DSpace logo

Use este identificador para citar ou linkar para este item: http://repositorioinstitucional.uea.edu.br//handle/riuea/2280
Registro completo de metadados
Campo DCValorIdioma
dc.contributor.authorMendonça, Carla Yael Ribeiro-
dc.date.available2020-03-12-
dc.date.available2020-03-13T14:16:24Z-
dc.date.issued2019-04-20-
dc.identifier.urihttp://repositorioinstitucional.uea.edu.br//handle/riuea/2280-
dc.description.abstractLeprosy is a chronic, infectious and neglected disease caused by the bacterium Mycobacterium leprae, an obligate intracellular bacterium. The onset of infection occurs because of the bacteria's ability to clutter the immune system, proliferating slowly in preferential cells such as skin macrophages and Schwann cells in the peripheral nerves. It is known that the majority of individuals exposed to bacillus do not develop leprosy and studies of genomic association have shown that different genes can influence the outcome of the disease. Therefore, the studies have search for variations present in genes involved in the immune response to M. leprae, which could explain the susceptibility of certain people to leprosy. Recently, single nucleotide variants (SNVs), rare and polymorphic, have been found that may be associated in different populations in the outcome of the disease. The present study goal to analyze the possible association of SNVs in the TYK2, IL23R and LRRK2 genes, to the development of leprosy. For this, a case-control study was carried out in 412 Amazonia patients, treated at the Alfredo Matta Foundation (FUAM) and 967 healthy individuals, through the allelic discrimination technique, by qPCR. The representative SNVs of the TYK2 (rs55882956), IL23R (rs76418789), LRRK2 (rs7298930) and LRRK2 (rs3761863) genes, which have been associated with leprosy in different populations, have been evaluated. Variants of the LRRK2 gene show a weak binding imbalance (DL) (r2 = 18%). Our results indicate that variants rs55882956_TYK2, rs76418789_IL23R, rs7298930_LRRK2 and rs3761863_ LRRK2 were not associated with leprosy in our population, showing Odds Ratio (OR), 4.06 (p = 0.35); 0.86 (p = 0.96); 1.42 (p = 0.58) and 0.92 (p = 0.56) respectively. Although the present study hasn't found association between SNVs and leprosy, the data presented here are important in order to better understand the complexity of this disease and to search new targets to try explain how influence genetics the result of leprosy. Palavras-chave: SNVs, IL23R, TYK2 e LRRK2, Mycobacterium leprae, Polymorphisms.pt_BR
dc.languageporpt_BR
dc.publisherUniversidade do Estado do Amazonaspt_BR
dc.rightsAcesso Abertopt_BR
dc.rightsAtribuição-NãoComercial-SemDerivados 3.0 Brasil*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/br/*
dc.subjectHanseníasept_BR
dc.subjectVariantes Genéticaspt_BR
dc.subjectAmazonaspt_BR
dc.titleAssociação de SNVs nos genes TYK2, IL23R e LRRK2 e a hanseníase, em indivíduos atendidos na Fundação Alfredo da Matta (FUAM-AM)pt_BR
dc.typeDissertaçãopt_BR
dc.date.accessioned2020-03-13T14:16:24Z-
dc.contributor.advisor1Rodrigues, Fabíola da Costa-
dc.contributor.advisor1Latteshttp://lattes.cnpq.br/3825185683565120pt_BR
