DSpace logo

Use este identificador para citar ou linkar para este item: http://repositorioinstitucional.uea.edu.br//handle/riuea/2329
Registro completo de metadados
Campo DCValorIdioma
dc.contributor.authorLima , Lorena Azevedo de-
dc.date.available2020-03-14-
dc.date.available2020-03-17T18:18:54Z-
dc.date.issued2013-09-26-
dc.identifier.urihttp://repositorioinstitucional.uea.edu.br//handle/riuea/2329-
dc.description.abstractApplication of collagenolytic proteases has major importance in medical and industrial activity, with the most varied applications, as far in therapeutic scope as biotechnological. Collagenolytic proteases can hydrolyze both native collagen as denatured collagen, becoming increasingly commercially important. Among the various sources of collagenolytic proteases, the microbial proteases show an important role in biotechnological processes. This study proposed to select samples of Bacillus sp. isolated from soil, those which showed the best production of collagenolytic proteases and characterize the enzyme. For selection of bacteria protease producer, eight samples from Bacillus sp. were reactivated in Mueller-Hinton broth and plated on Agar gelatin/milk 1 % (w/v). To determine the protease collagenolytic activity, bacteria were plated on solid medium with insoluble collagen 0.25 % (w/v) substratum. The colonies that showed hyaline halo of degradation were subjected to biochemical tests to confirm the taxonomy. Two successive 23 full factorial design with four replications at the center point were prepared for analysis of tracks of pH, temperature and substrate concentration. Eight samples reactivated, two had protease collagenolytic activity. The most collagenolytic activity of Bacillus sp. was 86.27 U / mL with specific activity 145.18 U / mg at pH 9.0 at 37 ° C with 1.5% (w / v) substrate concentration. Maximum collagenolytic enzyme activity of Bacillus stearothermophilus was 79,38 U / mL with specific activity of 136.92 U / mg at pH 7.2 at 25 ° C with substrate concentration of 1% (w / v). Both enzymatic extracts were optimally active at pH 9.0 at 50 ° C, remained stable in the range of alkaline pH and temperatures between 45 to 60 ° C. The results showed that the production of collagenolytic enzymes by Bacillus sp. DPUA 1728 and B. stearothermophilus DPUA 1729 have potential biotechnological.pt_BR
dc.languageporpt_BR
dc.publisherUniversidade do Estado do Amazonaspt_BR
dc.rightsAcesso Abertopt_BR
dc.rightsAtribuição-NãoComercial-SemDerivados 3.0 Brasil*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/br/*
dc.subjectProtease colagenolíticapt_BR
dc.subjectBacillus spppt_BR
dc.subjectPlanejamento fatorialpt_BR
dc.subjectSolopt_BR
dc.titleProteases com atividade colagenolíticas produzidas por bacillus spp de solo amazônicopt_BR
dc.title.alternativeProteases with collagenolytic activity produced by bacillus spp from Amazonian soilpt_BR
dc.typeDissertaçãopt_BR
dc.date.accessioned2020-03-17T18:18:54Z-
dc.contributor.advisor-co1Santos, Januário Gama dos-
dc.contributor.advisor-co1Latteshttp://lattes.cnpq.br/9350500352104838pt_BR
dc.contributor.advisor1Silveira , Wendel Batista da-
dc.contributor.advisor1Latteshttp://lattes.cnpq.br/7361036485940798pt_BR
dc.contributor.referee1Silveira, Wendel Batista da-
