DSpace logo

Use este identificador para citar ou linkar para este item: http://repositorioinstitucional.uea.edu.br//handle/riuea/2281
Registro completo de metadados
Campo DCValorIdioma
dc.contributor.authorMuniz, Veranilce Alves-
dc.date.available2020-03-12-
dc.date.available2020-03-13T14:17:18Z-
dc.date.issued2019-04-22-
dc.identifier.urihttp://repositorioinstitucional.uea.edu.br//handle/riuea/2281-
dc.description.abstractThe Aedes aegypti mosquito is a vector of the arboviruses Dengue, Zika and Chikungunya, which cause public health problems in several regions of the world. Vector control is the best way to alleviate this problem, which may be socio-educational, physical, chemical and biological. However, chemicals cause negative impacts on the environment and humans. The use of entomopathogenic microorganisms, mainly bacteria of the genus Bacillus, becomes a promising alternative in the fight against this mosquito. The objective of this study was to select bacteria isolated from Amazonian environments, carrying the Cry and BS-glu genes, with larvicidal potential, to contribute to the control of Ae. aegypti. In this work 21 lines of collections of academic papers were obtained from soils, water, plant and insect from different Amazonian environments. The bacilli strains of this study were submitted to the PCR reaction using the nucleotide sequence encoding the rRNA16S gene. In total, 20 bacterial strains were identified, belonging to the following genera: Bacillus, Brevibacillus. Brevundimonas, Serratia and Achromobacter. PCR was then performed to characterize the Cry4Ba, Cry11 and BS-glu genes. The results showed that of the 21 lines analyzed, six lines - SPa09, SPa04, 15PHA, BtAM06, R22 and GD 02.13 - presented amplification for the Cry4Ba gene. Considering the BS-glu gene, two strains - SBC2 and standard strain Bti001- amplified for said gene. In the evaluation of the larvicidal activity the quantitative bioassays with 21 strains of bacilli against Ae. aegypti. The results of the quantitative bioassays showed that seven lines were promising in the bacterial biomass assays, where five - R22ISP2, GDO2.13NA, BtAM06, BtAM49LB and SPa09NA - presented 100% mortality in all concentrations - 133 mg / L, 66.6 mg / L, 33.3 mg / L, 16.6 mg / L, 8.33 mg / L and 4.16 mg / L in 24 hours of exposure. The same result was observed for the standard strain Bti001 - B. thuringiensis which showed 100% mortality at all concentrations tested. In the assay with autoclaved biomass, only the R22 line showed 90 to 100% mortality in 72 hours of exposure. In this way, the results of this work provide relevant information about the larvicidal potential of strains of isolated bacilli from different Amazonian environments, which can be used in biological control actions of Ae. aegypti. Keywords: Amazonian microbial, insecticidal proteins, hydrolytic enzymes, vector control.pt_BR
dc.languageporpt_BR
dc.publisherUniversidade do Estado do Amazonaspt_BR
dc.rightsAcesso Abertopt_BR
dc.rightsAtribuição-NãoComercial-SemDerivados 3.0 Brasil*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/br/*
dc.subjectMicrobiota amazônicapt_BR
dc.subjectproteínas inseticidaspt_BR
dc.subjectenzimas hidrolíticapt_BR
dc.subjectcontrole vetorialpt_BR
dc.titleAtividade Larvicida de Bacillus spp. da Amazônia Brasileira portadores dos genes Cry e Bsglu (β-GLUCANASE), no controle de Aedes Aegypti Linnaeus, 1762pt_BR
dc.typeDissertaçãopt_BR
dc.date.accessioned2020-03-13T14:17:18Z-
dc.contributor.advisor1Tadei, Wanderli Pedro-
dc.contributor.advisor1Latteshttp://lattes.cnpq.br/6806722604010480pt_BR
dc.contributor.referee1Tadei, Wanderli Pedro-
dc.contributor.referee1Latteshttp://lattes.cnpq.br/6806722604010480pt_BR
dc.contributor.referee2Souza, Érica Simplício de-
dc.contributor.referee2Latteshttp://lattes.cnpq.br/4333531513081697pt_BR
dc.contributor.referee3Carmo, Édson Júnior do-
dc.contributor.referee3Latteshttp://lattes.cnpq.br/5780309549588357pt_BR
dc.creator.Latteshttp://lattes.cnpq.br/7864923221950758pt_BR
