DSpace logo

Use este identificador para citar ou linkar para este item: http://repositorioinstitucional.uea.edu.br//handle/riuea/2334
Registro completo de metadados
Campo DCValorIdioma
dc.contributor.authorHumphrey, Ana Carolina Monroy-
dc.date.available2020-03-16-
dc.date.available2020-03-17T18:31:01Z-
dc.date.issued2016-02-15-
dc.identifier.urihttp://repositorioinstitucional.uea.edu.br//handle/riuea/2334-
dc.description.abstractThe acceptance of many products in the market is directly related to their appearance, and among the most important features we can mention the color. Due to the current global trend of wanting to replace the artificial for the natural, the food industry, textile, pharmaceutical and cosmetic are seeking natural products that do not cause harm to health and that are friendly to the environment. An alternative source for obtaining natural pigments are bacteria, due to the advantages they have in terms of their high growth rate, geographic independence, controllable conditions, genetic manipulation, and reduced cost through the use of less expensive growth media. The present study aimed to test different physical and chemical parameters, identifying those that influence positively on cell growth and pigment production of three bacteria isolated from Amazonian soils (Serratia marcescens, Microbacterium sp. and Burkholderia sp). The tests were performed using nutrient broth as growing medium, selected as the base medium, testing different sources of carbon, nitrogen, temperature and pH. Samples were taken at 24, 48 and 72 hours after incubation, by measuring the cell growth by means of OD (optical density) at 600 nm, and pigment production by extraction with polar solvents when necessary, and reading the OD in the wavelength for each case (red at 470 nm for S. marcescens, yellow at 440 nm for Microbacterium sp., and purple at 470 nm for Burkholderia sp). In Serratia marcescens the highest biomass was obtained with sucrose and glucose as carbon source, yeast extract as a nitrogen source at a temperature of 25°C and a pH of 7 and 8. The growth parameters that influenced positively in the production of pigment was the use of soluble starch as carbon source, yeast extract as a nitrogen source at a temperature of 25°C and pH 8. Regarding to Microbacterium sp., the best cell growth occurred in the presence of sucrose as carbon source, yeast extract as nitrogen source, at a temperature of 25 and 30°C with a pH between 6 and 8. Soluble starch as carbon source, yeast extract as a nitrogen source in a temperature range between 20-30 °C and a pH between 6 and 9, favored the pigment production. As to Burkholderia sp., cell growth was favored by the use of glucose as carbon source, yeast extract as a nitrogen source at a temperature of 20-25°C, and a pH of 6. The higher pigment yields were observed when lactose was used as carbon source, yeast extract as a nitrogen source at a temperature of 20 and 25°C, and a pH between 6 and 7. These results can be used in order to improve the yields in the production of pigments of interest by the bacterial species studied. Key words: microbial metabolism, biopigment, Amazon microbiota, biotechnology products.pt_BR
dc.languageporpt_BR
dc.publisherUniversidade do Estado do Amazonaspt_BR
dc.rightsAcesso Abertopt_BR
dc.rightsAtribuição-NãoComercial-SemDerivados 3.0 Brasil*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/br/*
dc.subjectMetabolismo microbianopt_BR
dc.subjectBiopigmentospt_BR
dc.subjectMicrobiota amazônicapt_BR
dc.subjectProdutos biotecnológicospt_BR
dc.titleEfeitos de parâmetros físicos e químicos na produção de pigmentos e biomassa de três bactérias isoladas de solos amazônicospt_BR
dc.typeDissertaçãopt_BR
dc.date.accessioned2020-03-17T18:31:01Z-
dc.contributor.advisor1Oliveira, Luiz Antonio de-
dc.contributor.advisor1Latteshttp://lattes.cnpq.br/9931395111001102pt_BR
dc.contributor.referee1Oliveira, Luiz Antonio de-
dc.contributor.referee1Latteshttp://lattes.cnpq.br/9931395111001102pt_BR
dc.creator.Latteshttp://lattes.cnpq.br/1610417008608981pt_BR
