DSpace logo

Use este identificador para citar ou linkar para este item: http://repositorioinstitucional.uea.edu.br//handle/riuea/2301
Registro completo de metadados
Campo DCValorIdioma
dc.contributor.authorCorrea, Laura Viana-
dc.date.available2020-03-13-
dc.date.available2020-03-13T14:48:59Z-
dc.date.issued2019-08-30-
dc.identifier.urihttp://repositorioinstitucional.uea.edu.br//handle/riuea/2301-
dc.description.abstractMalaria is a serious parasitic disease that affects millions of people across the planet. It is caused by protozoa of the genus Plasmodium and transmitted to humans by the bite of the infected female Anopheles mosquitoes. Although conventional vector control strategies have reduced the burden of disease, for some time malaria has grown in recent years, requiring more effective methods to control it. A promising alternative for malaria control is paratransgenesis, which uses genetically engineered symbiont bacteria to express anti-plasmodium proteins and reinserted into mosquitoes to inhibit or kill Plasmodium within the vector. However, for the success of this alternative it is important that the right candidate has some indispensable characteristics, such as being a symbiote of the vector, being cultivable and susceptible to genetic manipulation, remaining stable after transformation and being transferred at all stages of mosquito development. Transestadial transmission, where the larval stage is transferred to the adult mosquito, is a very important criterion for paratransgenesis. For it is in the immature stages that mosquitoes acquire most of their bacterial microbiota and the symbiote survives metamorphosis and colonizes the midgut gut, where the most vulnerable stages of Plasmodium development occur, would be a strong candidate for use in this approach. Thus, this work aimed to select cultivable bacteria, which present characteristics of trans-state transmission in Anopheles darlingi, the main vector of malaria in the Amazon region, for use in future paratransgenic approaches. By bacterial isolation, morphological characterization, molecular identification by the 16S rRNA gene of bacterial species associated with larvae, pupae and adults of A. darlingi and genetic transformation test for similar bacteria present in these stages of development. The following results were obtained: 166 bacteria were isolated and characterized morphologically, among them, 72 were identified and belonging to the Phylobacteria, Firmicutes Actinobacteria and Bacteroidetes. Twenty genera were also identified, predominantly Bacillus and Klebsiella, from which 38 different species were identified, and three species are strong candidates for paratransgenesis: Pantoea agglomerans, Pantoea dispersa and Enterobacter asburiae. Then they were selected for bacterial transformation test, with plasmid pKS1-GFP, Pantoea agglomerans was susceptible of genetic transformation, then it was monitored in the developmental stages of A.darlingi, presenting transestadial transmission capacity. Keywords: Malaria, Symbiont Bacteria, Transstadial Transmission and Paratransgenesis.pt_BR
dc.languageporpt_BR
dc.publisherUniversidade do Estado do Amazonaspt_BR
dc.rightsAcesso Abertopt_BR
dc.rightsAtribuição-NãoComercial-SemDerivados 3.0 Brasil*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/br/*
dc.subjectMaláriapt_BR
dc.subjectParatransgênesept_BR
dc.subjectBactérias simbiontespt_BR