dc.description.resumoO mosquito Aedes aegypti é vetor dos arbovirus Dengue, Zika e Chikungunya, os quais causam agravos à saúde pública, em diversas regiões do mundo. O controle do vetor é a melhor forma de amenizar esta problemática, que pode ser de caráter socioeducativo, físico, químico e biológico. Contudo, os produtos químicos ocasionam impactos negativos ao meio ambiente e aos seres humanos. O uso de microrganismos entomopatogênicos, principalmente bactérias do gênero Bacillus torna-se uma alternativa promissora, no combate a este mosquito. O objetivo deste estudo foi selecionar bactérias isoladas de ambientes amazônicos, portadoras dos genes Cry e BS-glu, com potencial larvicida, para contribuir no controle de populações de Ae. aegypti. Neste trabalho foram obtidas 21 linhagens de coleções de trabalhos acadêmicos, provenientes de solos, água, planta e inseto de diferentes ambientes amazônicos. As linhagens de bacilos deste estudo foram submetidas ao método de reação de PCR com a utilização da sequência de nucleotídeos que codifica para o gene rRNA16S. No total 20 linhagens bacterianas foram identificadas, pertencentes aos seguintes gêneros: Bacillus, Brevibacillus. Brevundimonas, Serratia e Achromobacter. Posteriormente, foi realizada PCR para caracterização dos genes Cry4Ba, Cry11e BS-glu. Os resultados mostraram que das 21 linhagens analisadas, seis linhagens - SPa09, SPa04, 15PHA, BtAM06, R22 e GD 02.13 - apresentaram amplificação para o gene Cry4Ba. Considerando o gene BS-glu, duas linhagens - SBC2 e cepa padrão Bti001- amplificaram para o referido gene. Na avaliação da atividade larvicida foram realizados os bioensaios quantitativos com 21 linhagens de bacilos contra larvas de Ae. aegypti. Os resultados dos bioensaios quantitativos demonstraram que sete linhagens, foram promissoras nos ensaios com a biomassa bacteriana, onde cinco - R22ISP2, GDO2.13NA, BtAM06, BtAM49LB e SPa09NA - apresentaram 100% de mortalidade em todas as concentrações - 133 mg/L, 66.6 mg/L, 33.3 mg/L, 16.6 mg/L, 8.33 mg/L e 4.16 mg/L em 24 horas de exposição. O mesmo resultado foi observado para a linhagem padrão Bti001 - B. thuringiensis que apresentou 100% de mortalidade em todas as concentrações testadas. No ensaio com biomassa autoclavada, apenas a linhagem R22 apresentou de 90 a 100 % de mortalidade, em 72horas de exposição. Desta forma, os resultados deste trabalho fornecem informações relevantes do potencial larvicida de linhagens de bacilos isolados de diferentes ambientes amazônicos, que podem ser utilizadas nas ações de controle biológico do Ae. aegypti. Palavras-chave: Microbiota amazônica, proteínas inseticidas, enzimas hidrolíticas, controle vetorial.pt_BR
dc.publisher.countryBrasilpt_BR
dc.publisher.programPós-Graduação em Biotecnologia e Recursos Naturaispt_BR
dc.relation.referencesABDULLAH, M.T.; ALI, N.Y. and Suleman, P.Biological Control of Sclerotinia sclerotiorum (Lib.) de Bary with Trichoderma harzianum and Bacillus amyloliquefaciens. Crop Protection, v. 27, p. 1354-1359, 2008. ALVES, S. B. Patologia e controle microbiano: vantagens e desvantagens. In: (Ed.). Controle microbiano de insetos. Piracicaba: Manole, p. 1163, 1998. ARANTES, O. M. N.; VILAS-BÔAS, L. A.; VILASBÔAS, G. F. L. T. Bacillus thuringiensis: Estratégias no controle biológico. In: SERAFINE, L. A.; BARROS, N. M.; AZEVEDO, J. L. (Org.). Biotecnologia: avanços na agricultura e na agroindústria. Caxias do Sul: Agropecuária, p. 269-293, 2002. ARORA N, AHMAD T, RAJAGOPAL R, BHATNAGAR RK Aconstitutively expressed 36 kDa exochitinase from Bacilllus thuringiensis HD-1. Biochem Biophys Res Commun, v. 307, p. 620-625, 2003. AYRES, M., AYRES JR., M., AYRES, D.L., SANTOS, A.S. BioEstat versão 5.3: Aplicações estatísticas nas áreas das ciências Biológicas e médicas. Belém: Sociedade Civil Mamirauá, Brasília: MCT/CNPQ, Belém, Pará, Brasil, 2007. BECKER, K.; HARMSEN, D.; MELLMANN, A.; MEIER, C.; SCHUMANN, P.; PETERS, G. & VON EIFF C. Development and evaluation of a qualitycontrolled ribosomal sequence database for 16S ribosomal DNAbased identification of Staphylococcus species. J. Clin. Microbiol., v. 42, n. 11, p. 4988-4995, 2004. BENELLI, G. Research in mosquito control: current challenges for a brighter