DSpace logo

Please use this identifier to cite or link to this item: http://repositorioinstitucional.uea.edu.br//handle/riuea/2322
Full metadata record
DC FieldValueLanguage
dc.contributor.authorAraújo, José Deney Alves de-
dc.date.available2020-03-16-
dc.date.available2020-03-17T18:05:02Z-
dc.date.issued2016-06-30-
dc.identifier.urihttp://repositorioinstitucional.uea.edu.br//handle/riuea/2322-
dc.description.abstractThousands of water bodies are found in the Amazon. They can be classified based on their water color in blackwater, clearwater and whitewater. The Amazon basin houses approximately 3,000 fish species, including the freshwater sardine, Triportheus albus, locally known as “sardinha”. Triportheus albus lives in all three types of water, despite their significant differences regarding physicochemical parameters. The ability of this species to survive in these different habitats is anticipated to be related to specific adaptations. The goal of the present study is to describe gene transcription differences of T. albus collected from the three types of water, and to describe the relevant mechanisms behind this ability. Gills of specimens of T. albus from the three types of water (black, clear, and white) were collected. Nine cDNA libraries, three biological replicates for each condition (type of water) were prepared and sequenced for RNA (RNA-Seq) using the MiSeq® (Illumina®) platform. A total of 51.6 million of reads paired-end, were assembled into 285,456 high quality contigs. Considering FDR ≤ 0.05 and the fold change ≥ 2, 13,754 differentially expressed genes were detected for all three conditions. Two mechanisms related to the homeostasis control were detected for T. albus living in blackwater. The acidic blackwater seems to be a challenging environment to many types of organisms. The first mechanism is related to a decrease of cell permeability and the second seem to be related to ion and acid-base regulation. We suggest that T. albus is an important fish species for future studies exploring ion and acid-base regulation in fish of the Amazon. Key words: Negro River, Tapajós River, Solimões River, differentially expressed genes, RNA-Seq, acid pH, ionic regulation.pt_BR
dc.languageporpt_BR
dc.publisherUniversidade do Estado do Amazonaspt_BR
dc.rightsAcesso Abertopt_BR
dc.rightsAtribuição-NãoComercial-SemDerivados 3.0 Brasil*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/br/*
dc.subjectRio Negropt_BR
dc.subjectRio Tapajóspt_BR
dc.subjectRio Solimõespt_BR
dc.subjectExpressão diferencialpt_BR
dc.subjectRNASeqpt_BR
dc.subjectpH ácidopt_BR
dc.subjectRegulação iônicapt_BR
dc.titleAnálise da expressão diferencial do transcriptoma da espécie Triportheus albus cope, 1872 nas águas preta, clara e branca da Amazôniapt_BR
dc.typeDissertaçãopt_BR
dc.date.accessioned2020-03-17T18:05:02Z-
dc.contributor.advisor-co1Ghelfi, Andrea-
dc.contributor.advisor-co1Latteshttp://lattes.cnpq.br/1250847135870845pt_BR
dc.contributor.advisor1Val, Adalberto Luis-
dc.contributor.advisor1Latteshttp://lattes.cnpq.br/2747150211073176pt_BR
dc.contributor.referee1Val, Adalberto Luis-
dc.contributor.referee1Latteshttp://lattes.cnpq.br/2747150211073176pt_BR
dc.contributor.referee2Alencar, Tainá Raiol-