dc.titleEstudo do potencial paratransgênico de bactérias cultiváveis associadas ao Anopheles darlingi Root,1926, para controle da maláriapt_BR
dc.typeDissertaçãopt_BR
dc.date.accessioned2020-03-13T14:48:59Z-
dc.contributor.advisor1Tadei, Wanderli Pedro-
dc.contributor.advisor1Latteshttp://lattes.cnpq.br/6806722604010480pt_BR
dc.contributor.referee1Tadei, Wanderli Pedro-
dc.contributor.referee1Latteshttp://lattes.cnpq.br/6806722604010480pt_BR
dc.contributor.referee2do Carmo, Edson júnior-
dc.contributor.referee2Latteshttp://lattes.cnpq.br/5780309549588357pt_BR
dc.contributor.referee3Roque, Rosemary Aparecida-
dc.contributor.referee3Latteshttp://lattes.cnpq.br/6226107929823883pt_BR
dc.creator.Latteshttp://lattes.cnpq.br/7208354322528384pt_BR
dc.description.resumoA malária é uma doença parasitária grave que atinge milhões de pessoas em todo planeta. É causada por protozoários do gênero Plasmodium e transmitida aos seres humanos pela picada da fêmea infectada dos mosquitos do gênero Anopheles. Embora as estratégias convencionais de controle dos vetores tenham reduzido a carga da doença, por algum tempo, nos últimos anos a malária voltou a crescer, necessitando de métodos mais efetivos para seu controle. Uma alternativa promissora para o controle da malária é a paratransgênese, que utiliza bactérias simbiontes, geneticamente modificadas, para expressar proteínas anti-plasmódio e reinserí-las nos mosquitos para inibir ou matar o Plasmódium dentro do vetor. No entanto, para o sucesso dessa alternativa é importante que o candidato adequado possua algumas características indispensáveis, como ser simbionte do vetor, ser cultivável e passível de manipulação genética, permanecer estável após a transformação e ser transferido em todas as fases de desenvolvimento do mosquito. A transmissão transestadial, onde ocorre a transferência do estágio larval para o mosquito adulto, é um critério muito importante para a paratransgênese. Pois é nos estádios imaturos que os mosquitos adquirem a maior parte da sua microbiota bacteriana e o simbionte sobreviver a metamorfose e colonizar o intestino do mosquito médio, onde ocorre os estágio mais vulneráveis de desenvolvimento do Plasmodium, seria um forte candidato para uso nesta abordagem. Com isso este trabalho objetivou selecionar bactérias cultiváveis, que apresentam características de transmissão transestadial em Anopheles darlingi, principal vetor da malária na região Amazônica, para utilização em futuras abordagens paratransgênicas. Por meio de isolamento bacteriano, caracterização morfológica, identificação molecular pelo gene 16S rRNA de espécies bacterianas associadas a larvas, pupas e adultos de A. darlingi e teste de transformação genética para bactérias semelhantes presentes nestes estágios de desenvolvimento. Foram obtidos os seguintes resultados: 166 bactérias foram isoladas e caracterizadas morfologicamente, dentre elas, 72 foram identificadas como pertencentes aos filos Proteobacteria, Firmicutes Actinobacteria e Bacteroidetes. Também foram identificados 20 gêneros, cujos predominantes foram Bacillus e Klebsiella, destes foram identificadas 38 espécies diferentes, sendo que três espécies se mostram fortes candidatas à paratransgênese, são elas: Pantoea agglomerans, Pantoea dispersa e Enterobacter asburiae. Então foram selecionadas para teste de transformação bacteriana com o plasmídeo pKS1-GFP, sendo a espécie Pantoea agglomerans a única passível de transformação genética, então foi monitorada nos estágios de desenvolvimento de A.darlingi, apresentando capacidade de transmissão transestadial. Palavras-Chave: Malária, Bactéria simbiontes, transmissão transestadial e Paratransgese.pt_BR