future. Parasitology Research, v. 114, n. 8, p. 2801–2805, 2015. BERRY, C, O'.; NEIL, S.; BEN-DOV, E.; JONES, A. F.; MURPHY, L.; QUAIL, M. A. Complete sequence and organization of p Btoxis, the toxin-coding plasmid of Bacillus thuringiensis subsp. Israelensis. Appl Environ Microbiol, v. 68, n. 50, p.82-95, 2002. BHANDARI, V.; AHMOD, N. Z.; SHAH, H. N.; GUPTA, R. S. Molecular signatures for the Bacillus species: Demarcation of the Bacillus subtilis and Bacillus cereus clades in molecular terms and proposal to limit the placement of new species into the genus Bacillus. Int J Syst Evol Microbiol., v. 63, p. 2712–2726, 2013. BOAKYE, E. Y,; LAWSON, I. Y. D.; DANSO, S. K. A.; OFFEI, S. K. Characterization and diversity of rhizobia nodulating selected tree legumes in Ghana. Symbiosis, v. 69, p. 89–99, 2016. BOICHENKO, V.A.; KLIMOV, V. V.; MIYASHITA, H.; and MIYACHI, S. Functional characteristics of chlorophyll d-predominanting photosynthetic aooaratus in intact cells of Acaryochloris marina. Photosynth, v. 65, p. 269-277, 2000. 71 BORRISS, R.; BUETTNER, K.; & MAENTSAELAE, P. Structure of the beta- 1,3-1,4-glucanase gene of Bacillus macerans: Homologies to other beta-glucanases. MGG Molecular & General Genetics, v. 222, n. 2-3, p. 278–283, 1990. BRAGATTO, I.; GENTA, F. A.; RIBEIRO, A. F.; TERRA, W. R.; & FERREIRA, C.. Characterization of a β-1,3-glucanase active in the alkaline midgut of Spodoptera frugiperda larvae and its relation to β-glucan-binding proteins. Insect Biochemistry and Molecular Biology, 40(12), 861–872, 2010. BRANQUINHO, R.; SOUSA, C.; LOPES, J.; PINTADO, M. E.; PEIXE L.V. & OSORIO H. Differentiation of Bacillus pumilus and Bacillus safensis using MALDI-TOF-MS. PLoS ONE, v. 9, p.110-127, 2014. BRAVO, A., LIKITVIVATANAVONG, S., GILL, S.S., SOBERÓN, M., Bacillus thuringiensis: a story of a successful bioinsecticide. Insect Biochem. Mol. Biol, v. 41, p. 423–431, 2011. BRAVO, A.; GILL, SS.; SOBERÓN, M. Bacillus thuringiensis mechanisms and use. In: Gilbert, LI.; Iatrou, K.; Gill, SS., editors. Comprehensive Molecluar Insect Science. p. 175-206, 2005. CLARRIDGE, JILL, E. Impact of 16S rRNA gene sequence Analysis for Identification of Bacteria on Clinical Microbiology and Infectious Diseases. Clinical Microbiology Reviews. 17: 840-862 pp, 2004. CHENGALA, L. Botanical pesticides a major alternative to chemical pesticides: a review. Int J Life Sci, v. 5, n.4, p.722–729, 2017. CIHAN, A. C., TEKIN, N., OZCAN, B., & COKMUS, C. The genetic diversity of genus Bacillus and the related genera revealed by 16S rRNA gene sequences and ardra analyses isolated from geothermal regions of turkey. Brazilian Journal of Microbiology, v. 43, n. 1, p. 309–324, 2012. COSTA, J. R. V. DA; ROSSI, MARUCCI, J. R. S. C.; ALVES, E. C. DA C.; VOLPE H. X. L.; FERRAUDO A. S; LEMOS, M. V F; DESIDÉRIO J. A. Atividade Tóxica de Isolados de Bacillus thuringiensis a Larvas de Aedes aegypti (L.) (Diptera: Culicidae), September - Biological Control, v. 39, n. 5, p. 757-766, 2010. CRICKMORE, N.; ZEIGLER, D.R.; FEITELSON, J.; SCHNEPF, E.; VAN RIE, J.; LERECLUS, D.; BAUM, J.; DEAN, D.H. Revision of the nomenclature for the Bacillus thuringiensis pesticidal crystal proteins. Microbiology and Molecular Biology Reviews, v. 62, p. 807-813, 1998. DEWI, R. T. K.; MUBARIK, N. R.; SUHARTONO, M. T. Medium optimization of-glucanase production by Bacillus subtilis SAHA 32.6 used as biological control of oil palm pathogen. Emirates Journal of Food and Agriculture, v. 28, n. 2, p. 116–125, 2016. DHAYALAN, A., KANNUPAIYAN, J., GOVINDASAMY, B., & PACHIAPPAN, P.. Extraction and Characterization of Secondary Metabolites from the Soil Bacterium, Acidovorax 72 sp. SA5 and Evaluation of Their Larvicidal Activity Against Aedes aegypti. International Journal of Environmental Research, v. 13, n. 5, 2018. DONOVAN, W.P., ENGLEMAN, J.T., DONOVAN, J.C., BAUM, J.A., BUNKERS, G.J., CHI, D.J., CLINTON, W., ENGLISH, L., HECK, G.R., ILAGAN, O.M., KRASOMIL-OSTERFELD, K.C., PITKIN, J.W., ROBERTS, J.K., & WALTERS, M.R. Discovery and characterization of Sip1A: a novel secreted protein from Bacillus thuringiensis with activity against coleopteran