dc.contributor.referee1Latteshttp://lattes.cnpq.br/7361036485940798pt_BR
dc.creator.Latteshttp://lattes.cnpq.br/0949561713855313pt_BR
dc.description.resumoA aplicação das proteases colagenolíticas é de grande importância na área médica e na atividade industrial, apresentando as mais variadas aplicações tanto no âmbito terapêutico como biotecnológico. Proteases colagenolíticas podem hidrolisar tanto colágeno nativo como desnaturado, tornando-se cada vez mais comercialmente importantes. Entre as várias fontes de proteases colagenolíticas, as proteases microbianas desempenham um papel importante na contabilidade de processos biotecnológicos. Este estudo propôs selecionar das amostras de Bacillus sp. isoladas de solo, as que apresentaram a melhor produção de proteases colagenolíticas e caracterizar a enzima. Para a seleção de bactérias produtoras de proteases, oito amostras de Bacillus sp. foram reativadas em caldo Mueller-Hinton e semeadas em meio Agar gelatina/leite 1%(p/v). Para determinar a atividade de protease colagenolítica, as bactérias foram semeadas em meio de cultura sólido com colágeno insolúvel 0,25% (p/v) de substrato. As colônias que apresentaram halo hialino da degradação foram submetidas a testes bioquímicos para a confirmação taxonômica. Dois sucessivos planejamentos fatoriais completos 2 3 com quatro repetições no ponto central foram elaborados para a análise das faixas de pH, temperatura e concentração de substrato. Das oito amostras reativadas, duas apresentaram atividade de protease colagenolítica. A maior atividade colagenolítica de Bacillus sp. foi 86,27 U/mL com atividade específica de 145,18 U/mg em pH 9,0 a 37 °C com 1,5 % (p/v) de concentração de substrato. A máxima atividade enzimática colagenolítica de Bacillus stearothermophilus foi 79,38 U/mL com atividade específica de 136,92 U/mg em pH 7,2 a 25 °C com concentração de substrato a 1 % (p/v). Ambos os extratos enzimáticos tiveram atividade ótima em pH 9,0 a 50 °C, mantiveram-se estáveis na faixa de pH alcalino e entre as temperaturas de 45 a 60 °C. Os resultados demonstraram que a produção de enzimas colagenolíticas por Bacillus sp. DPUA 1728 e B. stearothermophilus DPUA 1729 apresentam potencial biotecnológico.pt_BR
dc.publisher.countryBrasilpt_BR
dc.publisher.programPrograma de Pós-Graduação em Biotecnologia e Recursos Naturais da Amazôniapt_BR
dc.relation.referencesABRIOUEL, H.; FRANZ, C. M.A.P.; OMAR, N.B.; ALVEZ, A. G.. Diversity and applications of Bacillus bacteriocins. FEMS Microbiol Rev, v.35, p.201–232, 2011. ADIGÜZEL , A.C.; BITLISLI, B. O.; YASA, I.; ERIKSEN, N. T.. Sequential secretion of collagenolytic, elastolytic, and keratinolytic proteases in peptide-limited cultures of two Bacillus cereus strains isolated from wool. Journal of Applied Microbiology, v.107, p.226– 234, 2009. ALBERTS, B.; JOHNSON, A.; LEWIS, J.; RAFF, M.; ROBERTS, K.; WALTER, P.. Biologia Molecular da Célula, 4.ed., p.1096-1100, 2004. ALCARAZ, L. D.; MORENO-HAGELSIEB, G.; EGUIARTE, L. E.; SOUZA, V.; HERRERA-ESTRELLA, L.; OLMEDO, G.. Understanding the evolutionary relationships and major traits of Bacillus through comparative genomics. BMC Genomics, v.11, n.332, p.02-17, 2010. ASDORNNITHEE, S.; AKIYAMA, K.; SASAKI, T.; TAKATA, R.. Isolation and Characterization of a Collagenolytic Enzyme from Bacillus licheniformis N22. Journal of Fermentation And Bioengineering, v.78, n.4, 283-287. 