dc.contributor.referee2Latteshttp://lattes.cnpq.br/9295686881191724pt_BR
dc.contributor.referee3Souza, Antonia Queiroz Lima de-
dc.contributor.referee3Latteshttp://lattes.cnpq.br/8499987875894209pt_BR
dc.creator.Latteshttp://lattes.cnpq.br/8028027637749067pt_BR
dc.description.resumoMilhares de corpos d’água são encontrados na Amazônia. Eles podem ser classificados conforme sua cor em três categorias, águas preta, clara e branca. Estima-se que 3.000 espécies de peixes vivem nos rios da Amazônia, dentre estas a sardinha, Triportheus albus. Esta espécie habita os três tipos de águas da Amazônia, apesar de suas diferenças significativas em relação aos parâmetros físico-químicos. A capacidade desta espécie para sobreviver nestes diferentes habitats está relacionada com suas adaptações específicas. O objetivo do presente estudo foi descrever a resposta gênica nos três tipos de águas, e descrever os mecanismos relevantes que podem originar essa capacidade. Brânquias de T. albus foram coletadas em locais bem caracterizados para cada tipo de água. Nove bibliotecas de cDNA foram construídas, três réplicas biológicas de cada condição e sequenciado o RNA (RNA-Seq) na Plataforma MiSeq® (Illumina®). Um total de 51,6 milhões de reads paired-end, e 285.456 transcritos foram montados. Considerando o FDR ≤ 0,05 e fold change ≥ 2, foram detectados 13.754 genes diferencialmente expressos nos três desafios ambientais. Dois mecanismos relacionados com a homeostase foram detectados em T. albus que vivem em águas pretas. As águas pretas e ácidas, parece ser um ambiente desafiador para muitos tipos de organismos aquáticos. O primeiro está relacionado com a diminuição da permeabilidade celular e o segundo com a regulação iônica e ácido-base. Sugerimos que a espécie T. albus é uma boa espécie de peixe para futuros estudos envolvendo a regulação iônica e ácido-base de espécies amazônicas. Palavras-chave: Rio Negro, Rio Tapajós, Rio Solimões, expressão diferencial, RNASeq, pH ácido, regulação iônica.pt_BR
dc.publisher.countryBrasilpt_BR
dc.publisher.programPrograma de Pós-Graduação em Biotecnologia e Recursos Naturaispt_BR
dc.relation.referencesALMEIDA, R. G. DE. Biologia Alimentar de três espécies de Triportheus (Pisces: Characoideil, characidae) do lago do Castanho, Amazonas. Acta Amazonica, v. 14, n. 1-2, p. 48–76, 1984. ALTSCHUL, S.; MADDEN, T.; SCHÄFFER, A.; ZHENG, J. Gapped BLAST and PSIBLAST: a new generation of protein database search programs. Nucleic Acids Research, v. 25, n. 17, p. 3389–3402, 1997. AMARAL, B. D. DO. Fisheries and fishing effort at the Indigenous Reserves Ashaninka/Kaxinawá, river Breu, Brazil/Peru. Acta Amazonica, v. 35, n. 2, p. 133– 144, 2005. ANDREWS, S. FastQC: A quality control tool for high throughput sequence data. 2010.ASHBURNER, M. et al. Gene Ontology: tool for the unification of biology. Nature Genetics, v. 25, n. 1, p. 25–29, 2000. BAYAA, M.; VULESEVIC, B.; ESBAUGH, A.; BRAUN, M.; EKKER, M. E.; GROSELL, M.; PERRY, S. F. The involvement of SLC26 anion transporters in chloride uptake in zebrafish (Danio rerio) larvae. Journal of Experimental Biology, v. 212, n. 20, p. 3283–3295, 2009. BOLGER, A. M.; LOHSE, M.; USADEL, B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics, v. 30, n. 15, p. 2114–2120, 2014. BONGA, S. E.; FLIK, G.; BALM, P. H. M.; VAN