DSpace logo

Please use this identifier to cite or link to this item: http://repositorioinstitucional.uea.edu.br//handle/riuea/2298
Full metadata record
DC FieldValueLanguage
dc.contributor.authorSerrão, Deidre Machado-
dc.date.available2020-03-13-
dc.date.available2020-03-13T14:45:42Z-
dc.date.issued2019-05-31-
dc.identifier.urihttp://repositorioinstitucional.uea.edu.br//handle/riuea/2298-
dc.description.abstractMosquitoes of the genus Anopheles Meigan, 1818 are the main vectors of parasites that cause human malaria, a disease of global medical importance that also affects the economies of many countries. In Brazil, the most prevalent vector is Anopheles darlingi Root, 1926, whose female is highly susceptible to infection by the protozoan Plasmodium vivax Grassi and Feletti, 1890, responsible for most cases recorded in the Brazilian Amazon. Despite numerous advances worldwide, through strategies of vector control, early diagnosis and treatment, malaria still constitutes a serious public health problem. In this scenario, an alternative that presents great potential in the fight against malaria and other vector diseases is paratransgenesis, a method that uses genetically modified symbiotic bacteria as conductors of antiparasitic molecules. However, for the success of the paratransgenia, the microorganisms used must have constant association with the vector, being able to be transmitted vertically, horizontally and transestationally, besides being cultivable, susceptible of genetic manipulation and not pathogenic to humans. In view of the above and taking into account the scarce work related to the transmission of bacteria in A. darlingi, as well as the composition of its microbiota, this work had the objective to select cultivable bacteria, which present characteristics of vertical transmission in A. darlingi, to be used in the control of malaria, through paratransgenic approaches. For this, bacterial isolation was performed, morphological characterization and molecular identification by the 16S rRNA gene of bacteria isolated from ovaries of A. darlingi adult mosquitoes collected in a periurban area of Manaus, as well as their eggs, larvae and ovaries of mosquitoes born in the laboratory. Four identified bacterial species were also tested to verify their transformation potential by the electroporation method. The results obtained demonstrated that of the 176 bacteria isolated, 62 identified corresponded to the phyla: Proteobacteria, Bacteroidetes, Actinobacteria and Firmicutes, with two predominant genera, Acinetobacter and Enterobacter. By molecular analysis it was also possible to detect six genera detected for the first time in A. darlingi: Elizabethkingia, Cupriavidus, Leucobacter, Pectobacterium, Rhizobium and Nubsella. The species that presented signs of vertical transmission in the mosquito studied were: Acinetobacter bereziniae, Enterobacter asburiae and Serratia marcescens, the latter being the one with the best potential for transformation with the plasmid pKS1-GFP, which expresses the GFP fluorescent protein, useful for future tests of monitoring in A. darlingi. Key words: symbiotic bacteria, paratransgenesis, transmission blockade, malaria, Amazon.pt_BR
dc.languageporpt_BR
dc.publisherUniversidade do Estado do Amazonaspt_BR
dc.rightsAcesso Abertopt_BR
dc.rightsAtribuição-NãoComercial-SemDerivados 3.0 Brasil*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/br/*
dc.subjectBactérias simbióticaspt_BR
dc.subjectParatransgênese.pt_BR
dc.subjectBloqueio da transmissãopt_BR
dc.subjectMalária.pt_BR
dc.subjectAmazôniapt_BR