dc.publisher.countryBrasilpt_BR
dc.publisher.programPós-Graduação em Biotecnologia e Recursos Naturaispt_BR
dc.relation.referencesAKORLI, J.; GENDRIN, M.; PELS, NAP.; YEBOAH-MANU, D.; CHRISTOPHIDES G. K.; WILSON M. D. Seasonality and locality affect the diversity of Anopheles gambiae and Anopheles coluzzii midgut microbiota from Ghana. PLOS ONE, v.11(6), p. 1-18, 2016. ALVES, W. C. L.; GORAYEB, I. S.; LOUREIRO, E. C. B. Bactérias isoladas de culicídeos (Diptera: Nematocera) hematófagos em Belém, Pará, Brasil. Revista Pan-Amazônica de Saude, v. 1(1), p. 131-142, 2010 ARRUDA, ANDRELISSE. Identificação de microrganismos cultiváveis associados ao intestino de Anopheles darlingi (DIPTERA:CULICIDAE) com potencial à paratransgênese para o controle da malária. Tese (Doutorado em Biodiversidade e Biotecnologia da Rede Bionorte) - Universidade Federal do Amazonas. 170 f., 2017. ASH R. J.; MAUCK, B.; MORGAN, M. Antibiotic Resistance of Gram-Negative Bacteria in Rivers, United States. Emerging Infectious Diseases,v. 8 (7), p. 713-716, 2002. AZEVEDO, J. L.; MACCHERONI, J. R. W.; PEREIRA, J. O.; ARAÚJO, W. L. Endophytic microorganisms: a review on insect control and recent advances on 74 tropical plants. Electronic Journal of Biotecnology, Salt Lake City, v. 3, n. 1, p. 40-65, 2000. BANDO, H.; KIYOSHI, O.; WAMDAOGO, M. G.; BADOLO, A.; AONUMA, H.; NELSON, B.; FUKUMOTO, S.; XUAN, X.; SAGNON, N.; KANUKA, H. Intra-specific diversity of Serratia marcescens in Anopheles mosquito midgut defines Plasmodium transmission capacity. Scientific reports, v. 3 (1641), p. 1-9, 2013. BEARD C. B, CORDON-ROSALES C, DURVASULA R. V. Bacterial symbionts of the Triatominae and their potential use in control of Chagas disease transmission. Annual Review of Entomology, v.47, p. 123-41, 2002. BERHANU, A.; ABERA, A.; NEGA, D.; MEKASHA, S.; FENTAW S.; ASSEFA, A.; GEBREWOLDE, G.; WULETAW, Y.; ASSEFA, A.; DUGASSA, S.; TEKIE, H.; TASEW, G. Isolation and identification of microflora from the midgut and salivary glands of Anopheles species in malaria endemic áreas of Ethiopia. BMC Microbiology, v. 19(85), p. 1-8, 2019. BISI, D. C.; LAMPE, D. J. Secretion of anti-Plasmodium effector proteins from a natural Pantoea agglomerans isolate by using PelB and HlyA secretion signals. Applied And Environmental Microbiology, v. 77 (13), p. 4669-4675, 2011. BOISSIÈRE, A.; TCHIOFFO, M. T.; BACHAR, D.; ABATE, L.; MARIE, A.; NSANGO, S. E.; et al. Midgut microbiota of the malaria mosquito vector Anopheles gambiae and interactions with Plasmodium falciparum infection. PLoS Pathogens, v. 8 (5), e1002742, p. 1-12, 2012. BRAR, S. K.; VERMA, M.; TYAGI, R. D.; VALÉRO J. R. Recent advances in downstream processing and formulations of Bacillus thuringiensis based biopesticides. Process Biochemistry, New York, v. 41, n. 2, p. 323-342, 2006. BRISSE, S.; GRIMONT, F.; GRIMONT P. A. D. The Genus Klebsiella. In: Dworkin, M.; Falkow S.; Rosenberg, E.; Schleifer, K. H., Stackebrandt E. (eds). The Prokaryotes. Springer, New York, NY, 2006. CHANDEL, K.; MENDKI, M. J.; PARIKH, R. Y.; KULKARNI, G.; TIKAR., S. N.; SUKUMARAN, D.; PRAKASH, S.; PARASHAR, B. D.; SHOUCHE, Y.; VEER, V. Midgut