DER MEIJ, J. C. A. The ultrastructure of chloride cells in the gills of the teleost Oreochromis mossambicus during exposure to acidified water. Cell and Tissue Research, v. 259, n. 3, p. 575–585, 1990. BREVES, J. P.; MCCORMICK, S. D.; KARLSTROM, R. O. Prolactin and teleost ionocytes: New insights into cellular and molecular targets of prolactin in vertebrate epithelia. General and comparative endocrinology, v. 203C, p. 21–28, 2014. CAMPBELL, P. G.; TWISS, M. R.; WILKINSON, K. J. Accumulation of natural organic matter on the surfaces of living cells: implications for the interaction of toxic 30 solutes with aquatic biota. Canadian Journal of Fisheries and Aquatic Sciences, v. 54, n. 11, p. 2543–2554, 1997. CÁUPER, G. C. DE B. Biodiversidade Amazônica. Centro Cultural dos povos da Amazônia, v. 1, p. 1–162, 2006. CHANG, W. J.; HORNG, J. L.; YAN, J. J.; HSIAO, C. D.; HWANG, P. P. The transcription factor, glial cell missing 2, is involved in differentiation and functional regulation of H+-ATPase-rich cells in zebrafish (Danio rerio). AJP: Regulatory, Integrative and Comparative Physiology, v. 296, n. 4, p. R1192–R1201, 2009. CLAIBORNE, J. B.; EDWARDS, S. L.; MORRISON-SHETLAR, A. I. Acid-base regulation in fishes: cellular and molecular mechanisms. Journal of Experimental Zoology, v. 293, n. 3, p. 302–319, 2002. COOKE, G. M.; CHAO, N. L.; BEHEREGARAY, L. B. Divergent natural selection with gene flow along major environmental gradients in Amazonia: insights from genome scans, population genetics and phylogeography of the characin fish Triportheus albus. Molecular ecology, v. 21, n. 10, p. 2410–2427, 2012. DE PINNA, M. Diversity of Tropical Fishes. In: L, V. A.; F, A.-V. V. M.; RANDALL, D. J. (Eds.). The Physiology of Tropical Fishes. p. 47–84, 2006. DORIA, C. R. DA C.; QUEIROZ, L. J. DE. A pesca comercial das sardinhas (Triportheus spp.) desembarcadas no mercado pesqueiro de Porto Velho, Rondônia (1990-2004): Produção pesqueira e perfil geral. Biotemas, v. 21, n. 3, p. 99–106, 2008. DUARTE, R. M.; FERREIRA, M. S.; WOOD, C. M.; VAL, A. L. Effect of low pH exposure on Na+ regulation in two cichlid fish species of the Amazon. Comparative biochemistry and physiology. Part A, Molecular & integrative physiology, v. 166, n. 3, p. 441–8, 2013. DUARTE, R. M.; SMITH, D. S.; VAL, A. L.; WOOD, C. M. Dissolved organic carbon from the upper Rio Negro protects zebrafish (Danio rerio) against ionoregulatory disturbances caused by low pH exposure. Scientific Reports, v. 6, p. 1-10, 2016. 31 DUNCAN, W. P.; FERNANDES, M. N. Physicochemical characterization of the white, black, and clearwater rivers of the Amazon Basin and its implications on the distribution of freshwater stingrays (Chondrichthyes, Potamotrygonidae). PanAmerican Journal of Aquatic Sciences, v. 5, n. 3, p. 454–464, 2010. ERTEL, J. R.; HEDGES, J. I.; DEVOL, A. H.; RICHEY, J. E.; NAZARG, M. DE; RIBEIRO, G. Dissolved humic substances of the Amazon River system. Limnology and Oceanography, v. 31, n. 4, p. 739–754, 1986. EVANS, D. H.; PIERMARINI, P. M.; CHOE, K. P. The multifunctional fish gill: dominant site of gas exchange, osmoregulation, acid-base regulation, and excretion of nitrogenous waste. Physiological reviews, v. 85, n. 1, p. 97–177, 2005. FLIK, G.; PERRY, S. F. Cortisol