dc.titleBioprospecção de bactérias cultiváveis isoladas de Anopheles darlingi Root, 1926 para o controle da malária por paratransgênesept_BR
dc.typeDissertaçãopt_BR
dc.date.accessioned2020-03-13T14:45:42Z-
dc.contributor.advisor1Tadei, Wanderli Pedro-
dc.contributor.advisor1Latteshttp://lattes.cnpq.br/6806722604010480pt_BR
dc.contributor.referee1Tadei, Wanderli Pedro-
dc.contributor.referee1Latteshttp://lattes.cnpq.br/6806722604010480pt_BR
dc.contributor.referee2Procópio, Rudi Emerson de Lima-
dc.contributor.referee2Latteshttp://lattes.cnpq.br/2478199435796976pt_BR
dc.contributor.referee3Pessoa, Marcos Cézar Fernandes-
dc.contributor.referee3Latteshttp://lattes.cnpq.br/6237137010678999pt_BR
dc.description.resumoOs mosquitos do gênero Anopheles Meigan, 1818 são os principais vetores de parasitas causadores da malária humana, doença de importância médica mundial que afeta também a economia de muitos países. No Brasil, o vetor mais prevalente é a espécie Anopheles darlingi Root, 1926, cuja fêmea é altamente suscetível à infecção pelo protozoário Plasmodium vivax Grassi e Feletti, 1890, responsável pela maioria dos casos registrados na Amazônia brasileira. Apesar de inúmeros avanços com amplitude mundial, através de estratégias de controle vetorial, diagnóstico precoce e tratamento, a malária ainda constitui um grave problema de saúde pública. Neste cenário, uma alternativa que apresenta grande potencial no combate à malária e outras doenças vetoriais é a paratrângenese, método que utiliza bactérias simbiontes geneticamente modificadas como condutores de moléculas antiparasitárias. No entanto, para o sucesso da paratransgenia, os microrganismos utilizados devem ter associação constante com o vetor, serem transmitidos vertical, horizontal e transestadialmente, além disso, serem cultiváveis, passíveis de manipulação genética e não patogênicos aos seres humanos. Diante do exposto e levando em consideração os escassos trabalhos relacionados à transmissão de bactérias em A. darlingi, bem como a composição da sua microbiota, este trabalho teve como objetivo selecionar bactérias cultiváveis, que apresentam características de transmissão vertical em A. darlingi, para serem utilizadas no controle da malária, por meio de abordagens paratransgênicas. Para isso, foi realizado o isolamento bacteriano, caracterização morfológica e identificação molecular pelo gene 16S rRNA de bactérias, isoladas de ovários dos mosquitos adultos de A. darlingi, coletados em uma área periurbana de Manaus, bem como bactérias de ovos, larvas e ovários de mosquitos criados em laboratório. Quatro espécies bacterianas identificadas também foram testadas para verificar seu potencial de transformação, pelo método de eletroporação. Os resultados obtidos demonstraram que das 176 bactérias isoladas, 62 identificadas corresponderam aos filos: Proteobacteria, Bacteroidetes, Actinobacteria e Firmicutes, com dois gêneros predomiantes, Acinetobacter e Enterobacter. Pela análise molecular também foi possível a detecção de seis gêneros detectados pela primeira vez em A. darlingi: Elizabethkingia, Cupriavidus, Leucobacter, Pectobacterium, Rhizobium e Nubsella. As espécies que apresentaram indícios de transmissão vertical no mosquito estudado foram: Acinetobacter bereziniae, Enterobacter asburiae e Serratia marcescens, sendo esta última a que apresentou melhor potencial de transformação com o plasmídeo pKS1-GFP, que expressa a proteína fluorescente GFP, útil para futuros testes de monitoramento em A. darlingi. Palavras-chave: bactérias simbióticas, paratransgênese, bloqueio da transmissão, malária, Amazônia.pt_BR
dc.publisher.countryBrasilpt_BR
dc.publisher.programPós-Graduação em Biotecnologia e Recursos Naturaispt_BR