Microbial Community of Culexquinquefasciatus Mosquito Populations from India. PLoS ONE, v. 8 (11), p. 1-10, 2013. CHAVSHIN, A. R.; OSHAGHI, M. A.; VATANDOOST, H.; POURMAND, M. R.; RAEISI, A.; TERENIUS, O. Isolation and identification of culturable bacteria from wild Anopheles culicifacies, a first step in a paratransgenesis approach. Parasites & Vectors, v. 7 (419), p. 1-8, 2014. CIRIMOTICH, C. M.; DONG, Y.; CLAYTON, A. M.; SANDIFORD, S. L.; SOUZA-NETO, J. A.; MULENGA, M.; DIMOPOULOS, L. Natural microbe-mediated refractoriness to Plasmodium infection in Anopheles gambiae. Science, vol. 332 (6031), p. 855-858, 2011. 75 CONSOLI, R. A. G. B.; OLIVEIRA, R. L. Principais mosquitos de importância sanitária no Brasil. In: Capítulos 1-3. Editora Fiocruz, Rio de Janeiro. 228 p., 1994. Disponível em: https://static.scielo.org/scielobooks/th/pdf/consoli-8585676035.pdf COUTINHO-ABREU, I. V.; ZHU, K.Y., RAMALHO-ORTIGAO, M. Transgenesis and paratransgenesis to control insect-borne diseases: current status and future challenges. Parasitology International, v. 59 (1), p. 1-8, 2010. DEANE, L.M. Malaria vectors in Brazil. Memórias do Instituto Oswaldo Cruz, Rio de Janeiro, v.81, p. 5-14, 1986. DJADID, N. D.; JAZAYERI, H.; RAZ, A.; FAVIA, G.; RICCI, I.; ZAKERI, S. Identification of the midgut microbiota of An. Stephensi and An. Maculipennis for their application as a paratransgenic tool against malaria. PLoS ONE, v. 6 (12), p. 1-7, 2011. DONG, Y.; MANFREDINI, F.; DIMOPOULOS, G. Implication of the Mosquito Midgut Microbiota in the Defense against Malaria Parasites. PLoS Pathogens, v. 5 (5), p. 1-10, 2009. DUGUMA, D.; HALL, M. W.; RUGMAN-JONES, P.; STOUTHAMER, R.; TERENIUS, O.; NEUFELD, J. D.; WALTON, W. E. Developmental succession of the microbiome of Culex mosquitoes. BMC Microbiology, v. 15(140), p. 1-15, 2015. DURVASULA R. V.; GUMBS, A.; PANACKAL A., KRUGLOV, O.; AKSOY, S.; MERRIFIELD, R. B.; RICHARDS, F. F.; BEARD, C. B. Prevention of insect-borne disease:An approach using transgenic symbiotic bacteria. Proceedings of the National Academy of Sciences of the United States of America (USA), v. 94 (7), p.3274-3278, 1997 FAVIA, G.; RICCI, I.; DAMIANI, C.; RADDADI, N.; CROTTI, E.; MARZORATI, M.; RIZZI, A.; URSO, R.; BRUSETTI, L.; BORIN, S.; MORA, D.; SCUPPA, P.; PASQUALINI, L.; CLEMENTI, E.; GENCHI, M.; CORONA, S.; NEGRI, I.; GRANDI, G.; ALMA, A.; KRAMER, L.; ESPOSITO, F.; BANDI, C.; SACCHI, L.; DAFFONCHIO, D. Bacteria of the genus Asaia stably associate with Anopheles stephensi, an Asian malarial mosquito vector. Proceedings of the National Academy of Sciences of the United State of America (USA), v.104, p.9047-9051, 2007. FORATTINI, O. P. Culicidologia Médica. In:Capítulos 1, 2, 3 e 10. Editora da Universidade de São Paulo, São Paulo, vol. 2, 860 p., 2002. GIMONNEAU, G.; TCHIOFFO, M. T.; ABATE, L.; BOISSIÈRE, A.; AWONO-AMBÉNÉ, P. H.; NSANGO, S. E. Composition of Anopheles coluzziiand Anopheles gambiae microbiota from larval to adult stages. Infection, Genetics and Evolution: Journal of Molecular Epidemiology and Evolutionary Genetics of Infectious Diseases, v. 28, p. 715-724, 2014. GONZALEZ-CERON, L.; SANTILLAN, F.; RODRIGUEZ, M.; MENDEZ, D.; HERNANDEZ-AVILA, J. E. Bacteria in midguts of field-collected Anopheles albimanus block Plasmodium vivax sporogonic development. Journal of Medical Entomology, v. 40 (3), p. 371-374, 2003. 