON, A.M; SANDIFORD, S.L SOUZA-NETO, J.A; MULENGA, M; DIMOPOULOS, G. Natural microbe-mediated re fractoriness to Plasmodium infection in Anopheles gambiae. Science, v.332, n.321, p. 855-858, 2011. COLE, J. R., B; CHAI, R. J; FARRIS, Q; WANG, S. A; KULAM, D. M; MCGARRELL, G. M; GARRITY, J. M; TIEDJE. The Ribosomal Database Project (RDP-II): sequences and tools for high throughput rRNA analysis. Nucleic Acids Research, v. 33, n. 96, p.1-18, 2005. CONSOLI, R.A.G.B; OLIVEIRA, R. L. Principais mosquitos de importância sanitária no Brasil. Fundação Instituto Oswaldo Cruz, Rio de Janeiro, 228p.1994. DADA, N; JUMAS-BILAK, J; MANGUIN, S; SEIDU, R; STENSTRÖM, T.A; OVERGAARD, H.J. Comparative assessment of the bacterial communities associated with Aedes aegypti larvae and water from domestic water storage containers. Parasites & Vectors, v.7, n.319, p. 1-12, 2014. DERRIEN, M. M. C; COLLADO, K; BEN-AMOR, S; SALMINEN, W. M. The mucin degrader Akkermansia muciniphila is an abundant resident of the human intestinal tract. Applied Environmental Microbiology, v.78, n.74, p.1646–1648, 2008. DING, L.X; YOKOTA, A. Curvibacter fontana sp. nov., a microaerobic bacteria isolated from well water. The Journal of General and Applied Microbiology, v.56, n.32, p. 267–271, 2010 DONG, Y; S. A; KULAM, D. M; MCGARRELL, G. M; GARRITY. Engineered anopheles immunity to Plasmodium infection. PLoS Pathoge. v.3, n.5, p.1-12, 2014. DUGUMA, G.; RUGMAN-JONES, P; KAUFMAN, M.G;HALL, M.W; NEUFELD, J.D; WALTON, W.E. Bacterial Communities Associated with Culex Mosquito Larvae and Two Emergent Aquatic Plants of Bioremediation Importance. Plos One, v.8, n.8, p. 1-11, 2013. ENGEL, P; MORAN, N.A. The gut microbiota of insects - diversity in structure and function. FEMS Microbiology Reviews,v.37, n.1, p. 699-735, 2013. FARAN, M. E. Mosquito studies (Diptera: Culicidae) XXXIV. A revision of the Albimanus section of the subgenus Nyssorhynchus of Anopheles. Contributions of the American Entomological Institute, v.15, n.7, p.1–215, 1980. FARAN, M. E.; LINTHICUM, K. J. A handbook of the Amazonian species of Anopheles (Nyssorhynchus). Mosquito Systematics,v.13, n.1, p. 1-81, 1981. FAVIA, G; RICCI, I; DAMIANI, C; RADDADI, N; CROTTI, E; MARZORATI, M. Bacteria of the genus Asaia stably associate with Anopheles stephensi, an Asian malarial mosquito vector. Proceedings of the National Academy of Sciences, v.104, n.21, p.23- 34, 2007. GARRITY G M, BELL J A, LILBURN T G. Taxonomic Outline of Prokaryotes. Bergey’s Manual of Systematic Bacteriology. 2nd Ed. Rel. 5.0. Springer-Verlag. 2004. 69 GEETHA, I., MANONMANI, A.M., PAILY, K.P.Identification and characterization of a mosquito pupicidal metabolite of a Bacillus subtilis subsp. subtilis strain. Applied Microbiology and Biotechnology, v. 86, n.23, p. 1737–1744, 2010. GIMONNEAU, G; TCHIOFFO, M.T; ABATE, L; BOISSIÈRE, A; AWONO-AMBÉNÉ, P.H; NSANGO, S.E; CHRISTEN, R; MORLAIS, S. Composition of Anopheles coluzzii and Anopheles gambiae microbiota from larval to adult stages. Infection, Genetics and Evolution, v.28, n.28, p.715-724, 2014. GONZALEZ-CERON L, SANTILLAN F, RODRIGUEZ MH, MENDEZ D, HERNANDEZAVILA JE. Bacteria in midguts of field-collected Anopheles albimanus block Plasmodium vivax sporogonic development. Journal of Medical Entomology, v.3, n.1, p. 371-374. 