dc.contributor.referee1Rodrigues, Fabíola da Costa-
dc.contributor.referee1Latteshttp://lattes.cnpq.br/3825185683565120pt_BR
dc.contributor.referee2Freitas, Maria da Conceição-
dc.contributor.referee2Latteshttp://lattes.cnpq.br/7618353060771291pt_BR
dc.contributor.referee3Carmo Júnior, Edson do-
dc.contributor.referee3Latteshttp://lattes.cnpq.br/5780309549588357pt_BR
dc.creator.Latteshttp://lattes.cnpq.br/7325512866863538pt_BR
dc.description.resumoA hanseníase é uma doença crônica, infecciosa e negligenciada, causada pela bactéria Mycobacterium leprae, uma bactéria intracelular obrigatória. A instalação da infecção ocorre pela capacidade da bactéria em desordenar o sistema imune, proliferando-se lentamente em células preferenciais, como os macrófagos de pele e células de Schwann, nos nervos periféricos. É de conhecimento que a maioria dos indivíduos expostos ao bacilo não desenvolve a hanseníase e estudos de associação genômica têm demostrado que diferentes genes podem influenciar o desfecho da doença. Nesse sentido, os estudos têm buscado variações presentes em genes envolvidos na resposta imune ao M. leprae, que poderiam explicar a susceptibilidade de determinadas pessoas à hanseníase. Recentemente, foram encontradas variantes de nucleotídeo único (SNV), raras e polimórficas, que podem estar associadas em diferentes populações no desfecho da doença. O presente estudo teve o objetivo, analisar a possível associação de SNVs, nos genes TYK2, IL23R e LRRK2, ao desenvolvimento da hanseníase. Para isso, foi realizado um estudo do tipo caso-controle, em 412 pacientes amazonenses, atendidos na Fundação Alfredo Matta (FUAM) e em 967 indivíduos saudáveis, através da técnica de discriminação alélica, por qPCR. Foram avaliados SNVs representativos, dos genes TYK2 (rs55882956), IL23R (rs76418789), LRRK2 (rs7298930) e LRRK2 (rs3761863), os quais já foram associados com a hanseníase em diferentes populações. As variantes do gene LRRK2 exibiram um fraco Desequilíbrio de Ligação (DL) (r2= 18%). Nossos resultados indicam que as variantes rs55882956_TYK2, rs76418789_IL23R, rs7298930_LRRK2 e rs3761863_ LRRK2 não foram associadas à hanseníase em nossa população, exibindo Odds Ratio (OR) de: 4,06 (p=0,35); 0,86 (p=0,96); 1,42 (p= 0,58) e 0,92 (p=0,56) respectivamente. Embora o presente estudo não tenha encontrado relação de associação dos SNVs à hanseníase, os dados aqui apresentados são importantes para conhecer melhor a complexidade dessa doença e buscar novos alvos para tentar explicar como que a genética influencia no desfecho da hanseníase. Palavras-chave: SNVs, IL23R, TYK2 e LRRK2, Mycobacterium leprae, Polimorfismos.pt_BR
dc.publisher.countryBrasilpt_BR
dc.publisher.programPós-Graduação em Biotecnologia e Recursos Naturaispt_BR