dc.relation.referencesAKSOY, S.; WEISS, B.; ATTARDO, G. Paratransgenesis applied for control of tse-tse transmitted sleeping sickness. Advances in Experimental Medicine and Biology, v. 627, p. 35-48, 2008. ARRUDA, A.; FERREIRA, G., S.; LIMA, N. C. S.; JÚNIOR-SANTOS, A.; CUSTÓDIO, M. G. F.; BENEVIDES-MATOS, N.; Ozakid, L. S.; Stabelib, R. G.; Silva, A. A. A simple methodology to collect culturable bacteria from feces of Anopheles darlingi (Diptera: Culicidae). Journal of Microbiological Methods, v. 14, p. 115-117, 2017. ARRUDA, ANDRELISSE. Identificação de microrganismos cultiváveis associados ao intestino de Anopheles darlingi (DIPTERA: CULICIDAE) com potencial à paratransgênese para o controle da malária. Tese (Doutorado em Biodiversidade e Biotecnologia da Rede Bionorte) - Universidade Federal do Amazonas. 170 f., 2017. BANDO, H.; KIYOSHI, O.; WAMDAOGO, M. G.; BADOLO, A.; AONUMA, H.; NELSON, B.; FUKUMOTO, S.; XUAN, X.; SAGNON, N.; KANUKA, H. Intra-specific diversity of Serratia marcescens in Anopheles mosquito midgut defines Plasmodium transmission capacity. Scientific reports, v. 3 (1641), p. 1-9, 2013. BEARD C. B, CORDON-ROSALES C, DURVASULA R. V. Bacterial symbionts of the Triatominae and their potential use in control of Chagas disease transmission. Annual Review of Entomology, v.47, p. 123-41, 2002. BISI, D. C.; LAMPE, D. J. Secretion of anti-Plasmodium effector proteins from a natural Pantoea agglomerans isolate by using PelB and HlyA secretion signals. Applied And Environmental Microbiology, v. 77 (13), p. 4669-4675, 2011. BOISSIÈRE, A.; TCHIOFFO, M. T.; BACHAR, D.; ABATE, L.; MARIE, A.; NSANGO, S. E.; et al. Midgut microbiota of the malaria mosquito vector Anopheles gambiae and interactions with Plasmodium falciparum infection. PLoS Pathogens, v. 8 (5), e1002742, p. 1-12, 2012. BRASIL, SIVEP-Malária/SVS – Ministério da Saúde. Boletim Malária Região Amazônica. Situação epidemiológica da malária na região Amazônica, entre 2017 e 2019. Disponível em: https://public.tableau.com/profile/mal.ria.brasil#!/vizhome/MiniSivep1519_2019_03_11/casos_notificados_2018_regio_Amaznica. Acesso: 17/03/2019. CAPONE, A.; RICCI, I.; DAMIANI, C.; MOSCA, M.; ROSSI, P.; SCUPPA, P.; CROTTI, E.; EPIS, S.; ANGELETTI, H.; VALZANO, H.; SACCHI, G; BANDI, C.; DAFFONCHIO, D.; MANDRIOLI, H.; FAVIA, L. Interactions between Asaia, Plasmodium and Anopheles: new insights into mosquito symbiosis and implications in malaria symbiotic control. Parasites & Vectors, 6 (1):182, p. 1-13, 2013. CHANDEL, K.; MENDKI, M. J.; PARIKH, R. Y.; KULKARNI, G.; TIKAR., S. N.; SUKUMARAN, D.; PRAKASH, S.; PARASHAR, B. D.; SHOUCHE, Y.; VEER, V. Midgut Microbial Community of Culex quinquefasciatus Mosquito Populations from India. PLoS ONE, v. 8 (11), p. 1-10, 2013. 66 CHAVSHIN, A. R.; OSHAGHI, M. A.; VATANDOOST, H.; POURMAND, M. R.; RAEISI, A.; TERENIUS, O. Isolation and identification of culturable bacteria from wild Anopheles culicifacies, a first step in a paratransgenesis approach. Parasites & Vectors, v. 7 (419), p. 1-8, 2014. CIRIMOTICH, C. M.; DONG, Y.; CLAYTON, A. M.; SANDIFORD, S. L.; SOUZA-NETO, J. A.; MULENGA, M.; DIMOPOULOS, L. Natural microbe-mediated refractoriness to Plasmodium infection in Anopheles gambiae. Science, vol. 332 (6031), p. 855-858, 2011. CONSOLI, R.A.G.B; OLIVEIRA, R. L. Principais mosquitos de importância sanitária no Brasil. In: Capítulos 1-3. Editora Fiocruz, Rio de Janeiro. 