larvae. Applied Microbiology and Biotechnology, v. 72, p. 713-719, 2006. DULMAGE, H. T.; CORREA, J. A.; & GALLEGOS-MORALES, G. Potential for Improved Formulations of Bacillus thuringiensis israelensis through Standardization and Fermentation Development. Bacterial Control of Mosquitoes & Black Flies, 110–133, 1990. EL-KERSH, T. A.; AHMED, A. M.; AL-SHEIKH, Y. A.; TRIPET, F.; IBRAHIM, M. S.; METWALLI, A. A. M. Isolation and characterization of native Bacillus thuringiensis strains from Saudi Arabia with enhanced larvicidal toxicity against the mosquito vector Anopheles gambiae (s.l.). Parasit Vectors., v. 9, p. 647, 2016. ELLEUCH, J., TOUNSI, S., HASSEN, N.B.B., LACOIX, M.N., CHANDRE, F., JAOUA, S., ZGHAL, R.Z. Characterization of novel Bacillus thuringiensis isolates against Aedes aegypti (Diptera: Culicidae) and Ceratitis capitata (Diptera: Tephridae). J. of Invert. Pathol, v. 124, p. 90–97, 2015. ELLEUCH, J., TOUNSI, S., HASSEN, N.B.B., LACOIX, M.N., CHANDRE, F., JAOUA, S., ZGHAL, R.Z. Characterization of novel Bacillus thuringiensis isolates against Aedes aegypti (Diptera: Culicidae) and Ceratitis capitata (Diptera: Tephridae). J. of Invert. Pathol, v. 124, p. 90–97, 2015. FINNEY, D. J. Probit Analysis. Cambridge (UK): Cambridge University Press, 1971. FINNEY, D.J. Probit Analysis. Cambridge University, London, 1971. FIOCRUZ. Dengue: vírus e Vetor. Disponível em: http://www.ioc.fiocruz.br/dengue/textos/oportunista.html. Acesso em: 25 de novembro de 2018. FIRA, D.; DIMKIĆ, I.; BERIĆ, T.; LOZO, J.; & STANKOVIĆ, S. Biological control of plant pathogens by Bacillus species. Journal of Biotechnology, v. 285, p.44-55, 2018. FONSECA, M. C. C.; ZAGO, V. C. P.; FERREIRA, E. P. B.; CÂMARA, A. F. S.; RUMJANEK, N. G. Isolamento e caracterização morfológica de Pseudomonas spp. fluorescentes nativas em sistemas de produção agrícola. Comunicado Técnico. Empresa Brasileira de Pesquisa Agropecuária, Embrapa Agrobiologia. Seropédica, Rio de Janeiro: n. 43, p. 1-4, 2000. FURTADO, G. P; RIBEIRO, L. F; SANTOS, C. R; TONOLI, C. C; SOUZA, R. S; OLIVEIRA, R. R; MURAKAMI, M. T; WARD, R. J. Biochemical and structural characterization of a β-1,3-1,4-glucanase from Bacillus subtilis 168. Process Biochemistry, v. 46, n. 5, p. 1202–1206, 2011. 73 GAISER, O. J.; PIOTUKH, K.; PONNUSWAMY, M. N.; PLANAS, A.; BORRISS, R.; & HEINEMANN, U. Structural Basis for the Substrate Specificity of a Bacillus 1,3-1,4-β-Glucanase. Journal of Molecular Biology, v. 357, n. 4, p. 1211–1225, 2006. GHAZANCHYAN, N. L., KINOSYAN, M. H., TADEVOSYAN, P. E., KHACHATURYAN, N. S., & AFRIKIAN, E. G. Brevibacillus laterosporus as perspective source of new bioinsecticides. Annals of Agrarian Science, 2018. GALZER, E. C. W.; AZEVEDO FILHO, W. S. Utilização do Bacillus thuringiensis no controle biológico de pragas. Revista Interdisciplinar de Ciência Aplicada, v. 1, p. 13-16, 2016.. GAO, Z. Purification and characterization of a novel lichenase from Bacillus licheniformis GZ-2. Biotechnology and Applied Biochemistry, v. 63, n. 2, p. 249–256, 2016. GARCIA-MARTINEZ, J.; ACINAS, S. G.; ANTON, A. I. Use of the 16S-23S ribossomal genes spacer region in studies of prokaryotic diversity. Journal of Microbiological Methods, v.36, n1, p. 55-64, 1999. GARCIA-RAMON, D.C.; MOLINA, C.A.; OSUNA, A; AND VILCHEZ, S. An in-depth characterization of the entomopathogenic strain Bacillus pumilus 15.1 reveals that it produces inclusion bodies similar to the parasporal crystals of Bacillus thuringiensis. Appl Microbiol Biotechnol., v. 100, p. 3637–3654, 2016. GOHEL, V.; SINGH, A.; VIMAL, M.; ASHWINI, P.; CHHATPAR, H. S. Bioprospecting and antifungal potential of chitinolytic microorganisms. African Journal of Biotechnology, v. 5, p. 54-72, 2006. GOLDENKOVA-PAVLOVA, I. V.; TYURIN, A. А.; & MUSTAFAEV, O. N. The features that distinguish lichenases from other polysaccharide-hydrolyzing enzymes and the relevance of lichenases for biotechnological applications. Applied Microbiology and Biotechnology, v. 102, n. 9, p. 3951–3965, 2018. GONZALEZ, J.; CARLTON, B. C. A large transmissible plasmid is required for crystal toxin production in Bacillus thuringiensis