stimulates whole body calcium uptake and the branchial calcium pump in freshwater rainbow trout. Journal of Endocrinology, v. 120, n. 1, p. 75–82, 1989. FREDA, J.; SANCHEZ, D. A.; BERGMAN, H. L. Shortening of Branchial Tight Junctions in Acid-Exposed Rainbow-Trout (Oncorhynchus-Mykiss). Canadian Journal of Fisheries and Aquatic Sciences, v. 48, n. 10, p. 2028–2033, 1991. GAILLARDET, J.; DUPRE, B.; ALLEGRE, C. J.; NÉGREL, P. Chemical and physical denudation in the Amazon River Basin. Chemical Geology, v. 142, n. 3-4, p. 141– 173, 1997. GENTLEMAN, R. C.; CAREY, V. J.; BATES, D. M.; BOLSTAD, B.; DETTLING, M.; DUDOIT, S.; ELLIS, B.; GAUTIER, L.; GE, Y.; GENTRY, J.; HORNIK, K.; HOTHORN, T.; HUBER, W.; IACUS, S.; IRIZARRY, R.; LEISCH, F.; LI, C.; MAECHLER, M.; ROSSINI, A. J.; SAWITZKI, G.; SMITH, C.; SMYTH, G.; TIERNEY, L.; YANG, J. H.; ZHANG, J. Bioconductor: open software development for computational biology and bioinformatics. Genome Biology, v. 5, n. 10, p. R80, 2004. GILMOUR, K. M.; PERRY, S. F. Carbonic anhydrase and acid-base regulation in fish. The Journal of experimental biology, v. 212, n. 11, p. 1647–1661, 2009. 32 GONZALEZ, R. J.; WILSON, R. W. Patterns of ion regulation in acidophilic fish native to the ion-poor, acidic Rio Negro. Journal of Fish Biology, v. 58, n. 6, p. 1680– 1690, 2001. GONZALEZ, R. J.; WILSON, R. W.; WOOD, C. M.; PATRICK, M. L.; VAL, A. L. Diverse Strategies for Ion Regulation in Fish Collected from the Ion‐Poor, Acidic Rio Negro. Physiological and Biochemical Zoology, v. 75, n. 1, p. 37–47, 2002. GONZALEZ-MARISCAL, L.; CONTRERAS, R. G.; BOLIVAR, J. J.; PONCE, A.; CHAVEZ DE RAMIREZ, B.; CEREIJIDO, M. Role of calcium in tight junction formation between epithelial cells. American Journal of Physiology, v. 259, p. C987–C994, 1990. GRABHERR, M. G.; HAAS, B. J.; YASSOUR, M.; LEVIN, J. Z.; THOMPSON, D. A.; AMIT, I.; ADICONIS, X.; FAN, L.; RAYCHOWDHURY, R.; ZENG, Q.; CHEN, Z.; MAUCELI, E.; HACOHEN, N.; GNIRKE, A.; RHIND, N.; DI PALMA, F.; BIRREN, B. W.; NUSBAUM, C.; LINDBLAD-TOH, K.; FRIEDMAN, N.; REGEV, A. Full-length transcriptome assembly from RNA-Seq data without a reference genome. Nature Biotechnology, v. 29, n. 7, p. 644–652, 2011. HARTER, T. S.; SHARTAU, R. B.; BAKER, D. W.; JACKSON, D. C.; VAL, A L.; BRAUNER, C. J. Preferential intracellular pH regulation represents a general pattern of pH homeostasis during acid–base disturbances in the armoured catfish, Pterygoplichthys pardalis. Journal of Comparative Physiology B, v. 184, n. 6, p. 709–718, 2014. HOLLAND, A.; DUIVENVOORDEN, L. J.; KINNEAR, S. H. W. Naturally acidic waterways: conceptual food webs for better management and understanding of ecological functioning. Aquatic Conservation: Marine and Freshwater Ecosystems, v. 22, n. 6, p. 836–847, 2012. ITO, Y.; KOBAYASHI, S.; NAKAMURA, N.; MIYAGI, H.; ESAKI, M.; HOSHIJIMA, K.; HIROSE, S. Close Association of Carbonic Anhydrase (CA2a and CA15a), Na+/H+ Exchanger (Nhe3b), and Ammonia Transporter Rhcg1 in Zebrafish Ionocytes Responsible for Na+ Uptake. Frontiers in Physiology, v. 4, p. 1–17, 2013. 