DSpace logo

Use este identificador para citar ou linkar para este item: http://repositorioinstitucional.uea.edu.br//handle/riuea/2355
Registro completo de metadados
Campo DCValorIdioma
dc.contributor.authorTorres, Daiana Rodrigues-
dc.date.available2020-03-18-
dc.date.available2020-03-17T19:11:51Z-
dc.date.issued2014-03-28-
dc.identifier.urihttp://repositorioinstitucional.uea.edu.br//handle/riuea/2355-
dc.description.abstractThe interest in obtaining food of high commercial value and low cost has led researchers to seek new food sources capable of satisfying the nutritional needs. And for this purpose, have been studied for decades, the production of Single Cell Protein (SCP). Among the advantages presented in the production of SCP, the versatility of substrates used in the preparation of the microbial biomass has drawn attention. Thus, agroindustrial waste, low cost substrates and nutritionally rich for the growth of microorganisms appear as a way to reduce the production costs of the SCP. Since the local availability of waste from the processing of cassava in the region, this study aimed to investigate the biomass of Amazonian yeasts (single cell protein) using cassava and hemicellulosic hydrolyzate of cassava peel in submerged bioprocess. In this work 20 yeast to environmental, non- toxigenic, belonging to the collection of microorganisms of INPA were investigated. These were subjected to submerged bioprocess using cassava and hemicellulosic hydrolyzate as the substrate, the end of the process was measured to produce cell biomass, microorganism and the appropriate substrate were investigated by means of kinetic study. The kinetic study was performed with the whole yeast/substrate apresentarou the best growth characteristics in screening assays. Assays were performed in periods of 24h to 120h (24h, 48h, 72h, 96h and 120h) to assess the ideal for higher biomass production time. At the end of each trial were analyzed characteristic pH, Brix, glucose, optical density and dry biomass to identify the best process time. Finally, the biomass obtained was quantified for the levels of total protein. It was also tealizado from an experimental design, optimization of the process for obtaining the hydrolyzate evaluate the influence of hydrolysis time and the concentration of sulfuric acid (H2SO4) is necessary to obtain a hydrolyzate with higher concentrations of sugars. The experimental design used was more like 22 axial points. The microorganism used for evaluation of biomass production was the yeast Rhodotorula sp. (LMM 4375), belonging to the collection of microbiological cultures INPA. The selected yeast underwent bioprocess, for 96 hours, 100 rpm, with cell concentration 1x104cel/mL, being measured at the beginning and end of each procedure the ºBrix of the substrate and the end of the bioprocess biomass obtained was quantified. In screening tests, the isolated Rhodotorula LMM 4375, showed the highest cell concentration (9.64x107  1.58x107) when using the hydrolyzate of cassava peel as substrate. Kinetic study of the selected strain, isolated Rhodotorula LMM 4375 presented the highest yield and conversion of nutrient/biomass between 48-96 h. When evaluated on the content of this biomass obtained proteins, isolated Rhodotorula LMM 4375 presented content equal to 23 % of protetínas. The factorial design allowed analysis of the response surface showing the optimal concentrations for maximum production of the hydrolyzate Brix: Time hydrolysis ratio of 9.5 minutes and 0.2 g H2SO4/g of cassava peel and biomass production: Time hydrolysis ratio of 19.5 minutes and 0.14 gH2SO4/g of cassava peel. Thus, one can observe the potential use of the peel the cassava hydrolyzate as a substrate for the production of yeast biomass and also the LMM protencial strain 4375, as a source of single cell protein. Keywords: Single cell protein, yeast, agroinduztriais waste.pt_BR
dc.languageporpt_BR
dc.publisherUniversidade do Estado do Amazonaspt_BR
dc.rightsAcesso Abertopt_BR
dc.rightsAtribuição-NãoComercial-SemDerivados 3.0 Brasil*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/br/*
dc.subjectSingle cell proteinpt_BR
dc.subjectLeveduraspt_BR
dc.subjectResíduos agroindustriaispt_BR
dc.titleManipueira e hidrolisado da casca de Mandioca (Manihot esculenta Crantz).pt_BR
dc.typeDissertaçãopt_BR
dc.date.accessioned2020-03-17T19:11:51Z-