1994. AUSAR, S.; BELTRAMO, D.; CASTAGNA, L.; QUINTANA, S.; SILVERA, E.; KALAYAN, G.; REVIGLIONO, M.; LANDA, C.; BIANCO, I.. Treatment of rheumatoid arthritis by oral administration of bovine tracheal type II collagen. Rheumatology INternational, v. 20, n. 4, p. 138-144, 2001. BAEHAKI, A.; SUHARTONO, M. T.; SUKARNO; SYAH, D.; SITANGGANG, A. D.; SETYAHADI, S.; MEINHARDT, F. Purification and characterization of collagenase from Bacillus licheniformis F11.4. African Journal of Microbiology Research, v.6, n.10, p. 2373- 2379, 2012. BALADAMENTE, M.A.; HURST, L.C.. Efficacy and Safety of Injectable Mixed Collagenase Subtypes in the Treatment of Dupuytren’s Contracture. The Journal of Hand Surgery, v.32, n.6, p.767-774, 2007. BADALEMENTE, M. A.; WANG, E.. Method for treating lateral epicondylitis using collagenase. The Research Foundation of State University of New York (Albany, NY, US). 7854929. Dezembro/2010. Disponível em: < http://www.freepatentsonline.com/7854929.html>. Acesso: 25/01/2012. BARROW, G. I; FELTHAM, R. K. A.. Manual for the Identification of Medical Bacteria, 3rd ed. Cambridge University Press, Cambridge, United Kingdom, 1993. BRADFORD, M. M.. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry v.72, 248–254, 1976. 44 CHAUDRY, Z. F.; ROCHA, J. L.; PLEPIS, A. M. G.; ROSSI, M.; GOISSIS, G.. Preparação e caracterização de colágeno aniônico por hidrólise seletiva de grupos carboxamida internos. Polímeros, São Carlos, v. 7, n. 2, p. 40-46, 1997. CHAVIRA, R.J.; BURNETT, T.J.; HAGEMAN J.H.. Assaying proteinases with azocoll. Anal. Biochem, v.136, p.4446–4450, 1984. CHU, K. H.. Collagenase chemonucleolysis via epidural injection. A review of 252 cases. Clin Orthop, v.215, p.99–104, 1987. DABOOR, S. M.; BUDGE, S. M.; GHALY, A. E.; BROOKS, S.; DAVE, D.. Extraction and Purification of Collagenase Enzymes: A Critical Review. American Journal of Biochemistry and Biotechnology, v.6, n.4, p.239-263, 2010. DEMAIM, A. L.. Small bugs, big business: The economic power of the microbe. Biotechnology Advances, v.18, p.499-514, 2000. DÍEZ, J.; LAVIADES, C.; MAYOR, G.; GIL, M. J.; MONREAL, I. Increased Serum Concentrations of Procollagen Peptides in Essential Hypertension. Circulation. v.91, p.1450- 1456, 1995. DOUST, R. H.; MOBAREZ, A. M.. Collagenase activity in Prevotella Bivius Isolated from patients with premature rupture of membranes. Medical Journal of the Islamic Republic of Iran, v.18, n.1, p. 61-66, 2004. ETTOUMI, B.; RADDADI, N.; BORIN, S.; DAFFONCHIO , D.; CHERIF, A.. Diversity and phylogeny of culturable spore-forming Bacilli isolated from marine sediments, Journal of Basic Microbiology, v.49, p.S13–S23, 2009. FRIEDRICH, J.; KERN, S.. Hydrolysis of native proteins by keratinolytic protease of Doratomyces microspores. Journal of Molecular Catalysis B: Enzymatic, n.21, p.35–37, 2003. GALPER, S.; COHN, E.SPIEGEL, Y.; CHET, I.. A Collagenolytic Fungus, Cunninghamella elegans, for Biological Control of Plant-parasitic Nematodes, Journal of Nematology v. 25, n.3, p.269-274, 1991. GENÇKAL, H.. Studies on Alkaline Protease Production from Bacillus sp.. Master dissertation. İzmir Institute of Technology, İzmir, Turkey, 