33 JESUS, T. F.; GROSSO, A. R.; ALMEIDA-VAL, V. M. F.; COELHO, M. M. Transcriptome profiling of two Iberian freshwater fish exposed to thermal stress. Journal of Thermal Biology, v. 55, p. 54–61, 2016. Junk, W.J.; Bayley, P. B.; Sparks, R. E. The flood pulse concept in River-Floodplain Systems, in: D.P. Dodge (Ed.), Proceedings of the International Large River Symposium. Can. Spec. Publ. Fish. Aquat. Sci., Canada, 110-127, 1989. KELLY, S. P.; WOOD, C. M. Effect of cortisol on the physiology of cultured pavement cell epithelia from freshwater trout gills. American Journal of Physiology - Regulatory, integrativa e fisiologia comparativa, v. 281, n. 3, p. R811–R820, 2001. KODRA, A. DE S.; FERNANDES, M. N.; DUNCAN, W. L. P. Effect of clearwater on osmoregulation of cururu ray, Potamotrygon spp. (Chondrichthyes; Potamotrygonidae), an endemic specie from blackwater river. Scientia Amazonia, v. 3, n. 1, p. 15–24, 2014. KONHAUSER, K. O.; FYFE, W. S.; KRONBERG, B. I. Multi-element chemistry of some Amazonian waters and soils. Chemical Geology, v. 111, n. 1-4, p. 155–175, 1994. KÜCHLER, I. L.; MIEKELEY, N.; FORSBERG, B. R. A contribution to the chemical characterization of rivers in the Rio Negro Basin, Brazil. Journal of the Brazilian Chemical Society, v. 11, n. 3, p. 286–292, 2000. KUMAI, Y.; NESAN, D.; VIJAYAN, M. M.; PERRY, S. F. Cortisol regulates Na+ uptake in zebrafish, Danio rerio, larvae via the glucocorticoid receptor. Molecular and cellular endocrinology, v. 364, n. 1-2, p. 113–25, 2012. KUMAI, Y.; PERRY, S. F. Ammonia excretion via Rhcg1 facilitates Na+ uptake in larval zebrafish, Danio rerio, in acidic water. AJP: Regulatory, Integrative and Comparative Physiology, v. 301, n. 5, p. R1517–R1528, 2011. KWONG, R. W. M.; KUMAI, Y.; PERRY, S. F. The physiology of fish at low pH: the zebrafish as a model system. The Journal of experimental biology, v. 217, n. 5, p. 34 651–662, 2014. KWONG, R. W. M.; PERRY, S. F. Cortisol regulates epithelial permeability and sodium losses in zebrafish exposed to acidic water. The Journal of endocrinology, v. 217, n. 3, p. 253–264, 2013. LANGMEAD, B.; SALZBERG, S. L. Fast gapped-read alignment with Bowtie 2. Nature Methods, v. 9, p. 357–359, 2012. LEMGRUBER, R. D. S. P.; MARSHALL, N. A. D. A.; GHELFI, A.; FAGUNDES, D. B.; VAL, A. L. Functional categorization of transcriptome in the species Symphysodon aequifasciatus Pellegrin 1904 (Perciformes: Cichlidae) exposed to benzo[a]pyrene and phenanthrene. Plos One, v. 8, n. 12, p. 1-13, 2013. LI, B.; DEWEY, C. N. RSEM: accurate transcript quantification from RNA-Seq data with or without a reference genome. BMC Bioinformatics, v. 12, n. 1, p. 323, 2011. LI, S.; LIU, C.; HUANG, J.; LIU, Y.; ZHANG, S.; ZHENG, G.; XIE, L.; ZHANG, R. Transcriptome and biomineralization responses of the pearl oyster Pinctada fucata to elevated CO2 and temperature. Scientific Reports, v. 6, p. 18943, 2016. LIN, H.; RANDALL, D. J. H+-ATPase Activity in crude homogenates of fish gill tissue: Inhibitor sensitivity and environmental and hormonal regulation. The Journal of Experimental Biology, v. 174, n. 180, p. 163–174, 1993. LIN, L. Y.; HORNG, J. L.; KUNKEL, J. G.; HWANG, P. P. Proton pump-rich cell secretes acid in skin of zebrafish larvae. AJP: Cell Physiology, v. 290, n. 2, p. C371–C378, 2006. LIN, T. Y.; LIAO, B. K.; HORNG, J. L.; YAN, J. J.; HSIAO, C. D.; HWANG, P. P. Carbonic anhydrase 2-like a and 15a are involved in acid-base regulation and Na+ uptake in zebrafish H+-ATPase-rich cells. AJP: Cell Physiology, v. 294, n. 5, p. C1250–C1260, 2008. LOGAN, C. A.; BUCKLEY, B. A. Transcriptomic responses to environmental temperature in eurythermal and stenothermal fishes. Journal of Experimental Biology, v. 218, n. 12, p. 1915–1924, 2015. 