dc.relation.referencesABDOLLAHI, E; TAVASOLIAN, F; MOMTAZI-BOROJENI, A. A; SAMADI, M; RAFATPANAH, H. Protective role of R381Q (rs11209026) polymorphism inIL-23Rgene in immune-mediated diseases: A comprehensive review. Journal of Immunotoxicology, 13(3), 286–300, 2016. Doi:10.3109/1547691x.2015.1115448 AFONSO, L. Panorama da cidade de Manaus: crise, progresso e cultura na década de 1960. SOMANLU. 10(2), 2010. ALCAIS, A; MIRA, M; CASANOVA, J.-L; SCHURR, E; ABEL, L. Genetic dissection of immunity in leprosy. Current Opinion in Immunology, 17(1), 44–48, 2005. Doi:10.1016/j.coi.2004.11.006 ALTER, A; ALCAIS, A; ABEL, L; SCHURR, E. Leprosy as a genetic model for susceptibility to common infectiousdiseases. HumanGenetics, 123(3), 227–235, 2008. Doi:10.1007/s00439-008-0474-z ALTER, A; GRANT, A; ALCAIS, L; ABEL, A; SCHURR, E. Leprosy as a genetic disease. Mammalian Genome, 22(1-2), 19–31, 2011. Doi:10.1007/s00335-010-9287-1 AL-SHAIKHLY, T; OCHS, H. D. HyperIgE Syndromes, Clinical & Molecular Characteristics. Immunology and Cell Biology, 2018. Doi:10.1111/imcb.12209 BRASIL. MINISTÉRIO DA SAÚDE. Guia para o controle da hanseníase. n.111, 2002. BLEKHMAN, R; GOODRICH, J. K; HUANG, K; SUN, Q; BUKNOWSKI, R; BELL, J. T; CLARK, A. G. Host genetic variation impacts microbiome composition across human body sites. Genome Biology, 16(1), 2015. Doi:10.1186/s13059-015-0759-1 BOISSON-DUPUIS, S; RAMIREZ-ALEJO, N; LI, Z; PATIN, E; RAO, G; KERNER, G; MA, C. S. Tuberculosis and impaired IL-23–dependent IFN-γ immunity in humans homozygous for a common TYK2 missense variant. Science Immunology, 3(30), 2018.Doi:10.1126/sciimmunol.aau8714 BODMER, W; BONILLA, C. Common and rare variants in multifactorial susceptibility to common diseases. Nature Genetics, 40(6), 695–701, 2008. Doi:10.1038/ng.f.136 CARDOSO, C. C; PEREIRA, A. C; DE SALES MARQUES, C; MORAES, M. O. Leprosy susceptibility: genetic variations regulate innate and adaptive immunity, and disease outcome. Future Microbiology, 6(5), 533–549, 2011. Doi:10.2217/fmb.11.39 CARDOSO, C. C; PEREIRA, A. C; BRITO-DE-SOUZA, V. N; DURAES, S. M. B; RIBEIRO-ALVES, M; AUGUSTO C. Nery, J; MORAES, M. O. TNF -308G>A Single Nucleotide Polymorphism Is Associated With 59 Leprosy Among Brazilians: A Genetic Epidemiology Assessment, Meta-Analysis, and Functional Study. The Journal of Infectious Diseases, 204(8), 1256–1263, 2011.Doi:10.1093/infdis/jir521 CARDOSO, C. C; PEREIRA, A. C; BRITO-DE-SOUZA, V. N; DIAS-BAPTISTA, I. M; MANIERO, V. C; VENTURI, J; MORAES, M. O. IFNG +874 T>A single nucleotide polymorphismis associated with leprosy among Brazilians. Human Genetics, 128(5), 481–490, 2010. Doi:10.1007/s00439-010-0872-x CASANOVA, J.-L& Abel, L. GENETICDISSECTION OFIMMUNITY TOMYCOBACTERIA: The Human Model. Annual Review of Immunology, 20(1), 581–620, 2002. Doi:10.1146/annurev.immunol.20.081501 CHOI, M; SCHOLL, U. I; JI, W; LIU, T; TIKHONOVA, I. R; ZUMBO, P; LIFTON, R. P. Genetic diagnosis by whole exome capture and massively parallel DNA sequencing. Proceedings of the National Academy of Sciences, 106(45), 19096–19101, 2009. Doi:10.1073/pnas.0910672106 CORTES, A; HADLER, J; POINTON, J. P; ROBINSON, P. C; KARADERI, T; … HARRIS, J. Identification of multiple risk variants for ankylosing spondylitis through high-density genotyping of immune-related loci. Nature Genetics, 45(7), 730–738, 2013. Doi:10.1038/ng.2667 COUTURIER, N; BUCCIARELLI, F; NURTDINOV, R. N; DEBOUVERIE, M; LEBRUN-FRENAY, C; DEFER, G; BRASSAT, D. Tyrosine kinase 2 variant influences T lymphocyte polarization