variety israelensis. Plasmid. v. 11, p. 28-38, 1984. GOTO, K.; OMURA, T.; HARA, Y.; SADAIE, Y. Aplication of the partial 16S rDNA sequence as an index for rapid identification of species in the genus Bacillus. The Journal of General and Applied Microbiology. v. 46, p. 1-8, 2000. HABIB, M. E. M.; ANDRADE, C. F. S., Bactérias entomopatogênicas In: Alves, S.B. Controle microbiano de insetos. Piracicaba: FEALQ, v. 12, p. 383-446, 1998. HABIB, N. Identification and characterization of bacterial population associated with rice leaves infected with bacterial blight. National Agricultural Research Centre, 2013. HADDAD, M. L. Utilizac¸ ão do Polo-PC para análise de Probit. In: Alves, S.B. (Ed.), Controle Microbiano de Insetos. FEALQ, Piracicaba, SP, p. 999–1012, 1998. HALL, T. A. BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/96/NT. Nucleic Acids Symposium Series, 41:95-98, 1999. 74 HARREL, L. J.; ANDERSON, G. L.; WILSON, K. H. Genetic variability of Bacillus anthracis and related species. J Clin Microbiol., v.33, p.1847–1850, 1995. HARRINGTON, J.; KROEGER, A.; RUNGE-RANZINGER, S.; & O’DEMPSEY, T.. Detecting and Responding to a Dengue Outbreak: Evaluation of Existing Strategies in Country Outbreak Response Planning. Journal of Tropical Medicine, p. 1–9, 2013. HUNGRIA, M.; SILVA, K. Manual de Curadores de Germoplasma – Micro-organismos: Rizóbios e Bactérias Promotoras do Crescimento Vegetal. Brasília, DF: Embrapa Recursos Genéticos e Biotecnologia, 2011. INCA-TORRES, A.R.; URBINA-SALAZAR1, A.R.; GARCÍA, F.G.; CARBONERO-AGUILAR, P.; MORGADO, B.R.; PARRADO, J.; BAUTISTA, J. Hydrolytic enzymes production by Bacillus licheniformis growth on fermentation media formulated with sewage sludge, Journal of Biotech Research, v. 9, p. 14-26, 2018. KATAK, Ricardo de Melo. Seleção de Bacillus spp. da Amazônia Brasileira portadores de genes Cry e/ou PhaC via síntese Polihidroxiacalnoatos (PHAs) para o controle de Aedes aegypti Linnaeus 1762. 2015. 79 f. Dissertação (Mestrado em Biotecnologia) - Universidade Federal do Amazonas, Manaus, 2015. KNOWLES, B. H. Mechanisms ofaction of Bacillus thuringiensis insecticidal d-endotoxins. Advances in nsect Physiology, v. 24, n. 2, p. 275-308, 1994. KRAEMER, M. U., SINKA, M. E.; DUDA, K. A.; MYLNE, A.; SHEARER, F. M.; BRADY, O. J.; COELHO, G. E. The global compendium of Aedes aegypti and Ae. albopictus occurrence. Sci Data, v. 7, n. 2, 2015. KUMAR, A.; KUMAR, A.; & PRATUSH, A. Molecular diversity and functional variability of environmental isolates of Bacillus species. Springer Plus, v.3, n. 1, p. 312, 2014. LATEEF, A.; ADELERE.; I. A.; & GUEGUIM-KANA, E. B. The biology and potential biotechnological applications of Bacillus safensis Biologia. Section Cellular and Molecular Biology, v. 70, n. 4, p. 411—419, 2015. LEE, M.K.; CURTISS, A.; ALCANTARA, E.A.; DEAN, D.H. Synergistic effect of the Bacillus thuringiensis toxins CryIAa and CryIAc on the gypsy moth, Lymantria dispar. Applied and Environmental Microbiology, v. 62, p.583-586, 1996. LEE, M., SRINIVASAN, S., & KIM, M. K. New taxa in Alphaproteobacteria: Brevundimonas olei sp. nov., an esterase-producing bacterium. The Journal of Microbiology, v. 48(5), p. 616–622, 2010. LeOra Software Company. PoloPlus: Probit and Logit Analysis. User's Guide, Version 2.0. LeOra Software Company, Petaluma, CA. 39 pp, 2003. LI, J., LIU, W., LUO, L., DONG, D., LIU, T., ZHANG, T.; Wu, H. . Expression of Paenibacillus polymyxa β-1,3-1,4-glucanase in Streptomyces lydicus A01 improves its biocontrol effect against Botrytis cinerea. Biological Control, 90, 141–147, 2015. 