2003. GOOD, I. J. The population frequencies of species and the estimation of population parameters. Biometrica, 1953. HANDELSMAN, J; RONDON, M.R; BRADY, S.F; CLARDY, J; GOODMAN, R.M. Molecular Biological Access to the Chemistry of Unknown Soil Microbes: a new frontier for natural products. Chemistry and Biology, v. 5, n. 1, p. 245-249.1998. ITURBE-ORMAETXE, I; WALKER, T; O’ NEILL, S.L. Wolbachia and the Biological Control of Mosquito-Borne Disease. EMBO Reports, v. 12, n. 6, p. 508–518. 2011. KAMPFER, P; ROSSELLO, R; HERMANSSON, M; PERSSON, M; HUBER, B; FALSEN, E; JU, A.H; BUSSE, R. Undibacterium pigrum gen. nov., sp. nov., isolated from drinking water. International Journal of Systematic and Evolutionary Microbiology, v.57, n.2, p. 1510-1515, 2007. KASALICKY, V; JEZBERA, J; HAHN, M.W; SIMEK, K.S. The Diversity of the Limnohabitans Genus, an Important Group of Freshwater Bacterioplankton, by Characterization of 35 Isolated Strains. Plos One , v.8, n.3, p.1-13, 2013. KIKUCHI Y, HOSOKAWA T, FUKATSU T. Insect-microbe mutualism without vertical transmission: a stinkbug acquires a beneficial gut symbiont from the environment every generation. Applied Environmental Microbiology, v. 73, n. 1, p. 4308–4316, 2007. LANE, D.J. 16S/23S rRNA sequencing. In: Nucleic acid techniques in bacterial systematics. Stackebrandt, E., and Goodfellow, M., eds., John Wiley and Sons, New York, NY, pp. 115-175. 1991. LINDH, J.M; TERENIUS, O; FAYE, I. 16S rRNA Gene-Based Identification of Midgut Bacteria from Field-Caught Anopheles gambiae Sensu Lato and A. funestus Mosquitoes Reveals New Species Related to Known Insect Symbionts. Applied and Environmental Microbiology, v. 71, n. 2, p. 7217–7223. 2005. LINDH, J.M; TERENIUS, O; FAYE, I. The tsetse fly Glossina fuscipes fuscipes (Diptera: Glossina) harbours a surprising diversity of bacteria other than symbionts. Applied and Environmental Microbiology, v. 71, n. 2, p. 7217–7223. 2007. 70 MINARD, G; MAVINGUI, P; MORO, C.V. Diversidade e Função da Microbiota Bacteriana no Holobiont Mosquito. Parasitas e Vetores, v, 6, n. 146, p. 2-12. 2013. OKAFOR, N. Ecology of microorganisms in freshwater. Environ Microbiol Aquatic Wastes Systems, v.12, p. 111-122, 2011. PIDIYAR, V.J; JANGID, K; PATOLE, M.S; SHOUCHE, Y.S. Studies on Cultured and Uncultured Microbiota of Wild Culex Quinque fasciatus Mosquito Midgut Based on 16s Ribosomal RNA Gene Analysis. The American Journal of Tropical Medicine and Hygiene, v. 70, n. 14, p. 597–603. 2004. RANI A; SHARMA A; RAJAGOPAL R; ADAK T; BHATNAGAR R. K. Bacterial Diversity Analysis of Larvae and Adult Midgut Microflora Using Culture-Dependent and CultureIndependent Methods in Lab-Reared and Field-Collected Anopheles stephensi - an Asian Malarial Vector. BMC Microbiology, v. 9, n. 2, p. 96-106. 2009. RAPPÉ MS, GIOVANNONI SJ. The Uncultured Microbial Majority. Annual Review Microbiology, v. 57, n. 2, p. 369–394. 2003. SAMBROOK, J.; FRITSCH, E.F.; MANIATIS, T. Molecular Cloning: A Laboratory Manual, 2. Ed.. Cold Spring Harbor Laboratory Press, v. 1, 1989. SANTOS, A.V; DILLON, R.J; DILLON, V.M; REYNOLDS, S.E; SAMUELS, R.I. Ocurrence of the antibiotic producing bacterium Burkholderia sp. in colonies of the leafcutting ant Atta sexdens rubropilosa. FEMS Microbiology Letters, v. 239, n.123, p. 319– 323, 2004. SHARMA, P; SHARMA, S; MAURYA, R.P; DE, T.D; THOMAS, T; LATA, S; SINGH, N; PANDEY, K.D; VALECHA, K; DIXIT, R. Salivary glands harbor more diverse microbial communities than gut in Anopheles culicifacies. Parasites & Vectors, v. 7, n. 235, p. 1-7, 2014. SMITH, R.C; CHRISTOPHER K; JASON L. R; JACOBS-LORENA, M. Transgenic Mosquitoes