2004. GUPTA, A.; ROY, I.; PATEL, R. K.; SINGH, S. P.; KHARE, S. K.; GUPTA, M. N.. Onestep purification and characterization of an alkaline protease from haloalkaliphilic Bacillus sp., Journal of Chromatography A, v.1075, p.103–108, 2005. HAMDY, H. S.. Extracellular collagenase from Rhizoctonia solani: Prodution, purification and characterization. Indian Journal of Biotechnology, v.7, p.333-340, 2008. HARRINGTON, D. J.. Bacterial Collagenases and Collagen-Degrading Enzymes and Their Potential Role in Human Disease. Infection and Immunity, v.64, n.6, p.1885–1891, 1996. 45 HEINO, J.. The collagen family members as cell adhesion proteins. Bio Essays, n.29, p.1001- 1010, 2007. HOULE, MARIE-ANDRE; GRENIER, D.; PLAMONDON, P.; NAKAYAMA, K.. The collagenase activity of Porphyromonas gingivalis is due to Arg-gingipain. FEMS Microbiology Letters, v.221, p.181-185, 2003. HURST, L. C.; BADALAMENTE, M. A.; HENTZ, V. R.; HOTCHKISS, R. N.; KAPLAN, F. T. D.; MEALS, R. A.; SMITH, T. M.; RODZVILLA, J.. Injectable Collagenase Clostridium Histolyticum for Dupuytren’s Contracture. N Engl J Med, v. 361, n.10, p.968- 979, 2009. ITOI, Y.; HORINAKA, M.; TSUJIMOTO, Y.; MATSUI, H.; WATANABE, K.. Characteristic Features in the Structure and Collagen-Binding Ability of a Thermophilic Collagenolytic Protease from the Thermophile Geobacillus collagenovorans MO-1. Journal of Bacteriology, v.188, n.18, p.6572–6579, 2006. JACKSON, R. J.; LIMA, D. V.; DAO, M. L. Identification and Analysis of a Collagenolytic Activity in Streptococcus mutans. Current microbiology, v.34, p.49–54, 1997. JESUS, E. C.; MARSH, T. L.; TIEDJE, J. M.; MOREIRA, F. M. S.. Changes in land use alter the structure of bacterial communities in Western Amazon soils. The ISME Journal, v.3, p.1004–1011, 2009. JIN, B., H. J; ALTER, Z. C; ZHANG, J. W; SHIH, J. M.; ESTEBAN, T.; SUN, Y. S; YANG, QIU, Q.; LIU, X.L.; YAO, L.; WANG, H. D; CHENG, L. F.. Reversibility of experimental rabbit liver cirrhosis by portal collagenase administration. Lab. Invest., v.85, p.992-1002, 2005. JUCÁ M.; NUNES B.L.B.B.P.; MENEZES H.L.; GOMES, E.G.A.; MATOS D.. Metaloproteinases 1 e 7 e Câncer Colorretal. Rev bras Coloproct, v.28, n.3, p.353-362, 2008. JUNG, W., WINTER, H.. Considerations for the use of clostridial collagenase in practice from clinical drug investigation. Clin. Drug Invest., v.15, n.3, p.245-252,1998. KADLER, K. E.; HOLMES, D. F.; TROTTER, J. A.; CHAPMAN, J. A.. Collagen fibril formation, Biochem. J., v. 316, p.1-11, 1996. KANG, S.I.; JANG, Y. B.; CHOI, Y. J.; KONG, J. Y.. Purification e properties of a Collagenolytic protease produced by Marine bacterium Vibrio vulnificus CYK279H. Biotechnology an Bioprocess Engineering, v.10, p.593-598, 2005. KANTH, S.V.; VENBA, R.; MADHAN, B.; CHANDRABABU, N. K.; SADULLA, S.. Studies on the influence of bacterial collagenase in leather dyeing. Dyes and Pigments, v.76, n.2, p.338-347, 2008. KAWAHARA, H.; KUSUMOTO, M.; OBATA, H.. Isolation and Characterization os a New Type of Collagenase Producing Bacterium, Bacillus alvei DC-1. Biosci. Biotech. Biochem., v.57, n.8, p.1372-1373, 1993. 