76 HEGDE S, KHANIPOV K, ALBAYRAK L, GOLOVKO G, PIMENOVA M, SALDAÑA M A; ROJAS M. M.; HORNETT, E. A.; MOTL, G. C.; FREDREGILL, C. L.; DENNETT, J. A.; DEBBOUN M.; FOFANOV, Y.; HUGHES, G. L.Microbiome interaction networks and community structure from laboratory-reared and field-collected Aedesa egypti, Aedes albopictus and Culex quinquefasciatus mosquito vectors. Frontiers in Microbioly, v. 9 (2160), p. 1-16, 2018 KABULA, B., TUNGU, P.; MALIMA, R.; ROWLAND, M.; MINJA, J.; WILILO, R.; RAMSAN, M.; MCELROY, P. D.; KAFUKO, J.; KULKARNI, M.; PROTOPOPOFF, N.; MAGESA, S.; MOSHA, F.; KISINZA, W. Distribution and spread of pyrethroid and DDT resistance among the Anopheles gambiae complexinTanzania. Medical and Veterinay Entomoly. v. 28 (3), p. 244–252, 2013. KOTIRANTA, A.; LOUNATMAA, K.; HAAPASALO, M. Epidemiology and pathogenesis of Bacillus cereus infections, Microbes and Infection, v.2 (2), p. 189-198, 2000. LIMA, L. M. Conceitos Básicos em Biologia Molecular. Disponível em: https://ainfo.cnptia.embrapa.br/digital/bitstream/CNPA200909/22214/1/DOC191pdf.Acesso em: 20 de janeiro de 2019. LINDH, J.M.; TERENIUS, O.; FAYE, I. 16S rRNA Gene-Based Identification of Midgut Bacteria from Field-Caught Anopheles gambiae SensuLato and A. funestusMosquitoes Reveals New Species Related to Known Insect Symbionts. Appliedand Environmental Microbiology, v. 71 (11), p.7217–7223, 2005. LINDH, J. M.; BORG-KARLSONB A. K.; FAYEA, I. Transstadial and horizontal transfer of bacteria within a colony of Anopheles gambiae (Diptera: Culicidae) and oviposition response to bacteria-containing water. Acta Tropica, v.107, p. 242–250, 2008. LIU, Y. H.; GUO, J.W.; SALAM, N.; LI, L.; ZHANG, Y. G.; HAN, J.; MOHAMAD, O. A.; LI, W. J. Culturable endophytic bacteria associated with medicinal plant Ferula songorica: molecular phylogeny, distribution and screening for industrially important traits. Biotech, v. 6 (209), p. 1-9, 2016. LOPEZ-ORDONEZ, T.; FLORES-LÓPEZ, C. A.; MONTEJO-LOPEZ, R.; CRUZ-HERNANDEZ, A.; CONNERS, E. E. Cultivable Bacterial Diversity in the Gut of the Chagas Disease Vector Triatoma dimidiata: Identification of Possible Bacterial Candidates for a Paratransgenesis Approach. Frontiers in Ecology and Evolution, v. 5(174), p. 1-9, 2018. MARANHÃO, A. Q. Transformação bacteriana. In: DE-SOUZA, M. T; BRIGIDO, M. M. (Org.); MARANHÃO, A. Q (Org.). Técnicas Básicas em Biologia Molecular. 2. ed. Brasília: Editora Universidade de Brasília, v. 1, cap. 10, p. 216-228, 2016. MOLL, R. M.; ROMOSER, W. S.; MODRAKOWSKI, C. M.; MONCAYO, A. C.; LERDTHUSNEE, K. Meconial peritrophic membranes and the fate of midgut bacteria during mosquito (Diptera: Culicidae) metamorphosis. Journal of Medical Entomology, v. 38 (1), p. 29-32, 2001. MORAN, N. A. Symbiosis. Current Biology, v. 16 (20), 2006. 77 MORO, C. V.; TRAN, F. H.; RAHARIMALALA, F. N.; RAVELONANDRO, P.; Mavingui, P. Diversity of culturable bacteria including Pantoea in wild mosquito Aedes albopictus. BMC Microbiology, v. 13 (70), p. 1-11, 2013. MWADONDO, E. M.; GHILAMICAEL, A.; ALAKONYA, A. E.; KASILI, R. W. Midgut bacterial diversity analysis of laboratory reared and wild Anopheles gambiae and Culexquinquefasciatus mosquitoes in Kenya. African Journal of Microbiology Research, v. 11(29), p.1171-1183, 2017. NGO, C. T.; AUJOULAT, F.; VEAS, F.; JUMAS-BILAK, E.; MANGUIN, S. Bacterial Diversity Associated with Wild Caught Anopheles Mosquitoes from Dak Nong Province, Vietnam Using Culture and DNA Fingerprint. PLoS