dc.description.resumoA aceitação de muitos produtos no mercado está diretamente relacionada à sua aparência, e entre as características mais importantes pode-se citar a cor. Estudos tem estabelecido que as doses inadequadas de corante sintéticos são prejudiciais para a saúde do consumidor, culminando, por tanto, em criações de legislações em relação à sua utilização. Devido à atual tendência mundial de querer substituir o artificial pelo natural, a indústria alimentícia, têxtil, farmacêutica e cosmética está na busca de produtos naturais que não ocasionem danos à saúde e que sejam amigáveis ao meio ambiente. Uma alternativa para a obtenção de pigmentos naturais é através de bactérias devido às vantagens que possuem em termos de sua alta taxa de crescimento, independência geográfica, condições controláveis, manipulação genética, além da redução dos custos através do uso de meios de cultivo mais econômicos. No presente trabalho objetivou-se testar distintos parâmetros físicos e químicos, identificando aqueles que influenciam de forma positiva no crescimento celular e produção de pigmentos de três bactérias isoladas de solos amazônicos (Serratia marcescens, Microbacterium sp. e Burkholderia sp.). Os testes foram realizados por meio de crescimento em caldo nutritivo selecionado como meio base, testando distintas fontes de carbono, nitrogênio, temperaturas e pH. Foram retiradas amostras cada 24, 48 e 72h após incubação, medindo o crescimento celular por meio de OD (densidade ótica) a 600nm, e a produção do pigmento através da extração com solventes polares quando foi necessário, e a leitura da OD no comprimento de onda para cada caso (vermelho a 470 nm para S. marcescens, amarelo a 440 nm para Microbacterium sp. e, roxo a 470 nm para Burkholderia sp.). A maior produção de biomassa de S. marcescens foi obtida utilizando sacarose e glicose como fontes de carbono, extrato de levedura como fonte de nitrogênio, em uma temperatura de 25°C e um pH que pode variar entre 7 e 8. Os parâmetros de crescimento que influenciaram de forma positiva na A produção do pigmento foi favorecida pelo uso do amido solúvel como fonte de carbono, o extrato de levedura como fonte de nitrogênio, a uma temperatura de 25°C e com um pH 8 no meio de cultura. Com relação à Microbacterium sp., um melhor crescimento celular ocorreu na presença de sacarose como fonte de carbono, extrato de levedura como fonte de nitrogênio, em 25 e 30 °C com um pH entre 6 e 8. O amido solúvel como fonte de carbono, extrato de levedura como fonte de nitrogênio, em uma faixa entre 20-30°C, e um pH entre 6 e 9 favoreceram a produção do pigmento. Quanto à Burkholderia sp., crescimento celular foi favorecido pelo uso de glicose como fonte de carbono, extrato de levedura como fonte de nitrogênio, a uma temperatura de 20 e 25°C e um pH de 6. As maiores produções de pigmento foram observadas quando a lactose foi utilizada como fonte de carbono, extrato levedura como fonte de nitrogênio, a uma temperatura de 20 e 25°C e um pH entre 6 e 7. Estes resultados podem ser utilizados para obter melhores rendimentos na produção dos pigmentos de interesse nas espécies de bactérias estudadas. Palavras chaves: Metabolismo microbiano, biopigmentos, microbiota amazônica, produtos biotecnológicospt_BR
dc.publisher.countryBrasilpt_BR
dc.publisher.programPrograma de Pós-Graduação em Biotecnologia e Recursos Naturaispt_BR
dc.relation.referencesABEROUMAND A. A review article on edible pigments properties and sources as natural biocolorants in foodstuff and food industry. World journal of dairy & food sciences. v. 6. n. 1. p. 71-78. 2011. ALIHOSSEINI F. et al. Antibacterial colorants: Characterization of prodiginines and their applications on textile materials. Biotechnology Progress, v. 24, n. 3, 2008. BABITHA S. Microbial Pigments. Biotechnology for Agro-industrial residues utilization. Editorial Springer, Capitulo 8, p. 147-160, 2009. DUFOSSÉ L. et al. Microorganisms and microalgae as sources of pigments for food use: a scientific oddity or an industrial reality?. Trends in food science & technology. n.16. 2005. p. 389-406. GROSSART Hans-Peter et al. Production of a blue pigment (Glaukothalin) by marine Rheinheimera spp. International Journal of microbiology.ID701735, 2009. INSUMOS. Os corantes alimentícios: Revista aditivos ingredientes. Ed. Insumos LTDA. n. 62, maio/junho 2009, p. 28-39. KARKI H. S. et al. Diversities in virulence, antifungal activity, pigmentation and DNA fingerprint among strains of Burkholderia glumae. Plos One. v. 7. n. 9. 