and multiple sclerosis susceptibility. Brain, 134(3), 693–703, 2011. Doi:10.1093/brain/awr010 CRAVO, M. L; FERREIRA, P. A; SOUSA, P; MOURA-SANTOS, P; VELHO, S; TAVARES, L; BRITO, M. IL23R polymorphisms influence phenotype and response to therapy in patients with ulcerative colitis. European Journal of Gastroenterology &Hepatology, 26(1), 26–32, 2014. Doi:10.1097/meg.0000000000000004 CUNNINGHAME GRAHAM, D. S; MORRIS, D. L; BHANGALE, T. R; CRISWELL, L. A; SYVANEN, A. C; RONNBLOM, L; VYSE, T. J. Association of NCF2, IKZF1, IRF8, IFIH1, and TYK2 with Systemic Lupus Erythematosus. PLoS Genetics, 7(10), e1002341, 2011. Doi:10.1371/journal.pgen.1002341 DIOGO, D; BASTARACHE, L; LIAO, K. P; GRAHAM, R. R; FULTON, R. S; GREENBERG, J. D; LEE, A. TYK2 Protein-Coding Variants Protect against Rheumatoid Arthritis and Autoimmunity, with No Evidence of Major Pleiotropic Effects on Non-Autoimmune Complex Traits. PLOS ONE, 10(4), e0122271, 2015. Doi:10.1371/journal.pone.0122271 DENDROU, C. A; CORTES, A; SHIPMAN, L; EVANS, H. G; ATTFIELD, K. E; JOSTINS, L; FUGGER, L. Resolving TYK2 locus genotype-to-phenotype differences in autoimmunity. Science Translational Medicine, 8(363), 363ra149–363ra149, 2016. Doi:10.1126/scitranslmed.aag 1974 60 DUERR, R. H; TAYLOR, K. D; BRANT, S. R; RIOUX, J. D; SILVERBERG, M. S; DALY, M. J; CHO, J. H. A Genome-Wide Association Study Identifies IL23R as an Inflammatory Bowel Disease Gene. Science, 314(5804), 1461–1463, 2006. Doi:10.1126/science.1135245 EINARSDOTTIR, E; KOSKINEN, L. L; DUKES, E; KAINU, K; SUOMELA, S; LAPPALAINEN, M; SAAVALAINEN, P. IL23R in the Swedish, Finnish, Hungarian and Italian populations: association with IBD and psoriasis, and linkage to celiac disease. BMC Medical Genetics, 10(1), 2009. Doi:10.1186/1471-2350-10-8 ENERBACK, C; SANDIN, C; LAMBERT, S; ZAWISTOWSKI, M; STUART, P. E; VERMA, D; ELDER, J. T. The psoriasis-protective TYK2 I684S variant impairs IL-12 stimulated pSTAT4 response in skin-homing CD4+ and CD8+ memory T-cells. Scientific Reports, 8(1), 2018. Doi:10.1038/s41598-018-25282-2 FAVA, V. M; MANRY, J; COBAT, A; ORLAVA, M; VAN THUC, N; Ba, N. N. A Missense LRRK2 Variant Is a Risk Factor for Excessive Inflammatory Responses in Leprosy. PLOS Neglected Tropical Diseases, 10(2), e0004412, 2016. Doi:10.1371/journal.pntd.0004412 FAVA, V. M; MANRY, J; COBAT, A; ORLOVA, M; VAN THUC, N; MORAES, M. O; SALES-MARQUES, C; STEFANI, M.M; LATINI, A. C; BELONE, A. F; THAI, V, H; ABEL, L; ALCAIS, A; SCHURR, E. A genome wide association study identifies a lncRna as risk factor for pathological inflammatory responses in leprosy. PLOS Genetics, 13(2), e1006637, 2017. Doi:10.1371/journal.pgen.1006637 FINE, P. E. M; STEME, J. A. C; PONNIGHAUS, J. M; BLISS, L; SAUL, J; CHIHANA, A; WAMDORFF, D. K. HouseholdandDwellingContact as RiskFactors for Leprosy in NorthernMalawi. American Journal of Epidemiology, 146(1), 91–102, 1997. Doi:10.1093/oxfordjournals.aje.a009195 FITNESS, J; TOSH, K, HILL, A. V. Geneticofsusceptibilitytoleprosy. Genes and Immunity 3, 441-453, 2002. FIRMBACH-KRAFT, I; BVERS, M; SHOWS, T; DALLA-FAVERA, R; KROLEWSKI, J, J. tyk2, prototype of a novel class of non-receptor