ONE, v. 10 (3), p.1-18, 2015. NGO, C. T.; ROMANO-BERTRAND, S.; MANGUIN, S.; JUMAS-BILAK, E. Diversity of the Bacterial Microbiota of Anopheles Mosquitoes from Binh Phuoc Province, Vietnam. Frontiers in Microbioly, v. 7(2095), p.1-11, 2016. NILSSON, L. K. J.; OLIVEIRA, M. R.; MARINOTTI, O.; ROCHA, E. M.; HÅKANSSON, S.; TADEI, W. P.; SOUZA, A. Q. L; TERENIUS, O. Characterization of bacterial communities in breeding waters of Anopheles darlingi in Manaus in the Amazon Basin malaria-endemic area. Microbial Ecology, p. 1-11, 2019. OLIVEIRA, C. B. S.; DANTAS, V. C. R.; NETO, R. M.; AZEVEDO, P. R. M.; MELO, M. C. N. Frequência e perfil de resistência de Klebsiella spp. em um hospital universitário de Natal/RN durante 10 anos. Jornal Brasileiro de Patologia e Medicina Laboratorial, v. 47 ( 6), p. 589-594, 2010. OLIVEIRA, M. R. Avaliação da biodiversidade de bactérias não cultiváveis associadas a anofelinos e seu habitat. Dissertação de Mestrado do Programa de Pós-Graduação em Biotecnologia e Recursos Naturais da Amazônia (MBT) da Universidade do Estado do Amazonas (UEA). 76f, 2015. OZCAN, N. et al. Is Chryseobacterium indologenes a shunt-lover bacterium? A case report and review of the literature. Le Infezioni in Medicina, n. 4, p. 312-316, 2013. PIDIYAR, V. J.; JANGID, K.; PATOLE, M. S.; SHOUCHE, Y. S. Studies on cultured and uncultured microbiota of wild Culex quinquefasciatus mosquito midgut based on 16s ribosomal rna gene analysis. The American Journal of Tropical Medicine and Hygiene, v. 70(6), p. 597-603, 2004. PUMPUNI, C. B.; BEIER, M. S.; NATARO, J. P.; GUERS, L. D.; DAVIS, J. R. Plasmodium falciparum: inhibition of sporogonic development in Anopheles stephensi by gram-negative bacteria. Experimental Parasitology, v. 77 (2), p. 195-199, 1993. RANI, S.; SHARMA, A.; RAJAGOPAL, R.; ADAK, T.; BHATNAGAR, R. K. Bacterial diversity analysis of larvae and adult midgut microflora using culture-dependent and culture-independent methods in lab-reared and field-collected Anopheles stephensi - an Asian malarial vector. BMC Microbiology, v. 9 (96), p. 1-22, 2009. 78 ROCHA, E. M. Estudo comparativo da microbiota bacteriana cultivável associada à Anopheles darlingi Root, 1926, e seu hábitat. Dissertação de Mestrado do Programa de Pós-Graduação em Biotecnologia e Recursos Naturais da Amazônia (MBT) da Universidade do Estado do Amazonas (UEA). 76f, 2015 SCHNEPF, E.; CRICKMORE, N.; RIE, J. V.; LERECLUS, D.; BAUM, J.; FEITELSON, J.; ZEIGLER, D. R.; DEAN, D. H. Bacillus thuringiensis and its pesticidal crystal proteins. Microbiology and Molecular Biology Review, Washington, v. 62, p. 775-806, 1998. SERRAO, D. M. Bioprospecção de bactérias cultiváveis isoladas de anopheles darlingi ROOT, 1926 para o controle da malária por paratransgênese. Dissertação de Mestrado do Programa de Pós-Graduação em Biotecnologia e Recursos Naturais da Amazônia (MBT) da Universidade do Estado do Amazonas (UEA). 