2012. KUMAR A. et al. Microbial pigments: production and their applications in various industries. International journal of pharmaceutical, chemical and biological sciences. v. 5.. n. 1. 2015. p. 203-212. KURBANOGLU E. B. et al. Enhanced production of prodigiosin by Serratia marcescens MO-1 using ram horn peptone. Brazilian Journal of microbiology. v. 46. n. 2. 2015. p. 631-637. LAPENDA Jeanne Cristina. Produção e caracterização de prodigiosina isolada de Serratia marcescens UCP 1549. Dissertação programa de Pós-graduação em ciências biológicas, Universidade Federal de Pernambuco. 2010. p. 43 75 LATHA B. V. et al. Influence of growth factor son carotenoid pigmentation of Rhodotorula glutinis DFR-PDY from natural source .Indian journal of biotechnology. v. 4. 2005. p 353-357. LIU G. e NIZET V. Color me bad: microbial pigments as virulence factors. Trends in microbiology, v. 19, n. 9, 2009. p. 406-413. LIU J. et al. Chinese red yeast rice (Monascus purpureus) for primary hyperlipidemia: a meta-analysis of randomized controlled trials. Chinese medicine. v. 1. n. 4. 2006. MOHAMMADI M., BURBANK L. e ROPER M. C.. Biological role of pigment production for the bacterial phytopathogen Pantoeastewartii subsp. Stewartii. Applied and environmental microbiology. v. 78, n. 19, 2012. p. 6859-6865. MUKHERJEE G. e SINGH S. K. Purification and characterization of a new red pigment from Monascus purpureus in submerged fermentation. Process Biochemistry. v. 46. 2011 p. 188-192. NUGRAHENI et al. Characterization of carotenoid pigments from bacterial symbionts of seagrass Thalassia hemprichii. Journal of coastal development. v. 14. n. 1. 2010. p. 5160. OTTERSTÄTTER Gisbert. Coloring of food, drugs, and cosmetics.Marcel Dekker, Inc. Estados Unidos, 1999. PEREIRA David M.; VALENTÃO Patrícia; ANDRADE Paula B. Marine natural pigments: Chemistry, distribution and analysis. Dyes and Pigment.vol. 111, p. 124-134, 2014. PRADO M. A. e GODOY H. T. Corantes artificiais em alimentos. Alimentos e nutrição, Araraquara. v.14, n.2. 2003. p. 237-250. RASHID M. et al. Anti-bacterial activity of pigments isolated from pigment-forming soil bactéria. British Journal of pharmaceutical research, v. 4, n. 8. 2014. p.880-894. RODRIGUEZ D. B. A guide to carotenoid analysis in foods. Universidade Estadual de Campinas, SP. Teses. 2001. 76 SOLIEV A. B., HOSOKAWA K. e ENOMOTO K. Bioactive pigments from marine bacteria: applications and physiological roles. Evidence-based complementary and alternative medicine. 2011. VALDUGA E. et al. Produção de carotenoids: microrganismos como fonte de pigmentos naturais. Quimica nova. v. 32. n. 9. 2009. p. 2429-2436. VELMURUGAN P. et al. Effect of light on growth, intracellular and extracellular pigment production by five pigment-producing filamentous fungi in synthetic medium. Journal of Bioscience and Bioengineering, v. 109, n.4, p. 346-350, 2010. VENIL C. K.; ZAKARIA Z. A. e AHMAD W. A. Bacterial pigments and their applications (Review). Process biochemistry, v. 48, p.1065-1079. 2013. VENIL C. K. et al. Isolation and characterization of flexirubin type pigment from Chryseobacterium sp. UTM-3T.Biocatalysis and Agricultural Biotechnology, 2014. VIKAS S, et al. Isolation and characterization of pigment producing bacteria from various foods for their possible use as biocolours. International Journal of recent scientific research, v. 4, n. 10, p. 1605-1609, 2013. WATERS Christopher e Bassler Bonnie. Quorum sensing: Cell-to-cell communication in bacteria. Cell and developmental biology. v. 21. 2005. p. 319-346. WEI e CHEN. Enhanced production of prodigiosin-like pigment from Serratia marcescens SMΔR by medium improvement and oil-supplementation strategies. Journal of bioscience and bioengineering. v. 99. n. 6. 2005. p. 616-622. YUANG Lu et al. Production of violet pigment by a new isolated psycotrophic bacterium from a glacier in Xinjiang, China. Biochemical Engineering Journal, v. 43, p. 135-141, 2009. ZANG et al. Identification and enhanced production of prodigiosin isoform pigment from Serratia marcescens N10612. Journal of the Taiwan Institute of chemical engineers. v. 45. 2014. p. 1133-1139.pt_BR
dc.subject.cnpqBiotecnologiapt_BR
dc.publisher.initialsUEApt_BR
Aparece nas coleções:DISSERTAÇÃO - MBT Programa de Pós-Graduação em Biotecnologia e Recursos Naturais da Amazônia



Este item está licenciada sob uma Licença Creative Commons Creative Commons