228 p., 1994. Disponível em: https://static.scielo.org/scielobooks/th/pdf/consoli-8585676035.pdf. COUTINHO-ABREU, I.V., ZHU, K.Y., RAMALHO-ORTIGAO, M. Transgenesis and paratransgenesis to control insect-borne diseases: current status and future challenges. Parasitology International., v. 59 (1), p. 1-8, 2010. DEANE, L.M. Malaria vectors in Brazil. Memórias do Instituto Oswaldo Cruz, Rio de Janeiro, v.81, p. 5-14, 1986. DJADID, N. D.; JAZAYERI, H.; RAZ, A.; FAVIA, G.; RICCI, I.; ZAKERI, S. Identification of the midgut microbiota of An. Stephensi and An. Maculipennis for their application as a paratransgenic tool against malaria. PLoS ONE, v. 6 (12), p. 1-7, 2011. DONG ,Y.; MANFREDINI, F.; DIMOPOULOS, G. Implication of the Mosquito Midgut Microbiota in the Defense against Malaria Parasites. PLoS Pathogens, v. 5 (5), p. 1-10, 2009. DOUGLAS, A. E. Lessons from Studying Insect Symbioses. Cell Host & Microbe, v. 10 (4), p. 359–367, 2011. DUAN, Y. Q; ZHOU, X. K.; DI-YAN, L.; LI, Q. Q.; DANG, L. Z.; ZHANG, Y. G.; QIU, L. H; et al. Enterobacter tabaci sp. nov., a novel member of the genus Enterobacter isolated from a tobacco. Antonie van Leeuwenhoek, v. 108 (5), p. 1161-1169, 2015. DURVASULA R. V.; GUMBS, A.; PANACKAL A., KRUGLOV, O.; AKSOY, S.; MERRIFIELD, R. B.; RICHARDS, F. F.; BEARD, C. B. Prevention of insect-borne disease: An approach using transgenic symbiotic bacteria. Proceedings of the National Academy of Sciences of the United States of America, v. 94 (7), p. 3274-3278, 1997. FAVIA, G.; RICCI, I.; DAMIANI, C.; RADDADI, N.; CROTTI, E.; MARZORATI, M.; RIZZI, A.; URSO, R.; BRUSETTI, L.; BORIN, S.; MORA, D.; SCUPPA, P.; PASQUALINI, L.; CLEMENTI, E.; GENCHI, M.; CORONA, S.; NEGRI, I.; GRANDI, G.; ALMA, A.; KRAMER, L.; ESPOSITO, F.; BANDI, C.; SACCHI, L.; DAFFONCHIO, D. Bacteria of the genus Asaia stably associate with Anopheles stephensi, an Asian malarial mosquito vector. Proceedings of the National Academy of Sciences of the United State of America (USA), v. 104, p. 9047-9051, 2007. GENDRIN M, CHRISTOPHIDES GK. The anopheles mosquito microbiota and their impact on pathogen transmission. In: Manguin S, editor. Anopheles Mosquitoes - New Insights into Malaria Vectors, cap. 3, p. 525-548, 2013. 67 GONZALEZ-CERON, L.; SANTILLAN, F.; RODRIGUEZ, M..; MENDEZ, D.; HERNANDEZ-AVILA, J. E. Bacteria in midguts of field-collected Anopheles albimanus block Plasmodium vivax sporogonic development. Journal of Medical Entomology, v. 40 (3), p. 371-374, 2003. GUÉGAN, M.; ZOUACHE, K.; DÉMICHEL, C.; MINARD, G.; TRAN, V. V.; POTIER, P.; MAVINGUI, P.; VALIENTE, M. C. The mosquito holobiont: fresh insight into mosquito-microbiota interactions. Microbiome, v. 6 (49), p. 1-17, 2018. GUPTA, A. K.; NAYDUCH, D.; VERMA, P.; SHAH, B.; GTE, H. V.; PATOLE, M. S.; et al. Phylogenetic characterization of bacteria in the gut of house flies (Musca domestica L.). FEMS Microbiology Ecology, v. 79 (3), p. 581-593, 2012. HOSOKAWA T, KIKUCHI Y, NIKOH N, SHIMADA M, FUKATSU T. Strict host-symbiont cospeciation and reductive genome evolution in insect gut bacteria. PLoS Biology, v. 4 (10), p. 1841-1851, 2006. KIKUCHI Y, HOSOKAWA T, FUKATSU T. Insect-microbe mutualism without vertical transmission: a stinkbug acquires a beneficial gut symbiont from the environment every generation. Applied and environmental microbiology, v. 73(13), p. 4308-4316, 2007. KOOSHA, M.; VATANDOOST, H.; KARIMIAN, F.; CHOUBDAR, N.; ABAI, M. R.; OSHAGHI, M. A. Effect of Serratia AS1 (Enterobacteriaceae: Enterobacteriales) on the Fitness of Culex pipiens (Diptera: Culicidae) for Paratransgenic and RNAi Approaches. Journal of Medical Entomology, p. 1–7, 2018. LINDH, J.M; TERENIUS, O; FAYE, I. 16S rRNA Gene-Based Identification of Midgut Bacteria from Field-Caught Anopheles gambiae SensuLato and A. funestu sMosquitoes Reveals New Species Related to Known Insect Symbionts. Appliedand Environmental Microbiology, v. 71 (11), p.7217–7223, 2005. MARANHÃO, A. Q. Transformação bacteriana. In: DE-SOUZA, M. T; BRIGIDO, M. M. (Org.); MARANHÃO, A. Q (Org.). Técnicas Básicas em Biologia Molecular. 