tyrosine kinase genes. Oncogene, Sep;5(9):1329-36, 1990. FLOSS, D. M; SCHRODER, J; FRANKE, M; SCHELLER, J. Insights into IL-23 biology: From structure to function. Cytokine & Growth Factor Reviews, 26(5), 569–578, 2015. Doi:10.1016/j.cytogfr.2015.07.005 GILKS, W. P; ABOU-SLEIMAN, P. M; GANDHI, S; JAIN, S; SINGLETON, A; LEES, A. J; WOOD, N. W. A common LRRK2 mutation in idiopathic Parkinson’s disease. The Lancet, 365(9457), 415–416, 2005. Doi:10.1016/s0140-6736(05)17830-1 HECKMAN, M. G; SCHOTTLAENDER, L; SOTO-ORTOLAZA, A. I; DIEHL, N. N; RAYAPROLU, S; OGAKI, K; ROSS, O. A. LRRK2 exonic variants and risk of multiple system atrophy. Neurology, 83(24), 2256–2261, 2014. Doi:10.1212/wnl.0000000000001078 61 HEALY, D. G; FALCHI, M; O’SULLIVAN, S. S; BONIFATI, V; DURR, A; BRESSMAN, S; WOOD, N. W. Phenotype, genotype, and worldwide genetic penetrance of LRRK2-associated Parkinson’s disease: a case-control study. The Lancet Neurology, 7(7), 583–590, 2008. Doi:10.1016/s1474-4422(08)70117-0 ISHIZAKI, M; MUROMOTO, R; AKIMOTO, T; SEKINE, Y; KON, S; DIWAN, M; MATSUDA, T. Tyk2 is a therapeutic target for psoriasis-like skin inflammation. International Immunology, 26(5), 257–26, 2013. Doi:10.1093/intimm/dxt062 JURGENS, M; LAUBENDER, R. P; HARTL, F; WEIDINGER, M; SEIDERER, J; WAGNER, J; BRAND, S. Disease Activity, ANCA and IL23R Genotype Status Determine Early Response to Infliximab in Patients With Ulcerative Colitis. The American Journal of Gastroenterology, 105(8), 1811–1819, 2010. Doi:10.1038/ajg.2010.95 KESSLER, C; ATASU, B; HANAGASI, H; SIMON-SANCHEZ, J; HAUSER, A.-K; PAK, M; LOHMANN, E. Role of LRRK2 and SNCA in autosomal dominant Parkinson’s disease in Turkey. Parkinsonism & Related Disorders, 48, 34–39, 2018. Doi:10.1016/j.parkreldis.2017.12.007 KILIC, S. S; HACIMUSTAFAOGLU, M; BOISSON-DUPUIS, S; KREINS, A. Y; GRANT, A. V; ABEL, L; CASANOVA, J.-L. A Patient with Tyrosine Kinase 2 Deficiency without Hyper-IgE Syndrome. The Journal of Pediatrics, 160(6), 1055–1057, 2012. Doi:10.1016/j.jpeds.2012.01.056 KRAMER, M; HASANREISOGLU, M; WEISS, S; KUMOVA, D; SCHAAP-FOGLER, M; GUNTEKIN-ERGUN, S; COHEN, Y. Single-Nucleotide Polymorphisms in IL23R-IL12RB2 (rs1495965) Are Highly Prevalent in Patients with Behcet’s Uveitis, and Vary between Populations. Ocular Immunology and Inflammation, 1–8, 2018. Doi:10.1080/09273948.2018.1467463 KREINS, A. Y; CIANCANELLI, M. J; OKADA, S; KONG, X. F; RAMÍREZ-ALEJO, N; KILIC, S. S; AILAL, F. Human TYK2 deficiency: Mycobacterial and viral infections without hyper-IgE syndrome. The Journal of Experimental Medicine, 212(10), 1641–1662, 2015. Doi:10.1084/jem.20140280 LEE, Y. H.; BAE, S. Association between TYK2 polymorphisms and susceptibility to autoimmune rheumatic diseases : a meta-analysis. p. 1–8, 2016. LEWIS, P. A; MANZONI, C. LRRK2 and Human Disease: A Complicated Question or a Question of Complexes? Science Signaling, 5(207), 2012. Doi:10.1126/scisignal.2002680 LEON RODRIGUEZ, D. A; ACOSTA-HERRERA, M; CARMONA, F. D; DOLADE, N; VARGAS, S; ECHEVERRÍA, L. E; MARTTIN, J. Comprehensive analysis of three TYK2 gene variants in the susceptibility to Chagas disease infection and cardiomyopathy. PLOS