Expressing a Phospholipase A2 Gene Have a Fitness Advantage When Fed Plasmodium falciparum-Infected Blood. PLoS One, v.8, n.10, p.1-11, 2013. STEMMER, W.P.C; et al. Rapid evolution of a protein in vitro by DNA shuffling. Nature, v. 370, n. 6488, p. 389-391, 1994. SUN, J; LI, G; WANG, C; JING, Y; ZHU, Y; ZHANG, W.Z; LIU, Y. Community dynamics of prokaryotic and eukaryotic microbes in an estuary Reservoir. Scientific Reports, v.4, n. 6966, p. 1-14, 2014. TADEI, W. P.; DUTARY-THATCHER, B. Malaria vectors in the Brazilian amazon: Anopheles of the subgenus Nyssorhynchus. Revista do Instituto de Medicina Tropical de São Paulo, v. 42, n.23, p.894- 913, 2000. TADEI, W. P; THATCHER, B. D; SANTOS, J. M; SCARPASSA, V. M; RODRIGUES, I. B; RAFAEL, M. S. Ecologic observations on anopheline vectors of malaria in the Brazilian 71 Amazon. The American Journal of Tropical Medicine and Hygiene,v.59, n.1, p.325-335, 1998. TANAKA, Y; TAMAKI, W; MATSUZAWA, H; NIGAYA, M; MORI, K; KAMAGATA, Y. Microbial Community Analysis in the Roots of Aquatic Plants and Isolation of Novel Microbes Including an Organism of the Candidate Phylum OP10. Microbes and Envoronments, v. 27, n 2, p.149–157, 2009. TERENIUS, O; OLIVEIRA, C.D; PINHEIRO, W.D; TADEI, W.P; JAMES, A.A; MARINOTTI, O. 16S rRNA gene sequences from bacteria associated with adult Anopheles darlingi (Diptera: Culicidae) mosquitoes. Journal of Medical Entomology, v.45, n.2, p.172– 175, 2008. TURNER, S; PRYER, K.M; MIAO, V.P.W; PALMER, J.D. Investigating deep phylogenetic relationships among cyanobacteria and plastids by small subunit rRNA sequence analysis. Journal of Eukaryotic Microbiology, v. 46, n.1, p.327–338, 1999. VAN PASSEL, M. W. J., et al. The genome of Akkermansia muciniphila, a dedicated intestinal mucin degrader, and its use in exploring intestinal metagenomes. PLoS One, v.6, n.2, p.1343-1364, 2011. WANG, S; JACOBS-LORENA, M. Genetic approaches to interfere with malaria transmission by vector mosquitoes. Trends Biotechnol, v. 31, n.1, p. 185-193, 2013. WANG, Y; GILBREATH, T.M; KUKUTLA, P; YAN, G; XU, J. Dynamic gut microbiome across life history of the malaria mosquito Anopheles gambiae in Kenya. PLoS ONE, v.6, n.6, p.135-145, 2011. WORLD HEALTH ORGANIZATION (WHO). World malaria report 2014. In, World Health Organization. 78p. 2014. WHITE, T.J; et al. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. PCR protocols: a guide to methods and applications, v. 18, p. 315-322, 1990. ZOUACHE, K; RAHARIMALALA, F.N; RAQUIN, V; TRAN-VAN, V; RAVELOSON, L.H.R; RAVELONANDRO, P; MAVINGUI, P. Bacterial diversityof¢eld caughtmosquitoes,Aedes albopictusand Aedes aegypti, from di¡erent geographic regions of Madagascar. BMC Microbiology, v.75, n. 11, p. 377-389. 2011. ZWART A, G; HUISMANS, R; AGTERVELD, M.P.V; PEER, Y.V; RIJK, P.D; EENHOORN, H; MUYZER, G; HANNEN, E.V; GONS, W.J; LAANBROEK, H.J. Divergent members of the bacterial division Verrucomicrobiales in a temperate freshwater lake. FEMS Microbiology Ecology, v. 25, n.153, p.159-169, 1998.pt_BR
dc.subject.cnpqBiotecnologiapt_BR
dc.publisher.initialsUEApt_BR
Aparece nas coleções:DISSERTAÇÃO - MBT Programa de Pós-Graduação em Biotecnologia e Recursos Naturais da Amazônia

Arquivos associados a este item:
Arquivo Descrição TamanhoFormato 
Avaliação da Biodiversidade de Bactérias Não Cultiváveis Associadas à Anophelinos e seu Habitat.pdf1,54 MBAdobe PDFVisualizar/Abrir


Este item está licenciada sob uma Licença Creative Commons Creative Commons