2. ed. Brasília: Editora Universidade de Brasília, v. 1, cap. 10, p. 216-228, 2016. MINARD, G.; MAVINGUI, P.; MORO, C. V. Diversity and function of bacterial microbiota in the mosquito holobiont. Parasites &Vectors, 6:146, 2013. MORAN, N. A. Symbiosis. Current Biology, v. 16 (20), 2006. MWADONDO, E. M.; GHILAMICAEL, A.; ALAKONYA, A. E.; KASILI, R. W. Midgut bacterial diversity analysis of laboratory reared and wild Anopheles gambiae and Culex quinquefasciatus mosquitoes in Kenya. African Journal of Microbiology Research, v. 11(29), p. 1171-1183, 2017. NILSSON, L. K. J; OLIVEIRA, M. R.; MARINOTTI; ROCHA, E. M.; HÅKANSSON, S. TADEI, W. P.; SOUZA, A. Q. L; TERENIUS, O. Characterization of bacterial communities in breeding waters of Anopheles darlingi in Manaus in the Amazon Basin malaria-endemic area. Microbial Ecology, p. 1-11, 2019. OLIVEIRA; M. R. Avaliação da biodiversidade de bactérias não cultiváveis associadas a anofelinos e seu habitat. Dissertação de Mestrado do Programa de Pós-Graduação em 68 Biotecnologia e Recursos Naturais da Amazônia (MBT) da Universidade do Estado do Amazonas (UEA). 76f, 2015. PUMPUNI, C. B.; BEIER, M. S.; NATARO, J. P.; GUERS, L. D.; DAVIS, J. R. Plasmodium falciparum: inhibition of sporogonic development in Anopheles stephensi by gram-negative bacteria. Experimental Parasitology, v. 77 (2), p. 195-199, 1993. RANI, S.; SHARMA, A.; RAJAGOPAL, R.; ADAK, T.; BHATNAGAR, R. K. Bacterial diversity analysis of larvae and adult midgut microflora using culture-dependent and culture-independent methods in lab-reared and field-collected Anopheles stephensi - an Asian malarial vector. BMC Microbiology, v. 9 (96), p. 1-22, 2009. REJMANKOVA, E.; HARBIN-IRELAND, A.; LEGE, M. Bacterial abundance in larval habitats of four species of Anopheles (Diptera: Culicidae) in Belize, Central America. Journal of Vector Ecology, v. 25 (2), p. 229–239, 2000. RIEHLE, M. A.; JACOBS-LORENA, M. Using bacteria to express and display anti-parasite molecules in mosquitoes: current and future strategies. Insect Biochemistry and Molecular Biology, v. 35 (7), p. 699-707, 2005. RIEHLE, M.A; MOREIRA, C.K; LAMPE, D; LAUZON, C; JACOBS-LORENA, M. Using bacteria to express and display anti-Plasmodium molecules in the mosquito midgut. International Journal for Parasitology, v. 37, p. 595-603, 2007. ROCHA, E. M. Estudo comparativo da microbiota bacteriana cultivável associada à Anopheles darlingi Root, 1926, e seu hábitat. Dissertação de Mestrado do Programa de Pós-Graduação em Biotecnologia e Recursos Naturais da Amazônia (MBT) da Universidade do Estado do Amazonas (UEA). 76f, 2015. SAMPAIO, V. S.; SIQUEIRA, A. M.; ALECRIM, M. G. C.; MOURÃO, M. P. G.; MARCHESINI, P. B.; ALBUQUERQUE, B. C.; NASCIMENTO, J.; FIGUEIRA, E. A. G.; ALECRIM, W. D.; MONTEIRO, W. M.; LACERDA, M. V. G. Malaria in the State of Amazonas: a typical Brazilian tropical disease influenced by waves of economic development. Revista da Sociedade Brasileira de Medicina Tropical, v. 48 (Suppl I), p. 4-11, 2015. SEGATA, N.; BALDINI, F.; POMPON, J.; GARRETT, W. S.; TRUONG, D. T.; DABIRÉ, R. K. The reproductive tracts of two malaria vectors are populated by a core microbiome and by genderand swarm-enriched microbial biomarkers. Scientific reports, v. 6 (24207), p. 1-10, 2016. SHARMA, P; SHARMA, S.; MAURYA, R. K.; DE, T. D.; THOMAS, T.; LATA, S.; SINGH, N.; PANDEY, K. C.; VALECHA, N.; DIXIT, R. Salivary