ONE, 13(1), 2018. Doi:10.1371/journal.pone.0190591 62 LESGIDOU, N; ELIOPOULOS, E; GOULIELMOS, G. N; VLASSI, M. Insights on the alteration of functionality of a tyrosine kinase 2 variant: a molecular dynamics study. Bioinformatics, 34(17), i781–i786, 2018. Doi:10.1093/bioinformatics/bty556 LI, F-F; ZHU, X-D; YAN, P; JIN, M-H; YUE, H; ZHANG, Q; FU, J; LIU, S-L. Characterization of variations in IL23A and IL23R genes: possible roles in multiple sclerosis and other neuroinflammatory demyelinating diseases. Journal Aging, v. 8, n. 11, 2734-2746, 2016. Doi: 10.18632/aging.101058. LIU, H; WANG, Z; LI, Y; YU, G; FU, X; WANG, C; LIU, W; YU, Y; BAO, F; IRWANTO, A; LIU, J; CHU, T; KUMAR, A; MAURER-STROH, S; LIMVIPHUVADH, V; WANG, H; MI, Z; SUN, Y; SUN, L; WANG, L; WANG, C; YOU, J; LI, J; FOO, J; LIANY, H; MEAH, W; NIU, G; YUE, Z; ZHAO, Q; WANG, N; YU, M; YU, W; CHENG, X; KHOR, C; SIM, K; AUNG, T; WANG, N; WANG, D; SHI, L; NING, Y; ZHENG, Z; YANG, R; LI, J; YANG, J; YAN, L; SHEN, J; ZHANG, G; CHEN, S; LIU, L; ZHANG, F. Genome-Wide Analysis of Protein-Coding Variants in Leprosy. Journal of Investigative Dermatology, v. 137, n. 12, p. 2544–2551, 2017. LIU, T.C; NAITO, T; LIU, Z; VANDUSSEN, K. L; HARITUNIAN, T; LI, D; ENDO, K; KAWAI, Y; NAGASAKI, M; KINOUCHI, Y; MCGOVERN, D. P. B; SHIMOSEGAWA, T; KAKUTA, Y; STAPPENBECK, T. S. LRRK2 but not ATG16L1 is association with Paneth cell defect in Japanese Crohn´s disease patients. JCI Insight, v. 2, n. 6, 2(6):e9117, 2017. Doi: 10.1172/jci.insight.91917. MAMOLIO, T. A; COLLINS, F. S; COX, N. J; GOLDSTEIN, D. B; HINDORFF, L. A; HUNTER, D. J; VISSCHER, P. M. Finding the missing heritability of complex diseases. Nature, 461(7265), 747–753, 2009. Doi:10.1038/nature08494 MATA, I. F; WEDEMEYER, W. J; FARRER, M. J; TAYLOR, J. P; GALLO, K. A. LRRK2 in Parkinson’s disease: protein domains and functional insights. Trends in Neurosciences, 29(5), 286–293, 2006. Doi:10.1016/j.tins.2006.03.006 MATA IF, SHI M, AGARWAL P, et al. SNCA variant associated with Parkinson disease and plasma alpha-synuclein level. Arch Neurol 2010, 67: 1350-1356. MANTA, F; PEREIRA, R; VIANNA, R; ARAÚJO, A. R. B; GITAÍ, D; SILVA, D; GUSMÃO, L. RevisitingtheGeneticAncestryofBraziliansUsingAutosomal AIM-Indels. PLoS ONE, 8(9), e75145, 2013. Doi:10.1371/journal.pone.0075145 MINEGISHI, Y; SAITO, M; MORIO, T; WATANABE, K; AGEMATSU, K; TSUCHIYA, S; KARASUYAMA, H. Human Tyrosine Kinase 2 Deficiency Reveals Its Requisite Roles in Multiple Cytokine Signals Involved in Innate and Acquired Immunity. Immunity, 25(5), 745–755, 2006. Doi:10.1016/j.immuni.2006.09.009 MIRA, M. T. Genetic host resistance and susceptibility to leprosy. Microbes and Infection, 8(4), 1124–1131, 2006. Doi:10.1016/j.micinf.2005.10.024 63 MEYER, C. G; INTEMANN, C. D; FORSTER, B; OWUSU-DABO, E; FRANKE, A; HORSTMANN, R. D; THYE, T. No significant impact of IFN-γ pathway gene variants on tuberculosis susceptibility in a West African population. European Journal of Human Genetics, 24(5), 748–755, 2015. Doi:10.1038/ejhg.2015.172 MONOT, M; HONORÉ, N; GARNIER, T; ZIDANE, N; SHERAFI, D; PANIZ-MONDOLFI, A; COLE, S. T. Comparative genomic and phylogeographic