dc.contributor.advisor-co1Souza, João Vicente Braga de-
dc.contributor.advisor-co1Latteshttp://lattes.cnpq.br/7804981785557071pt_BR
dc.contributor.advisor1Souza , Érica Simplício de-
dc.contributor.advisor1Latteshttp://lattes.cnpq.br/4333531513081697pt_BR
dc.contributor.referee1Souza, Érica Simplício de-
dc.contributor.referee1Latteshttp://lattes.cnpq.br/4333531513081697pt_BR
dc.creator.Latteshttp://lattes.cnpq.br/5451519104871102pt_BR
dc.description.resumoO interesse em obter alimentos de alto valor comercial e a baixo custo tem levado pesquisadores a buscarem novas fontes alimentícias capazes de satisfazer as necessidades nutricionais. E com esta finalidade, tem sido estudada, há algumas décadas, a produção de Single Cell Protein (SCP). Dentre as vantagens apresentadas na produção da SCP, a versatilidade de substratos utilizados na obtenção da biomassa microbiana tem chamado atenção. Assim, os resíduos agroindustriais, substratos de baixo custo e rico nutricionalmente para o crescimento de microrganismos, surgem como uma forma de reduzir os custos de produção da SCP. Tendo a disponibilidade local de resíduos provenientes do processamento da mandioca na região, o presente trabalho teve como finalidade investigar a produção de biomassa de leveduras amazônicas (single cell protein) utilizando manipueira e hidrolisado hemicelulósico da casca de mandioca em bioprocesso submerso. Na realização deste trabalho foram investigadas 20 leveduras de origem ambiental, não toxigênicas, pertencentes à coleção de microrganismos do INPA. Essas foram submetidas à bioprocessos submersos utilizando manipueira e hidrolisado hemicelulósico como substrato, ao final do processo foi quantificada a produção de biomassa celular, o microrganismo e o substrato mais adequado foram investigados, por meio de estudo cinético. O estudo cinético foi realizado com o conjunto levedura/substrato que apresentou as melhores características de crescimento nos ensaios de screening. Os ensaios foram realizados em períodos de 24h até 120h (24h, 48h, 72h, 96h e 120h), para avaliação do tempo ideal para maior produção de biomassa. Ao final de cada ensaio foram analisadas as característica de pH, Brix, glicose, densidade óptica e biomassa seca para identificação do melhor tempo de processo. Por fim, a biomassa obtida foi quantificada quanto aos teores de proteínas totais. Também foi realizado, a partir de um delineamento experimental, a otimização do processo de obtenção do hidrolisado para avaliar a influência do tempo de hidrólise e da concentração de ácido sulfúrico (H2SO4) necessárias para a obtenção de um hidrolisado com maiores concentrações de açúcares. O planejamento fatorial utilizado foi do tipo 22 mais pontos axiais. O microrganismo utilizado para avaliação da produção de biomassa foi a levedura Rhodotorula sp. (LMM 4375), pertencente à coleção de culturas microbiológicas do INPA. A levedura selecionada foi submetida à bioprocesso, por 96 horas, 100rpm, com concentração celular de 1x104cel/mL, sendo quantificado ao início e termino de cada processo o ºbrix do substrato e ao final do bioprocesso a biomassa obtida foi quantificada. Nos ensaios de screening, o isolado Rhodotorula LMM 4375, apresentou a maior concentração celular (9,64x107  1,58x107) quando utilizado o hidrolisado da casca de mandioca como substrato. No estudo cinético da cepa selecionada, o isolado Rhodotorula LMM 4375 apresentou suas maiores produtividades e conversão de nutriente/biomassa entre 48-96 h. Quando avaliado o teor de proteínas presente na biomassa obtida, o isolado Rhodotorula LMM 4375 apresentou teor igual a 23% de protetínas. O planejamento fatorial posibilitou análise da superfície de resposta demonstrando as concentrações ótimas para a máxima produção do Brix do hidrolisado: Tempo de hidrólise de 9,5 minutos e Razão 0,2g H2SO4/g de casca de mandioca e para produção da biomassa: Tempo de hidrólise de 19,5 minutos e Razão 0,14g H2SO4/g de casca de mandioca. Assim, pode-se observar o potencial de uso do hidrolisado da casca de mandioca como substrato para a produção de biomassa de leveduras e também o protencial da cepa LMM 4375, como fonte geradora de single cell protein. Palavras-chave: Single cell protein, leveduras, resíduos agroindustriais.pt_BR
dc.publisher.countryBrasilpt_BR
dc.publisher.programPrograma de Pós-Graduação em Biotecnologia e Recursos Naturaispt_BR