glands harbor more diverse microbial communities than gut in Anopheles culicifacies. Parasites & Vectors, v. 7 (235), p. 1-7, 2014. TADEI, W. P.; RODRIGUES, I. B; RAFAEL, M. S.; SAMPAIO; R. T. M.; MESQUITA,H. G.; PINHEIRO, V. C. S.; et al. Adaptative processes, control measures, genetic background, and resilience of malaria vectors and environmental changes in the Amazon region. Hydrobiologia, 789 (1), p. 1-18, 2017. TADEI, W.P.; THATCHER, B.D.; SANTOS, J.M.M.; SCARPASSA, V. M.; RODRIGUES, I.B.; RAFAEL, M.S. Ecologic observations on anopheline vectors of malaria in the 69 Brazilian Amazon. American Journal of Tropical Medicine and Hygiene, v. 59, p. 325-335, 1998. TCHIOFFO, M. T.; BOISSIÈRE, A.; ABATE, L.; NSANGO, S. E.; BAYIBÉKI, A. N.; AWONO-AMBÉNÉ, P. H.; CHRISTEN, R.; GIMONNEAU, G.; MORLAIS, I. Dynamics of bacterial community composition in the malaria mosquito’s epithelia. Frontiers in Microbiology, v. 6 (500), p. 1-9, 2015. TCHIOFFO, M. T.; BOISSIÈRE, A.; CHURCHER, T. S.; ABATE, L.; GIMONNEAU, G.; NSANGO, S. E. Modulation of malaria infection in Anopheles gambiae mosquitoes exposed to natural midgut bacteria. PLoS ONE, v. 8 (12), e81663, 2013. TERENIUS, O; OLIVEIRA, C.D; PINHEIRO, W.D; TADEI, W.P; JAMES, A.A; MARINOTTI, O. 16S rRNA gene sequences from bacteria associated with adult Anopheles darlingi (Diptera: Culicidae) mosquitoes.Journal of Medical Entomology, v. 45 (1), p. 172–175, 2008. VISCA, P.; SEIFERT, H.; TOWNER, K. J. Acinetobacter infection - an emerging threat to human health. IUBMB Life: Critical Review, v. 63 (12), p. 1048-1054, 2011. WANG, S.; GHOSH, A. K.; BONGIO, N.; STEBBINGS, K. A.,; LAMPEB, D. J.; JACOBS-LORENA, M. Fighting malaria with engineered symbiotic bacteria from vector mosquitoes. Proceedings of the National Academy of Sciences of the United States of America, v. 109 (31), p. 12734-12739, 2012. WANG, S; DOS-SANTOS, A; HUANG, W; LIU, K.C; OSHAGHI, M.A; WEI, G; AGRE, P; JACOBS-LORENA, M. Driving mosquito refractoriness to Plasmodium falciparum with engineered symbiotic bacteria. Science, v. 357 (6358), p. 1399-1402, 2017. WANG, S; JACOBS-LORENA, M. Genetic approaches to interfere with malaria transmission by vector mosquitoes. Trends in Biotechnology, v. 31 (3), p. 185–193, 2013. WANG, Y.; GILBREATH, T. M.; KUKUTLA, P.; YAN, G.; XU, J. Dynamic gut microbiome across life history of the malaria mosquito Anopheles gambiae in Kenya. PLoS ONE, v. 6 (9), e24767, p. 1-9, 2011. WHO - World Health Organization World. World Malaria Report 2018: Global malaria programme. Geneva, 2018. WILKE, A. B. B.; MARRELLI, M. T. Paratransgenesis: a promising new strategy for mosquito vector control. Parasites & Vectors, v. 8, p. 342, 2015. YADAV, K.K; DATTA, S; NAGLOT, A; BORA, A; HMUAKA, V; BHAGYAWANT, S.; GOGOI, H.; VEER, V.; RAJU, P. S. Diversity of cultivable midgut microbiota at different stages of the asian tiger mosquito, Aedes albopictus from Tezpur, India. PLoS ONE, v. 11 (12), p. 1-16, 2016. YIN, Y.L; WAI-FONG, Y; KOK-GAN, C. Enterobacter asburiae Strain L1: Complete Genome and Whole Genome Optical Mapping Analysis of a Quorum Sensing Bacterium. Sensors, v. 14 (8), p. 13913-13924, 2016. 70 YOSHIDA, S; IOKA, D; MATSUOKA, H; ENDO, H; ISHII, A. Bacteria expressing single-chain immunotoxin inhibit malaria parasite development in mosquitoes. Molecular and Biochemical Parasitology, v. 113, p. 89-96, 2001.pt_BR
dc.subject.cnpqBiotecnologiapt_BR
dc.publisher.initialsUEApt_BR
Appears in Collections:DISSERTAÇÃO - MBT Programa de Pós-Graduação em Biotecnologia e Recursos Naturais da Amazônia



This item is licensed under a Creative Commons License Creative Commons