75 LIMA-CAMARA, T. N. Emerging arboviruses and public health challenges in Brazil. Revista de Saúde Pública, 50(0), 2016. LIMA, G. M. de S. Proteínas bioinseticidas produzidas por Bacillus thuringiensis. Anais da Academia Pernambucana de Ciência Agronômica, Recife, vol. 7, p.119-137, 2010. LIMA, J. B. P.; VALLE, D. Manutenção das colônias de Aedes aegypti. Protocolo LAVICAF – FIOCRUZ. Rio de Janeiro, 2007. LIU, Y.; DU, J. LAI, Q.; ZENG, R.; YE, D.; XU, J. and SHAO, Z. Proposal of nine novel species of the Bacillus cereus group. International Journal of Systematic and Evolutionary Microbiology, v. 67, p.2499–2508, 2017. LOBO, K. S.; SOARES-DA-SILVA, J.; SILVA, M. C.; TADEI, W. P.; POLANCZYK, R. A.; PINHEIRO, V. C. S. Isolation and molecular characterization of Bacillus thuringiensis found in soils of the Cerrado region of Brazil, and their toxicity to Aedes aegypti larvae. Rev. Brasil. Entomol, v. 62, p. 5-12, 2017. LOGAN, N.; DE VOS, P. Genus Bacillus cohn 1872. In: De Vos P, Garrity G, Jones D, Krieg N, Ludwig W, Rayney F, et al., editors. Bergey's Man. Syst. Bacteriol. Bergey's Man. Syst. Bacteriol, v. 4. p. 21-128, 2009. LOGAN, N.A.; HALKET, G. Developments in the Taxonomy of Aerobic, Endosporeforming Bacteria. Em: Endospore-Forming Soil Bacteria. Springer, 1ª. Ed, 2011. LUNA-FINKLER, C. L. & FINKLER, L. Bacillus sphaericus and Bacillus thuringiensis to Insect Control: Process Development of Small Scale Production to Pilot-Plant-Fermenters, Insecticides - Advances in Integrated Pest Management, Dr. Farzana Perveen (Ed.), ISBN: 978-953-307-780-2, 2012. MADIGAN, M.T.; MARTINKO, J.M.; DUNLAP, P.V.; CLARK, D. Microbiologia de Brock. Artmed (Editora), 12ª edição, 2012. MARCHE, M. G., CAMIOLO, S., PORCEDDU, A., & RUIU, L. Survey of Brevibacillus laterosporus insecticidal protein genes and virulence factors. Journal of Invertebrate Pathology, v. 155, p. 38–43, 2018. MARGALITH, Y.; BEN-DOV, E. Biological control by Bacillus thuringiensis subsp. israeliensis. In: Rechcigl, JE.; Rechcigl, NA., editors. Insect Pest Management: Techniques for Environmental Protection. CRC Press; p. 243, 2000. MARTINEZ, M. B.; TADDEI, C. R. Métodos de Diagnóstico. In: Trabulsi L R, Nawani N N, Kapadnis B P. Chitin degrading potential of bacteria from extreme and moderate environment. Indian J. Exp. Biol., v.41(3), p. 248-54, 2008. MARTINEZ, M. B.; TADDEI. C.R. Métodos de Diagnóstico. In: TRABULSI, L. R.; ALTERTHUM, F. Microbiologia. 5. ed. Ed. Atheneu, Cap. 14, p. 117- 125., 2008. MONTERO, M.; SANZ, L.; REY, M.; LLOBELL, A.; E MONTE, E. Clonagem e caracterização do gene bgn16 · 3, codificando uma β-1,6-glucanase expressa durante o 76 coproderismo por Trichoderma harzianamel. Journal of Applied Microbiology, v. 103 n.4, p. 1291-1300, 2007. MUNIARAJ, M.; ARUNACHALAM, N.; PARAMASIVAN, R.; MARIAPPAN, T.; PHILIP SAMUEL, P.; RAJAMANNAR, V.; BDELLOID, R. Philodina species in the breeding containers of Aedes aegypti and Aedes albopictus. Trop. biomed, v. 29, p. 646–649, 2012 NOLTE F.S. & CALIENDO A. M. Molecular detection and identification of microorganisms, In: Murray P.R., Baron E.J., Jorgensen J.H., Pfaller M.A. & Yolken R.H. (Eds), Manual of Clinical Microbiology. 8th ed. ASM Press, Washington, p. 234-256.2003. OLIVEIRA, J. C DE. Seleção de Bacillus spp. da amazônia brasileira portadores do gene Chi (quitinase) para o controle biológico de Aedes (Stegomyia) aegypti (Linnaeus, 1762). Dissertação (Mestrado em Biotecnologia) - Universidade do Estado do Amazonas, Manaus, 2018. ORLOVA,М.V. Т.A; SMIRNOVA, L.A.; GANUSHKINA, V.Y.;YACUBOVICH, R.R. Azizbekyan. Insecticidal activity of Bacillus laterosporus Appl. Environ. Microbiol., v. 64 , p. 2723-2725, 1998. ORRILLO, E. O.; GARCIDUENAS, L. E. S.; ROGEL, M. A.; GONZÁLES, V.; PERALTA, H.; MORA, J; MARTÍNEZ, J. Taxonomy of Rhizobia and Agrobacteria from the Rhizobiaceae Family in Light of Genomics. Systematic and Applied Microbiology, v. 38, p. 287-291, 2015. PALMA, L., MUNOZ, D., BERRY, C., MURILLO, J., CABALLERO, P., Bacillus thuringiensis toxins: an overview of their biocidal activity. Toxins, v. 6, p. 3296–3325, 2014. PARDO-LÓPEZ, L.; SOBERÓN, M.; BRAVO, A. Bacillus thuringiensis insecticidal three-domain Cry toxins: Mode of action, insect resistance and consequences for crop protection. FEMS Microbiology Reviews, v. 37, n. 1, p. 3–22, 2013. PATIÑO-NAVARRETE, R.; & SANCHIS, V. Processos evolutivos e fatores ambientais subjacentes à diversidade genética e estilos de vida de bactérias do grupo Bacillus cereus. Research in Microbiology, v. 168, n. 4, p. 309-318, 2017. PEI, ANNA; NOSSA, CARLOS W.; CHOKS, POOJA; BLASER, MARTIN.J; YANG, LIYING; ROSMARIN, DAVID M.; PEI, ZHIHENGDiversity of 23S rRNA