dc.relation.referencesADOKI, A. Factors affecting yeast growth and protein yield production from orange, plantain and banana wastes processing residues using Candida Spp. African J. Biotech., v.7, n.3, p.290- 295, 2008. ALMEIDA, V. V.; CANESIN, E. A.; SUZUKI, R. M.; PALIOTO, G. F. Análise qualitativa de proteínas em alimentos por meio de reação de complexação do íon cúprico. Ver. Química Nova na escola, v.35, n.1, p.34-40, 2013. 46 ALTAF, M. D.; NAVEENA, B. J.; VENKATESHWAR, M.; KUMAR, E. V.; REDDY, G. Single step fermentation of starch to L(+) lactic acid by Lactobacillus amylophilus GV6 in SSF using inexpensive nitrogen sources to replace peptone and yeast extract – optimization by RSM. Process Biochemistry, London, v.41, n.2, p.465-472, Feb. 2005. ALVES, L.A.; FELIPE, M.G.A.; ALMEIDA E SILVA, J.B.; SILVA, S.S.; PRATA, A.M.R. Pretreatment of sugar cane bagasse hemicellulose hydrolysate for xilytol production by Candida guilliermondii. Applied Biochemistry and Biotechnology, 70/2:89-98, 1998. ASSOCIATION OF THE OFFICIAL ANALYTICAL CHEMISTS (AOAC). Official and tentative methods of analysis. 16ed. Arlington, 1995. CASSONI, V.; CEREDA, M. P. Avaliação do processo de fermentação acética da manipueira. Rev. Eng. na Agricultura, Botucatu, v.26, n.4, p. 101-113, 2011. CAZETTA, M. L.; CELLIGOI, M.A.P.C. Aproveitamento do melaço e vinhaça de cana-de açúcar como substrato para produção de biomassa protéica e lipídica por leveduras e bactéria. Ciências Exatas e Tecnológicas, v.26, n. 2, p. 105-112, 2005. CRISTÉ, R.C.; COHEN, K.O. Teor de cianeto total e livre nas etapas de processamento do tucupi. Rev. Instituto Adolfo Lutz, São Paulo, v.70, n.1, p.41-46, 2011. DIAZ, M. J.; EUGENIO, M. E.; JIMÉNEZ, L.; MADEJÓN, E.; CABRERA, F. Modelling vinasse/ cotton waste ratio incubation for optimum composting. Chemical Engineering Journal, Lausanne, v.93, n.3, p.233-240, 2003. DUBOIS, M.; GILLES, K. A.; HAMILTON, J. K.; REBERS, P. A.; SMITH, F. Colorimetric method for determination of sugars and related substances. Analitical Chemistry, v. 28, n.3, p.350-356, 1956. FERREIRA, L. F. R. Biodegradação de vinhaça proveniente do processo industrial da cana-de-açúcar por fungos. Piracicaba. 2009. 134p. Tese (Doutorado). Escola Superior de Agricultura “Luiz de Queiroz”, Universidade de São Paulo. FERREIRA, M.S.; DA SILVA, J.R.B. Utilização da casca, entrecasca e raspa da mandioca na alimentação de ruminantes. Rev. Bras. de Agropecuéria Sustentável, v.1, n.2, p.73-76, 2011. INSTITUTO ADOLFO LUTZ. Normas analíticas do Instituto Adolfo Lutz. v. 1: Métodos químicos e físicos para análise de alimentos, IV.ed. São Paulo: IMESP, 2005. LACERDA, L. G.; ALMEIDA, R. R.; DEMIATE, I. M.; CARVALHO FILHO, M. A. S.; VASCONCELOS, E. C.; WOICIECHOWSKI, A. L.; BANNACH, G.; SCHNITZLER, E.; SOCCOL, C. R. Thermoanalytical and starch content evaluation of cassava bagasse as 47 agro-industrial residue. Brazilian Archives of Biology and Technology, Curitiba, v. 52, n. 1, p. 143-150, 2009. LEE, S.; ROBINSON, F.; WANG, H. Rapid determination of yeast viability. Biotechnology & Bioengineering Symposium, n. 11, p. 641-649, 1981. MALISORN, C.; SUNTORNSUK, W. Optimization of β-carotene production by Rhodotorula glutinis DM28 in fermented radish brine. Bioresource Technology, vol. 99, no. 7, p. 2281-2287, 2008. PARASKEVOPOULOU, A.; ATHANASIADIS, I.; KANELLAKI, M.; BEKATOROU, A.; BLEKAS, G.; KIOSSEOGLOU, V. Functional properties of single cell protein produced by Kefir microflora. Food Research International, Barking, v.36, n.5, p.431-438, 2003. SILVA, N, JUNQUEIRA, V.C.A., SILVEIRA, N.F.A. Manual de Métodos de Análise Microbiológica de Alimentos. ed. 3. São Paulo. Livraria Varela, 2007. 536 p. SQUINA, F. M.; YAMASHITA, F.; PEREIRA, J. L.; MERCADANTE, A. Z. Production of carotenoids by rhodotorula rubra and r. Glutinis in culture medium supplemented with sugar cane juice. Food Biotecnology, v.16, n.3, p.227-235, 2002. VENDRUSCOLO, F.; KOCH, F.; PITOL, L. DE O.; NINOW, J. L. Produção de proteína unicelular a partir do bagaço de maçã utilizando fermentação em estado sólido. Revista Brasileira de Tecnologia Agroindustrial. v.1, n.0, p.53-57, 2007.pt_BR
dc.subject.cnpqBiotecnologiapt_BR
dc.publisher.initialsUEApt_BR
Aparece nas coleções:DISSERTAÇÃO - MBT Programa de Pós-Graduação em Biotecnologia e Recursos Naturais da Amazônia



Este item está licenciada sob uma Licença Creative Commons Creative Commons