35 MALABARBA, M. C. S. L. Revision of the Neotropical genus Triportheus Cope, 1872 (Characiformes: Characidae). Neotropical Ichthyology, v. 2, n. 4, p. 167–204, 2004. MARSHALL, W. S. Na+, Cl-, Ca2+ and Zn2+ transport by fish gills: retrospective review and prospective synthesis. Journal of Experimental Zoology, v. 293, n. 3, p. 264– 283, 2002. MATEY, V.; IFTIKAR, F. I.; DE BOECK, G.; SCOTT, G. R.; SLOMAN, K. A.; ALMEIDA-VAL, V. M. F.; VAL, A. L.; WOOD, C. M. Gill morphology and acute hypoxia: responses of mitochondria-rich, pavement, and mucous cells in the Amazonian oscar (Astronotus ocellatus) and the rainbow trout (Oncorhynchus mykiss), two species with very different approaches to the osmo-respiratory com. Canadian Journal of Zoology, v. 89, p. 307–324, 2011. MATSUO, A. Y. O.; VAL, A. L. Acclimation to humic substances prevents whole body sodium loss and stimulates branchial calcium uptake capacity in cardinal tetras Paracheirodon axelrodi (Schultz) subjected to extremely low pH. Journal of Fish Biology, v. 70, n. 4, p. 989–1000, 2007. MATSUO, A. Y.; VAL, A. L. Low pH and calcium effects on net Na+ and K+ fluxes in two catfish species from the Amazon River (Corydoras: Callichthyidae). Brazilian Jornaul of Medical and Biological Research, v. 35, p. 361–367, 2002. MCDONALD, D. G. The effects of H+ upon the gills of freshwater fish. Canadian Journal of Zoology, v. 61, n. 4, p. 691–703, 1983. MIRANDA, R.; PEREIRA, S.; ALVES, D.; OLIVEIRA, G. Qualidade dos recursos hídricos da Amazônia - Rio Tapajós: avaliação de caso em relação aos elementos químicos e parâmetros físico-químicos. Ambiente e Água, v. 4, n. 2, p. 75–92, 2009. MOLINIER, M.; GUYOT, J. L.; GUIMAMES, V.; OLIVEIRA, E. Hydrologie du bassin de l’Amazone. Grands Bassins Fluviaux Péri-atlantiques, v. 1, p. 335–344, 1995. PARKS, S. K.; TRESGUERRES, M.; GOSS, G. G. Theoretical considerations underlying Na+ uptake mechanisms in freshwater fishes. Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology, v. 148, n. 4, 36 p. 411–418, 2008. PASCOALOTO, D.; BRINGEL, S. R. B. Macroalgas e qualidade da água na bacia do alto Rio Negro - Município de São Gabriel da Cachoeira (AM). Caminhos da Geografia, v. 11, n. 36, p. 318–330, 2010. PERRY, S. F.; VULESEVIC, B.; GROSELL, M.; BAYAA, M. Evidence that SLC26 anion transporters mediate branchial chloride uptake in adult zebrafish (Danio rerio). AJP: Regulatory, Integrative and Comparative Physiology, v. 297, n. 4, p. R988– R997, 2009. PINHEIRO, L. A.; BORGES, J. T. Avaliação hidroquímica qualitativa das águas do baixo rio negro. Revista Eletrônica de Petróleo e Gás, v. 1, n. 2, p. 23–32, 2013. PRADO-LIMA, M.; VAL, A. L. Transcriptomic Characterization of Tambaqui (Colossoma macropomum, Cuvier, 1818) Exposed to Three Climate Change Scenarios. Plos One, v. 11, n. 3, p. 1-21, 2016. QUEIROZ, M. M. A.; HORBE, A. M. C.; SEYLER, P.; AUGUSTO, C.; MOURA, V. Hidroquímica do rio Solimões na região entre Manacapuru e Alvarães – Amazonas – Brasil. Acta