85f, 2019. SERVICE, M. W. Mosquito ecology: Field sampling methods. Halsted, New York, 1993. SHARMA, P.; SHARMA, S.; MAURYA, R. K.; DE, T. D.; THOMAS, T.; LATA, S.; SINGH, N.; PANDEY, K. C.; VALECHA, N.; DIXIT, R. Salivary glands harbor more diverse microbial communities than gut in Anopheles culicifacies. Parasites &Vectors, v. 7 (235), p. 1-7, 2014. SHARK, K. B.; SMITH, F. D.; HARPENDING, P. R.; RASMUSSEN, J. L; SANFORD, J. C. Biolistic Transformation of a Procaryote, Bacillus megaterium. Applied and Environmental Microbiology, v.57(2), p. 480-485, 1991. STRAIF, S. C.; MBOGO, C. N. M.; TOURE, A. M.; WALKER, E. D.; KAUFMAN, M.; TOURE, Y. T.; BEIER, J. C. Midgut Bacteria in Anopheles gambiae and An. Funestus (Diptera: Culicidae) from Kenya and Mali. Journal of Medical Entomology, v. 35(3), p. 222-226, 1998. STUBBENDIECK, R. M.; VARGAS-BAUTISTA, C.; STRAIGHT, P. D. Bacterial Communities: Interactions to Scale.Frontiers in Microbiology, v. 7, p. 1-19, 2016. TADEI, W.P.; THATCHER, B.D.; SANTOS, J.M.M.; SCARPASSA, V. M.; RODRIGUES, I.B.; RAFAEL, M.S. Ecologic observations on anopheline vectors of malaria in the Brazilian Amazon. American Journal of Tropical Medicine and Hygiene, v. 59, p. 325-335, 1998. TADEI, W. P; SANTOS, J. M. M.; RODRIGUES, I. B.; RAFAEL, M. S. Malária e Dengue na Amazônia: vetores e estratégias de controle. Pesquisa Científica e Tecnologia em Saúde. Ministério da Ciência e Tecnologia. Brasília. Cap. MCT-INPA. p.112-125, 2010. TADEI, W. P.; RODRIGUES, I. B; RAFAEL, M. S.; SAMPAIO; R. T. M.; MESQUITA, H. G.; PINHEIRO, V. C. S.; ZEQUI, J. A. C.; ROQUE, R. A.; SANTOS, J. M. M. Adaptative processes, control measures, genetic background, and resilience of malaria vectors and environmental changes in the Amazon region. Hydrobiologia, v. 789 (1), p. 1-18, 2017. 79 TCHIOFFO, M. T.; BOISSIÈRE, A.; ABATE, L.; NSANGO, S. E.; BAYIBÉKI, A. N.; AWONO-AMBÉNÉ, P. H.; CHRISTEN, R.; GIMONNEAU, G.; MORLAIS, I. Dynamics of bacterial community composition in the malaria mosquito’s epithelia. Frontiers in Microbiology, v. 6 (500), p. 1-9, 2015. TERENIUS, O; OLIVEIRA, C.D; PINHEIRO, W.D; TADEI, W.P; JAMES, A.A; MARINOTTI, O. 16S rRNA gene sequences from bacteria associated with adult Anopheles darlingi (Diptera: Culicidae) mosquitoes.Journal of Medical Entomology, v. 45 (1), p. 172–175, 2008. WANG, Y.; GILBREATH, T. M.; KUKUTLA, P.; YAN, G.; XU, J. Dynamic gut microbiome across life history of the malaria mosquito Anopheles gambiae in Kenya. PLoS ONE, v. 6 (9), p. 1-9, 2011. WANG, S.; GHOSH, A. K.; BONGIO, N.; STEBBINGS, K. A.,; LAMPEB, D. J.; JACOBS-LORENA, M. Fighting malaria with engineered symbiotic bacteria from vector mosquitoes. Proceedings of the National Academy of Sciences of the United States of America, v. 109 (31), p. 12734-12739, 2012. WANG, S; JACOBS-LORENA, M. Genetic approaches to interfere with malaria transmission by vector mosquitoes. Trends in Biotechnology, v. 31 (3), p. 185-193, 2013. WHO - World Health Organization World. World Malaria Report 2018: Global malaria programme. Geneva, 2018. WEISS, B.; AKSOY, S.Microbiome influences on insect host vector competence. Trends In Parasitology, V. 27(11), P. 514-522, 2011. YADAV, K.K; DATTA, S; NAGLOT, A; BORA, A; HMUAKA, V; BHAGYAWANT, S.; GOGOI, H.; VEER, V.; RAJU, P. S. Diversity of cultivable midgut microbiota at different stages of the asian tiger mosquito, Aedesalbopictus from Tezpur, India. PLoS ONE, v. 11 (12), p. 1-16, 2016. YIN, Y.L; WAI-FONG, Y; KOK-GAN, C. Enterobacter asburiae Strain L1: Complete Genome and Whole Genome Optical Mapping Analysis of a Quorum Sensing Bacterium. Sensors, v. 14 (8), p. 13913-13924, 2016.pt_BR
dc.subject.cnpqBiotecnologiapt_BR
dc.publisher.initialsUEApt_BR
Aparece nas coleções:DISSERTAÇÃO - MBT Programa de Pós-Graduação em Biotecnologia e Recursos Naturais da Amazônia



Este item está licenciada sob uma Licença Creative Commons Creative Commons