46 KIM, M.; HAMILTON, S.E.; GUDDAT, L.W.; OVERALL, C.M.. Plant collagenase: Unique collagenolytic activity of cysteine proteases from ginger. Biochimica et Biophysica Acta, v.1770, n.12, p. 627-1635, 2007. KINGSTON, I. B.. Nematode Collagen Genes. Parasitology Today, v.7, n.1, P.11-15, 1991. KUŞCU, N. K.; KOYUNCU, F.; LAÇIN. S.. Collagenase treatment of sore nipples. International Journal of Gynecology & Obstetrics, v. 76, p. 81-82, 2002. KUMAR, C. G.; TAKAGI, H.. Microbial alkaline proteases. Biotechnology Advance, v.17, n.7, p.561-594,1999. LABADIE, J.; HEBRAUD, M.. Purification and characterization of a collagenolytic enzyme produced by Rathayibacter sp. strains isolated from cultures of Clavibacter michiganensis subsp. Michiganensis. Journal of Applied Microbiology, v.82, p.141-148, 1997. LANGMAIER, F.; MLADEK, M.; KOLOMAZN, K.; SUKOP, S.. Isolation of elastin and collagen polypeptides from long cattle tendons as raw material for the cosmetic industry. International Journal of Cosmetic Science, v. 24, p.273-279, 2002. LEIGHTON, T. J.; DOI, R. H. R.; WARREN A. J.; LELEN, R. A. The relationship of serine protease activity to RNA poly-merase modification and sporulation in Bacillus subtilis. J. Mol. Biol, v.76, p.103-122, 1973. LEHNINGER, A.L.; NELSON, D.L.; COX, M.M.. Lehninger: Princípios de Bioquímica, 3a. Edição, Editora Sarvier, p.133-135, 2002. LI, W.; SABATER, A. L.; CHEN, Y.; HAYASHIDA, Y.; CHEN, S.; HE, H.; TSENG, S. C. G.. A novel method of isolation, preservation, and expansion of human corneal endothelial cells, Investigative Ophthalmology & Visual Science, v. 48, n. 2, p. 614-620, 2007. LIMA, C. A.; RODRIGUES, P. M.B.; PORTO, T. S.; VIANA, D. A.; LIMA FILHO, J. L.; PORTO, A. L.F.; CUNHA, M. G. C.. Production of a collagenase from Candida albicans URM362. Biochemical Engineering Journal , v.43 , p.315–320, 2009. LIMA, C. A.; RODRIGUES, LIMA FILHO, J. L.; NETO, B. B.; CONVERTI, A.; CUNHA, M. G.; PORTO, A. L. F.. Production and Characterization of a Collagenolytic Serine Proteinase by Penicillium aurantiogriseum URM 4622: A Factorial Study. Biotechnology and Bioprocess Engineering, v.16, p.549-560, 2011. LINTNER, K.; PESCHARD, O.. Biologically active peptides: from a laboratory bench curiosity to a functional skin care product. International Journal of Cosmetic Science, v.22, p. 207-218, 2000. LIU, L.; MA, M.; CAI, Z; YANG, X, WANG, W.. Purification and Properties of a Collagenolytic Protease Produced by Bacillus cereus MBL13 Strain. Food Technol. Biotechnol, v.48, n.2, p.151–160, 2010. 47 LUPAN, D. M.; NZIRAMASANGA, P.. Collagenolytic Activity of Coccidioides immitis. Infection and Immunity, v.51, n.1, p.360-361, 1986. MIYOSHI, S.; NITANDA, Y.; FUJII, K.; KAWAHARA, K.; LI, T.; MAEHARA, Y.; RAMAMURTHY, T.; TAKEDA, Y.; SHINODA, S.. Diferential gene expressionand extracellular secretion of the collagenolytic enzymes by the pathogen Vibrio parahaemolyticus, FEMS Microbiol Lett, v.283, p.176–181, 2008. MOORE, S.; STEIN, W.. H.. Photometric ninhydrin method for use in the chromatography of amino acids. J. Biol. Chem. v.176, p.367-388, 1948. MOSKOWITZ, R. W.. Role of collagen hydrolysate in Bone and Joint disease. Seminars of arthritis and Rheumatism, v.30, n.2, p.87-99, 2000. MYLLYHARJU, J.; KIVIRIKKO, K. I.. Collagens, modifying enzymes and their mutations in humans, flies and worms. Trends in Genetics,v.20, n.1, p.33-43, 2004. NAGANO, H.; TO, K.. A. Purification of Collagenase and Specificity it related enzyme from Bacillus subtilis