Amazonica, v. 39, n. 4, p. 943–952, 2009. ROBINSON, M. D.; MCCARTHY, D. J.; SMYTH, G. K. EdgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics, v. 26, n. 1, p. 139–140, 2010. SILVA, M. S.; CUNHA, H. B.; MIRANDA, S.; SANTANA, G. P.; PASCOALOTO, D. Química das águas de superfície dos rios da bacia amazônica: uma contribuição para classificação de acordo com seus usos. XIX Simpósio Brasileiro de Recursos Hídricos, 2010. SILVA, M. S.; NAVES, S. Á. F. R. S.; PEREIRA, S. L. R. DA S. G. Classification of Amazonian rivers: A strategy for the preservation of these resources. Holos Environment, v. 13, n. 2, p. 163–174, 2013. SIOLI, H. The Amazon. Dordrecht: Springer Netherlands, v. 56, 1984. 37 VAL, A. L.; ALMEIDA-VAL, V. M. F. Fishes of the Amazon and Their Environment. Berlin, Heidelberg: Springer Berlin Heidelberg, v. 32, 1995. VAL, A. L.; SILVA, M. N. P.; ALMEIDA-VAL, V. M. . Hypoxia adaptation in fish of the Amazon: a never-ending task. South African Journal of Zoology, v. 33, n. 2, p. 107–114, 1998. VIDAL-DUPIOL, J.; ZOCCOLA, D.; TAMBUTTÉ, E.; GRUNAU, C.; COSSEAU, C.; SMITH, K. M.; FREITAG, M.; DHEILLY, N. M.; ALLEMAND, D.; TAMBUTTÉ, S. Genes Related to Ion-Transport and Energy Production Are Upregulated in Response to CO2-Driven pH Decrease in Corals: New Insights from Transcriptome Analysis. Plos One, v. 8, n. 3, p. 1-11, 2013. WALKER, I. Amazonian streams and small rivers. In: TUNDISI, J. G.; MATSUMURA TUNDISI, T.; BICUDO, C. E. (Eds.). Limnology in Brazil. Academia B ed. Rio de Janeiro: [s.n.]. p. 167–193, 1995. WENDELAAR BONGA, S. E.; VAN DER MEIJ, J. C. A.; FLIK, G. Prolactin and acid stress in the teleost Oreochromis (formerly Sarotherodon) mossambicus. General and Comparative Endocrinology, v. 55, n. 2, p. 323–332, 1984. WOOD, C. M.; AL-REASI, H. A.; SMITH, D. S. The two faces of DOC. Aquatic Toxicology, v. 105, n. 3-4, p. 3–8, 2011. WOOD, C. M.; KAJIMURA, M.; SLOMAN, K. A; SCOTT, G. R.; WALSH, P. J.; ALMEIDA-VAL, V. M. F.; VAL, A. L. Rapid regulation of Na+ fluxes and ammonia excretion in response to acute environmental hypoxia in the Amazonian oscar, Astronotus ocellatus. American journal of physiology. Regulatory, integrative and comparative physiology, v. 292, p. R2048–R2058, 2007. WOOD, C. M.; ROBERTSON, L. M.; JOHANNSSON, O. E.; VAL, A. L. Mechanisms of Na+ uptake, ammonia excretion, and their potential linkage in native Rio Negro tetras (Paracheirodon axelrodi, Hemigrammus rhodostomus, and Moenkhausia diktyota). Journal of comparative physiology. B, Biochemical, systemic, and environmental physiology, v. 184, n. 7, p. 877–90, 2014. 38 WOOD, C. M.; WILSON, R. W.; GONZALEZ, R. J.; PATRICK, M. L.; BERGMAN, H. L.; NARAHARA, A.; VAL, A. L. Responses of an Amazonian teleost, the tambaqui (Colossoma macropomum), to low pH in extremely soft water. Physiological zoology, v. 71, n. 6, p. 658–670, 1998. WRIGHT, P. A.; WOOD, C. M. Seven things fish know about ammonia and we don’t. Respiratory Physiology & Neurobiology, v. 184, n. 3, p. 231–240, 2012.pt_BR
dc.subject.cnpqBiotecnologiapt_BR
dc.publisher.initialsUEApt_BR
Appears in Collections:DISSERTAÇÃO - MBT Programa de Pós-Graduação em Biotecnologia e Recursos Naturais da Amazônia



This item is licensed under a Creative Commons License Creative Commons