analysis of Mycobacterium leprae. Nature Genetics, 41(12), 1282–1289, 2009. Doi:10.1038/ng.477 NG, S. B; TURNER, E. H; ROBERTSON, P. D; FLYGARE, S. D; BIGHAM, A. W; LEE, C; SHENDURE, J. Targeted capture and massively parallel sequencing of 12 human exomes. Nature, 461(7261), 272–276, 2009. Doi:10.1038/nature08250 ONODERA, K; ARIMURA, Y; ISSHIKI, H; KAWAKAMI, K; NAGAISHI, K; YAMASHITA, K; SHINOMURA, Y. Low-Frequency IL23R Coding Variant Associated with Crohn’s Disease Susceptibility in Japanese Subjects Identified by Personal Genomics Analysis. PLOS ONE, 10(9), e0137801, 2015. Doi:10.1371/journal.pone.0137801 ORLOVA, M; DI PIETRANTONIO, T; SCHURR, E. Genetics of infectious diseases: hidden etiologies and common pathways. Clinical Chemistry and Laboratory Medicine, 49(9), 2011. Doi:10.1515/cclm.2011.620 O’SHEA, J. J; PLENGE, R. JAK and STAT Signaling Molecules in Immunoregulation and Immune-Mediated Disease. Immunity, 36(4), 542–550, 2012. Doi:10.1016/j.immuni.2012.03.014 PIRKEVI, C; LESAGE, S; CONDROYER, C; TOMIYAMA, H; HATTORI, N; ERTAN, S; BASAK, A. N. A LRRK2 G2019S mutation carrier from Turkey shares the Japanese haplotype. Neurogenetics, 10(3), 271–273, 2009. Doi:10.1007/s10048-009-0173-5 QI, H; ZHANG, Y.-B; SUN, L; CHEN, C; XU, B; XU, F; SHEN, A.-D.. Discovery of susceptibility loci associated with tuberculosis in Han Chinese. Human Molecular Genetics, 26(23), 4752–4763, 2017. Doi:10.1093/hmg/ddx365 SAEED, M. Locusand gene-based GWAS meta-analysisidentifies new diabeticnephropathy genes. Immunogenetics, 70(6), 347–353, 2017. Doi:10.1007/s00251-017-1044-0 SAUER, M. E. D; SALOMÃO, H; RAMOS, G. B; D’ESPINDULA, H. R. S; RODRIGUES, R. S. A; MACEDO, W. C; MIRA, M. T. Genetics of leprosy: Expected—and unexpected—developments and perspectives. Clinics in Dermatology, 34(1), 96–104, 2016. Doi:10.1016/j.clindermatol.2015.10.005 SADHU, S; MITRA, D. K. Emerging Concepts of Adaptive Immunity in Leprosy. Frontiers in Immunology, 9, 2018. Doi:10.3389/fimmu.2018.00604 64 SCOLLARD, D. M; ADAMS, L. B; GILLIS, T. P; KRAHENBUHL, J. L; TRUMAN, R. W; WILLIAMS, D. L. The continuing challenges of leprosy. ClinMicrobiol Rev (2006) 19:338–81, 2006. Doi:10.1128/CMR.19.2.338-381. SIMON-SANCHEZ, J; HERRANZ-PÉREZ, V; OLUCHA-BORDONAOU, F; PEREZ-TUR, J. LRRK2 is expressed in areas affected by Parkinson’s disease in the adult mouse brain. European Journal of Neuroscience, 23(3), 659–666, 2006. Doi:10.1111/j.1460-9568.2006.04616.x SIVANESAN, D; BEAUCHAMP, C; QUINOU, C; LEE, J; LESAGE, S; CHEMTOB, S; MICHNICK, S. W. IL23R (Interleukin 23 Receptor) Variants Protective against Inflammatory Bowel Diseases (IBD) Display Loss of Function due to Impaired Protein Stability and Intracellular Trafficking. Journal of Biological Chemistry, 291(16), 8673–8685, 2016. Doi:10.1074/jbc.m116.715870 TRABZUNI, D; RYTEN, M; EMMETT, W; RAMASAMY, A; LACKNER, K. J; ZELLER, T. Fine-Mapping, Gene Expression and Splicing Analysis of the Disease Associated LRRK2 Locus. PLoS ONE, 8(8), e70724, 2013. Doi:10.1371/journal.pone.0070724 TOMIYAMA, H; LI, Y; FUNAYAMA, M; HASEGAWA, K; YOSHINO, H; KUBO, S.