FS-2, Biosci.Biotechnol. Biochem, v.63, n.7, p.181-183, 1999. NAZINA, T. N.; LEBEDEVA, E. V.; POLTARAUS, A. B.; TOUROVA, T. P.; GRIGORYAN, A. A.; SOKOLOVA, D. S.; LYSENKO, A. M.; OSIPOV, G. A.. Geobacillus gargensis sp. nov., a novel thermophile from a hot spring, and the reclassification of Bacillus vulcanias as Geobacillus vulcani comb. nov. International Journal of Systematic and Evolutionary Microbiology, v.54, p.2019–2024, 2004. NICHOLSON, W. L.. Roles of Bacillus endospores in the environment. Cell. Mol. Life Sci, v. 59, p.410-416, 2002. OKAMOTO, M.; YONEJIMA, Y.; TSUJIMOTO, Y.; SUZUKI, Y.; WATANABE, K. A.. Thermostable collagenolytic protease with a very large molecular mass produced by thermophilic Bacillus sp.. strain MO-1. Appl Microbiol Biotechnol, v.57, p.103–108, 2001. OUCHI, H.; FUJITA, M.; IKEGAME, S.; YE, Q.; INOSHIMA, I.; HARADA, E.; KUWANO, K.; NAKANISHI, Y.. The role of collagenases in experimental pulmonary fibrosis. Pulmonary Pharmacology & Therapeutics, v.21, p.401–408, 2008. ÖZCAN, C.; ERGÜNO, C., ELIK, M.; ÇÖRDÜK, N.; ÖZOK, G.. Enzymatic debridement of burn wound with collagenase in children with partial-thickness burns. Burns, v.28, p.791–794, 2002. PATEL, R.; DODIA, M.; SINGH, S. P.. Extracellular alkaline protease from a newly isolated haloalkaliphilic Bacillus sp..: Production and optimization Process Biochemistry, v.40, p.3569-3575, 2005. PARKS, W.C. Matrix metalloproteinases in repair. Wound repair and regeneration, v.7, n.6 p.423-432, 1999. 48 PETROVA, D.H.; SHISHKOV, S.A.; VLAHOV, S.S.. Novel thermostable serine collagenase from Thermoactinomyces sp. 21E: Purification and some properties. J. Basic Microbiol. v.46, p.275–285, 2006. PRICE, M. F.; WILKINSON, I. D.; GENTRY, I. O.. Plate method for detection of phospholipase activity in Candida albicans, Sabouraudia. v.20, p.7-14, 1982. PRIEST, F. G. Extracellular enzyme synthesis in the genus Bacillus. Bacteriol. Rev., v.41, n., p.711, 1977. RAO, M. B.; TANKSALE, A. M.; GHATGE, M. S.; DESHPANDE, V. V.. Molecular and Biotechnological Aspects of Microbial Proteases, Microbiol. Mol. Biol. Rev, v.62, n.3, p.597- 635, 1998. SANTOS, J. G.; CRUZ FILHO, R. F.; LIMA, L. A.; FERNANDES, O. C. C.; TEIXEIRA, M. F. S. E PORTO, A. L. F.. Produção de Proteases Alcalinas por Bacillus sp. Isolado do Solo Contendo Resíduos Industriais de Couro. Anais do XVII Simpósio Nacional de Bioprocessos, Natal, 2009. SCHAFFER, C.; FRANCK W. L., SCHEBERL, A.; KOSMA, P.; MCDERMOTT, T. R.; MESSNER, P.. Classification of isolates from locations in Austria and Yellowstone National Park as Geobacillus, International Journal of Systematic and Evolutionary Microbiology, v.54, p.2361–2368, 2004. SCHALLMEY, M.; SINGH, A. AND WARD, O. P.. Developments in the use of Bacillus sp.ecies for industrial production. Can. J. Microbiol. v.50, n.1, p1-17, 2004. SELA, S.; SCHICKLER, H.; CHET, I.; SPIEGEL, Y. Purification and characterization of a Bacillus cereus collagenolytic/proteolytic enzyme and its effect on Meloidogyne javanica cuticular proteins. European Journal of Plant Pathology, v.104, p.59–67, 1998. SHARMA, A.; PANDEY, A.; SHOUCHE, Y. S.; KUMAR, B.; KULKARNI, G.. Characterization and identification of GeoBacillus sp.p. isolated from Soldhar hot spring site of Garhwal Himalaya, India, Journal of