Genes within Individua l Prokaryotic Genomes. Plos One. v.4, p. 1-9, 2009. PENIL COBO, P. M.; LIBRO, S.; MARECHAL, N.; D'ENTREMONT, D.; PEÑIL, C. D.; BERKMEN, M. Visualizing Bacterial Colony Morphologies Using Time-Lapse Imaging Chamber MOCHA. J Bacteriol., v. 200, n. 2, p. 13-17, 2017. PEREIRA, E., TELES, B., MARTINS, E., PRAÇA, L., SANTOS, A., RAMOS, F., BERRY, C., MONNERAT, R. Comparative Toxicity of Bacillus thuringiensis Berliner Strains to Larvae of Simuliidae ( Insecta : Diptera ). Bt Research, v. 4, p. 8–13, 2013. PEREIRA, L. DE A.; JUNQUEIRA, R. M.; CARRAMASCHI, I. N.; QUEIROZ, M. M. C.; & ZAHNER, V. Bioactivity under laboratory conditions of Brevibacillus laterosporus towards larvae and adults of Chrysomya putoria (Diptera: Calliphoridae). Journal of Invertebrate 77 Pathology, v. 158, p. 52-54, 2018. PLANAS, A. Bacterial 1,3-1,4-β-glucanases: structure, function and protein engineering. Biochimica et Biophysica Acta (BBA). Protein Structure and Molecular Enzymology, v. 1543, n. 2, p. 361–382, 2000. POLANCZYK, R. A.; ALVES, S. Bacillus thuringiensis: Uma breve revisão. Agrociência. v. 7, p. 1–10, 2003. POLANCZYK, R.A.; ROGÉRIO, F.P.; FIUZA, L.M. Isolamento de Bacillus thuringiensis berliner a partir de amostras de solos e sua patogenicidade para Spodoptera frugiperda (J. E. Smith) (Lepidoptera: Noctuidae). Rev. Bras. Agrociência, v. 10, p. 209-214, 2004. PRAYITNO, J.; ROLFE, B. Characterization of endophytic diazotroph bacteria isolated from rice. HAYTI Journal of Biosciences, vol. 17, n. 2, p. 73-78, 2010. QIAO, J., DONG.; B., LI, Y.; ZHANG, B.; & CAO, Y. Cloning of a β-1,3-1,4-Glucanase Gene from Bacillus subtilis MA139 and its Functional Expression in Escherichia coli. Applied Biochemistry and Biotechnology, v. 152, n. 2, p. 334–342, 2008. RAYMOND, B.; JOHNSTON, P, R.; NIELSEN-LEROUX, C.; LERECLUS, D.; CRICKMORE, N. Bacillus thuringiensis: an impotent pathogen. Trends Microbiol. v. 18, n. 5, p. 189–94, 2010. RICOLDI, M. C.; FIGUEIREDO, C. S.; & DESIDÉRIO, J. A. Toxicity of Cry2 proteins from Bacillus thuringiensis subsp. thuringiensis strain T01-328 against Aedes aegypti (Diptera: Culicidae). Arquivos Do Instituto Biológico. 85, p. 1-7, 2018. RUIU, L.; FLORIS, I.; SATTA, A.; & ELLAR, D. J. Toxicity of a Brevibacillus laterosporus strain lacking parasporal crystals against Musca domestica and Aedes aegypti. Biological Control, v.43, p.136–143, 2007. RODRÍGUEZ-DÍAZ, M.; RODELAS, B.; POZO, C.; MARTÍNEZ-TOLEDO, M. V.; GONZÁLEZ-LÓPEZ, J. A review on the taxonomy and possible screening traits of plant growth promoting rhizobacteria. In: AHMAD, I.; PICHTEL, J.; HAYAT, S. (Ed.). Plant bacteria interactions: strategies and techniques to promote plant growth. Weinheim: Wiley-VCH, cap. 4, p. 55-80, 2008. RYU, S. H., PARK, M., LEE, J. R., YUN, P. Y. & JEON, C. O. Brevundimonas aveniformis sp. nov., a stalked species isolated from activated sludge. Int J Syst Evol Microbiol, v. 57, p.1561-5, 2007. SAMPSON, M.N., GOODAY, G.W., Involvement of chitinases of Bacillus thuringiensis during pathogenesis in insects. Microbiology. V. 144, p. 2189-2194, 1998. SANTOS, S; AS, D; BASTOS, E; GUEDES-PINTO, H; GUT, I; GARTNER, F; CHAVES, R. An efficient protocol for genomic DNA extraction from formalin-fixed paraffin-embedded tissues. Res Vet Sci, v. 86, n. 3, p.421-6, 2009. 78 SCHALLMEY, M.; SINGH, A.; & WARD, O. P. Developments in the use of Bacillus species for industrial production. Canadian Journal of Microbiology, v. 50, n. 1, p. 1-17, 2004. SCHMIDT, T.R., SCOTT II., E.J., DYER, D.W. Whole-genome phylogenies of thefamily Bacillaceae and expansion of the sigma factor gene family in the Bacillus cereus species-group. BMC Genomics, v. 12, p. 430, 2011. SCHNEPF, E.; CRICKMORE, N.; RIE, J. van; LERECLUS, D.; BAUM, J.; FEITELSON, J.; ZEIGLER, D.R.; DEAN, D.H. Bacillus thuringiensis and its pesticidal crystal proteins. Microbiology and Molecular Biology Reviews, v. 62, p. 775-806, 1998. SHARMA, V., SALWAN, R. E SHANMUGAM, V. Caracterização molecular da β-endoglucanase do isolado antagonista de Trichoderma saturnisporum GITX-Panog (C) induzido sob condições micoparasitas. Pesticide Bioquímica e Fisiologia, v. 149, p. 73-80, 2018. SHRESTHA, A.; SULTANA, R.; CHAE, J.