-I; HATTORI, N. Clinicogenetic study of mutations inLRRK2 exon 41 in Parkinson’s disease patients from 18 countries. Movement Disorders, 21(8), 1102–1108, 2006.Doi:10.1002/mds.20886 WALLACE, C; SMYTH, D. J; MAISURIA-ARMER, M; WALKER, N. M; TODD, J. A; CLAYTON, D. G. The imprinted DLK1-MEG3 gene region on chromosome 14q32.2 alters susceptibility to type 1 diabetes. Nature Genetics, 42(1), 68–71, 2009. Doi:10.1038/ng.493 WANG, D; XU, L; LV, L; SU, L.-Y; FAN, Y; ZHANG, D. F; YAO, Y. G. ‘. Genes & Immunity, 16(2), 112–119, 2014. Doi:10.1038/gene.2014.72 WANG, Z; MI, Z; WANG, H; SUN, L; YU, G; FU, X;ZHANG, F. Discovery of 4 exonic and 1 intergenic novel susceptibility loci for leprosy. Clinical Genetics, 94(2), 259–263,2018. Doi:10.1111/cge.13376 WEST A B; MOORE D J; BISKUP S; BUGAYENKO A; SMITH W W; ROSS C A; DAWSAN V L; DAWSON T M. Parkinson's disease-associated mutations in leucine-rich repeat kinase 2 augment kinase activity, 102(46), 16842–16847, 2005. Doi:10.1073/pnas.0507360102 WHO. Global leprosy update, 2015: time for action, accountability and inclusion. WklyEpidemiol Rec (2016) 91:405–20. 65 WU, Y.-R; CHANG, K.-H; CHANG, W.-T; HSIAO, Y.-C; HSU, H.-C; JIANG, P.-R; CHEN, C.-M. Genetic Variants of LRRK2 in Taiwanese Parkinson’s Disease. PLoS ONE, 8(12), e82001, 2013. Doi:10.1371/journal.pone.0082001 YIN, Q; WU, L. C; ZHENG, L; HAN, M. Y; HU, L. Y; ZHAO, P. P; ZHENG, H. F. Comprehensive assessment of the association between genes on JAK-STAT pathway (IFIH1, TYK2, IL-10) and systemic lupus erythematosus: a meta-analysis. Archives of Dermatological Research, 2018. Doi:10.1007/s00403-018-1858-0 YU, P; SHEN, F; ZHANG, X; CAO, R; ZHAO, X; LIU, P; ZHANG, H. Association of Single Nucleotide Polymorphisms of IL23R and IL17 with Ulcerative Colitis Risk in a Chinese Han Population. PLoS ONE, 7(9), e44380, 2012. Doi:10.1371/journal.pone.0044380 YU, R. Y; BRAZAITIS, J; GALLAGHER, G. The Human IL-23 Receptor rs11209026 A Allele Promotes the Expression of a Soluble IL-23R–Encoding mRNA Species. The Journal of Immunology, 194(3), 1062–1068, 2014. Doi:10.4049/jimmunol.1401850 ZABETIAN, C. P; HUTTER, C. M; YEAROUT, D; LOPEZ, A. N; FACTOR, S. A; GRIFFITH, A; PAYAMI, H. LRRK2 G2019S in Families with Parkinson Disease Who Originated from Europe and the Middle East: Evidence of Two Distinct Founding Events Beginning Two Millennia Ago. The American Journal of Human Genetics, 79(4), 752–758, 2006. Doi:10.1086/508025 ZAKRZEWSKI, M; SIMMS, L. A; BROWN, A; APPLEYARD, M; IRWIN, J; WADDELL, N; RADFORD-SMITH, G. L. IL23R-protective coding variant promotes beneficial bacteria and diversity in the ilealmicrobiome in healthy individuals without inflammatory bowel disease. Journal of Crohn’s and Colitis, 2018. Doi:10.1093/ecco-jcc/jjy188 ZHANG, F; LIU, H; CHEN, S; LOW, H; SUN, L; CUI, Y; ZHANG, X. Identification of two new loci at IL23R and RAB32 that influence susceptibility to leprosy. NatureGenetics, 43(12), 1247–1251, 2011. Doi:10.1038/ng.973pt_BR
dc.subject.cnpqBiotecnologiapt_BR
dc.publisher.initialsUEApt_BR
Aparece nas coleções:DISSERTAÇÃO - MBT Programa de Pós-Graduação em Biotecnologia e Recursos Naturais da Amazônia



Este item está licenciada sob uma Licença Creative Commons Creative Commons