Basic Microbiology New Biotechnology, v.49, p.187- 194, 2011. SUPHATHARAPRATEEP, W.; CHEIRSILP, B.; JONGJAREONRAK, A.. Production and properties of two collagenases from bacteria and their application for collagen extraction. New Biotechnology, v.00, n. 00,7 p.01-07, 2011. SUPP, D.M.; WILSON-LANDY, K.; BOYCE, S.T.. Human dermal microvascular endothelial cells form vascular analogs in cultured skin substitutes after grafting to athymic mice. FASEB Journal, v. 16, n. 8, p. 797-804, 2002. THWAITE, J.E.; LAWS, T.R.; ATKINS, T.P.; ATKINS, H. S.. Differential cell surface properties of vegetative Bacillus. Letters in Applied Microbiology, v.48, p.373–378, 2009. TRAN, K. A.; NAGANO, H.. Isolation and characteristics of Bacillus subtilis CN2 and its collagenase production. J. Food Sci. v. 67, p.1184–1187, 2002. 49 VARGAS, D.M.; AUDÍ, L.; CARRASCOSA, A.. Peptídeos derivados do colágeno: novos marcadores bioquímicos do metabolismo ósseo. Rev Ass Med Brasil, n.43, v.4, p.367-70, 1997. VEIT, G.; KOBBE, B.; KEENE, D. R.; PAULSSON, M.; KOCH, M.; WAGENER, R.. Collagen XXVIII, a Novel vonWillebrand Factor A Domain containing Protein with Many Imperfections in the Collagenous Domain, The journal of biological chemistry, v.281, n.06, p.3494–3504, 2006. WATANABE, K. Collagenolytic proteases from bacteria. Appl Microbiol Biotechnol, v.63, p.520–526. WESTERS, L.; WESTERS, H.; QUAX, W. J.. Bacillus subtilis as cell factory for pharmaceutical proteins: a biotechnological approach to optimize the host organism. Biochimica et Biophysica Acta, n.1694, p.299– 310, 2004. WEGMAN, E. H.; BRONSTHER, B.; JACOB, E. T.. Reduction of adipose tissue using collagenase. advance biofactures of Curacao N.V. (Industrial Park, Brievengat, Curacao, AN). EP0721781. Março/2002. Disponível em: <http://www.freepatentsonline.com/EP0721781.html> Acesso: 25/01/2012. WOLBURG, H. et. al. Modulation of tight junction structure in blood-brain barrier endothelial cells. Journal of Cell Science, v.107, p.1347-1357, 1994. WU, J.; FUJIOKA, M.; SUGIMOTO, K.; MU, G.; ISHIMI, Y.. Assessment of effectiveness of oral administration of collagen peptide on bone metabolism in growing and mature rats, J Bone Miner Metab, v.22, p.547–553, 2004. WU, Q.; LI, C. H.; LI, C.; CHEN, H.; SHULIANG, L.. Purification and Characterization of a Novel Collagenase from Bacillus pumilus Col-J. Appl Biochem Biotechnol, v.160, p.129–139, 2010. ZAMBARE, V.; NILEGAONKAR, S.; KANEKAR, P.. A novel extracellular protease from Pseudomonas aeruginosa MCM B-327 enzyme production and its partial characterization, New Biotechnology, v.28, n.2, p. 173-181, 2011. ZIMMER, K. R.; BORRÉ, G. L.; TRENTIN, D. S.; JÚNIOR, C. W.; FRASSON, A. P.; GRAEFF, A. A.; GOMES, P.; MACEDO, A.J.. Enzimas microbianas de uso terapêutico e diagnóstico clínico, Revista Liberato, v.10, n.14, p.123-137, 2009pt_BR
dc.subject.cnpqCiência do solopt_BR
dc.publisher.initialsUEApt_BR
Aparece nas coleções:DISSERTAÇÃO - MBT Programa de Pós-Graduação em Biotecnologia e Recursos Naturais da Amazônia

Arquivos associados a este item:
Arquivo Descrição TamanhoFormato 
Proteases com atividade colagenolíticas produzidas por bacillus spp de solo amazônico.pdf1,85 MBAdobe PDFVisualizar/Abrir


Este item está licenciada sob uma Licença Creative Commons Creative Commons