-C.; KIM, K. E LEE, K.-J. . Bacillus thuringiensis C25, que é rico em enzimas que degradam a parede celular, controla eficientemente a queda de alface causada por Sclerotinia minor. Revista Europeia de Patologia Vegetal, v. 142, n. 3, p. 577-589, 2015. SEGERS, P., VANCANNEYT, M., POT, B., TORCK, U., HOSTE, B., DEWETTINCK, D., FALSEN, E., KERSTERS, K. & DE VOS, P. Classification of Pseudomonas diminuta Leifson and Hugh 1954 and Pseudomonas vesicularis Büsing, Döll, and Freytag 1953 in Brevundimonas gen. nov. as Brevundimonas diminuta comb. nov. and Brevundimonas vesicularis comb. nov., Respectively. International Journal of Systematic Bacteriology, v. 44, p. 499-510, 1994. SOARES-DA-SILVA, J.; PINHEIRO, V.C.S.; LITAIFF-ABREU, E.; POLANZYK, R.A.; TADEI, W.P. Isolation of Bacillus thuringiensis from the state of Amazonas, in Brazil, and screening against Aedes aegypti (Diptera, Culicidae). Revista Brasileira de Entomologia, v. 59, p. 1-6, 2015. SOUZA, R. S.; DIAZ-ALBITER, H. M.; DILLON, V.M.; DILLON, R. J.; GENTA, F. A. Digestion of yeasts and beta-1,3-glucanases in mosquito larvae: Physiological and biochemical considerations. PLoS ONE, v. 11, n. 3, p. 1–16, 2016. STACKEBRANDT, E., & GOEBEL, B.M. Taxonomic Note: A Place for DNA-DNA Reassociation and 16 s rRNA Sequence Analysis in the Present Species Definition in Bacteriology. International Journalo F Systematic Bacteriologoy . p. 846-849, 1994. SUBBANNA, A. R. N. S.; RAJASEKHARA, H.; STANLEY, J.; MISHRA, K. K.; PATTANAYAK, A. Pesticidal prospectives of chitinolytic bacteria in agricultural pest management. Soil Biology and Biochemistry, Oxford, v.116, p.52-66, 2018. SWIONTEK BRZEZINSKA, M.; JANKIEWICZ, U.; LISIECKI, K. Optimization of cultural conditions for the production of antifungal chitinase by Streptomyces sporovirgulis. Appl Biochem Microbiol., v. 49, n. 2, p.154–159, 2013. 79 TOURASSE, N.J., HELGASON, E., OKSTAD, O.A., HEGNA, I.K., KOLSTO, A.-B. The Bacillus cereus group: novel aspects of population structure and genome dynamics. J. Appl. Microbiol., v.101, p.579–593, 2006. VILAS-BÔAS, G.T.; ALVAREZ, R.C.; DOS SANTOS, C.A.; VILAS-BOAS, L.A. Fatores de virulência de Bacillus thuringiensis: o que existe além das proteínas Cry. EntomoBrasilis, v. 5, p. 1-10, 2012. VINJE, H., ALMOY, T., LILAND, K., & SNIPEN, L. A systematic search for discriminating sites in the 16S ribosomal RNA gene. Microbial Informatics and Experimentation, v. 4, p. 4-2, 2014. VOS P, GARRITY G, JONES D, KRIEG NR, LUDWIG W, RAINEY FA, et al, editors. Bergey's manual of systematic bacteriology. vol. 3, The firmicutes. New York: Springer; 2009. WALKER, E. D.; OLDS, E.J.; MERRITT, R.W. Gut content analysis of mosquito larvae (Diptera: Culicidae) using DAPI stain and epifluorescence microscopy. J. Med. Entomol., v. 25, p. 551–554, 1988. WHO - World Health Organization. Guidelines for laboratory and field testing of mosquito larvicides. WHO/CDS/WHOPES/GCDPP/2005.13, 2005. XU, T., ZHU, T., & LI, S. β-1,3-1,4-glucanase gene from Bacillus velezensis ZJ20 exerts antifungal effect on plant pathogenic fungi. World Journal of Microbiology and Biotechnology, v. 32, n. 2, 26, 2016. XU, C., WANG, B.C., YU, Z., SUN, M. Structural insights into Bacillus thuringiensis Cry, Cyt and parasporin toxins. Toxins, v. 6, p. 2732–2770, 2014. YU, W. Q.; ZHENG, G. P.; QIU, D. W.; YAN, F. C.; LIU, W. Z.; & LIU, W. X. Paenibacillus terrae NK3-4: A Potential Biocontrol Agent that Produces β-1,3-Glucanase. Biological Control, v. 129, p. 92-101, 2018. ZAMBOLIM, L.; PICANÇO, M. C. Controle Biológico - Pragas e Doenças. Viçosa: Editora UFV 310 pL., 2009. ZARA, A. L. S. A.; DOS SANTOS, A. M.; FERNANDES-OLIVEIRA, E. S.; CARVALHO, R. G.; COELHO G. E; Aedes aegypti control strategies: a review. Epidemiol.ServSaúde, v. 25, n.2, p. 392-404, 2016.pt_BR
dc.subject.cnpqBiotecnologiapt_BR
dc.publisher.initialsUEApt_BR
Aparece nas coleções:DISSERTAÇÃO - MBT Programa de Pós-Graduação em Biotecnologia e Recursos Naturais da Amazônia



Este item está licenciada sob uma Licença Creative Commons Creative Commons