DSpace logo

Use este identificador para citar ou linkar para este item: http://repositorioinstitucional.uea.edu.br//handle/riuea/2279
Registro completo de metadados
Campo DCValorIdioma
dc.contributor.authorLópez-Vázquez, Ana Luisa-
dc.date.available2020-03-12-
dc.date.available2020-03-13T14:14:19Z-
dc.date.issued2019-04-30-
dc.identifier.urihttp://repositorioinstitucional.uea.edu.br//handle/riuea/2279-
dc.description.abstractDuroia macrophylla Huber (Rubiaceae) is a species that produces important secondary metabolites, highlighting the indole alkaloids with antitumoral and antituberculosis activities. The objective of this work was to establish seedling cultures, calluses and cell suspensions in vitro of the species, as well as to evaluate the effect of various elicitors on the chemical profile of calluses of D. macrophylla. Seeds from D. macrophylla fruits were used as explants for in vitro germination and seedling growth. The seeds were submitted to different treatments and were tested at concentrations of 0, 2, 5 and 10 mg.L-1 of gibberellic acid (GA3) for the induction of germination in Murashige and Skoog (MS) medium. The germinated seedlings were then used as explants in which different concentrations of plant growth regulators (PGRs) were tested, such as α-naphthalene acetic acid (ANA) and 2,4-dichlorophenoxyacetic acid ( 2,4-D) and the cytokinins N-Benzyl-9- (2-tetrahydropyranyl)-adenine (BAP) and kinetin (KIN) for callus induction. All treatments were exposed to two light conditions: 24 h in the dark and photoperiod of 16/8 h (light / dark), both with a constant temperature of 26 ºC. The best response (70%) for the induction of semi-friable callus (SC) was in the presence of growth regulators BAP and ANA at the concentration of 2 mg.L-1 for both. The 24 h condition in the dark was significant for the formation of white and semi-friable callus for all combinations of PGRs and from these callus cell suspensions were established. Growth curves were defined and the phytochemical analyzes of both cultures were performed by TLC and 1H NMR showing differences in growth and chemical profile of both. From the fractionation of the methanolic extract of the callus was isolated an iridoide-glycoside that is still in the process of elucidation. This is the first report of the presence of iridoids in the species. The effect of different concentrations of the NaCl, KCl, AlCl3, SNP (NO), ABA and different UV exposure times on the chemical profile and iridoid production in the callus was evaluated. The results were evaluated by chemometrics analysis: Principal Component Analysis (PCA)/ Fuzzy and Hierarchical Cluster Analysis (HCA) and fuzziThe elicitors SNP and AlCl3 were shown to have a greater effect on the chemical profile and the production of the iridoid in the calluses, whereas NaCl, KCl and ABA inhibited its production. The results obtained in this work demonstrate the significant potential of the use of elicitation in calluses of the species D. macrophylla and encourage the continuation of the study aiming the induction of the production of the active metabolites of the plant.pt_BR
dc.languageporpt_BR
dc.publisherUniversidade do Estado do Amazonaspt_BR
dc.rightsAcesso Abertopt_BR
dc.rightsAtribuição-NãoComercial-SemDerivados 3.0 Brasil*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/br/*
dc.subjecttecidos vegetaispt_BR
dc.subjectIridoidespt_BR
dc.subjectElicitaçãopt_BR
dc.titleAprimoramento da obtenção de calos e suspensões celulares de Duroia macrophylla Huber (Rubiaceae) e avaliação dos elicitores NaCl, KCl, AlCl3, SNP(NO), ABA e luz UV na produção de metabólitos secundáriospt_BR
dc.typeDissertaçãopt_BR
dc.date.accessioned2020-03-13T14:14:19Z-
dc.contributor.advisor1Nunez, Cecilia Veronica-
dc.contributor.advisor1Latteshttp://lattes.cnpq.br/2046473694108264pt_BR
dc.contributor.referee1Nunez, Cecilia Veronica-
dc.contributor.referee1Latteshttp://lattes.cnpq.br/2046473694108264pt_BR
dc.contributor.referee2Rapôso, Nádia Verçosa de Medeiros-
dc.contributor.referee2Latteshttp://lattes.cnpq.br/5791520737203814pt_BR
dc.contributor.referee3Rocha , Waldireny Caldas-
dc.contributor.referee3Latteshttp://lattes.cnpq.br/0161052060648197pt_BR
dc.creator.Latteshttp://lattes.cnpq.br/8550051372960788pt_BR
dc.description.resumoA espécie Duroia macrophylla Huber (Rubiaceae) é produtora de metabólitos secundários importantes destacando-se os alcaloides indólicos com atividade antitumoral e antituberculose. Este trabalho teve como objetivo estabelecer culturas de plântulas, calos e suspensões in vitro da espécie, assim como avaliar o efeito de diversos elicitores no perfil químico dos calos de D. macrophylla. Foram usados como explantes as sementes dos frutos de D. macrophylla para a germinação e crescimento das plântulas in vitro. As sementes foram submetidas a diferentes tratamentos e foram testadas nas concentrações de 0, 2, 5 e 10 mg.L-1 de ácido giberélico (AG3) para a indução da germinação em meio Murashige e Skoog (MS). Após, foram usadas como explantes as folhas das plântulas germinadas, nas quais foram testadas distintas concentrações de reguladores de crescimento de plantas (PGRs), sendo eles: as auxinas ácido 𝜶-naftaleno acético (ANA) e o ácido 2,4-diclorofenoxiacético (2,4-D) e as citocininas N-Benzil-9-(2- tetrahidropiranil)-adenina (BAP) e a cinetina (KIN) para a indução de calos. Todos os tratamentos foram expostos a duas condições de luz: 24 h no escuro e fotoperiodo de 16/8 h (claro/escuro) e ambas com temperatura constante de 26 ºC. A melhor resposta (70%) para a indução de calos semi-friável (CS) foi na presença dos reguladores de crescimento BAP e ANA na concentração de 2 mg.L- 1 para ambos. A condição de 24 h no escuro foi significativa para a formação de calo branco e semifriável para todas as combinações de PGRs e a partir desses calos foram estabelecidas suspensões celulares. Foram definidas as curvas de crescimento e realizadas as análises fitoquímicas de ambas as culturas por CCDC e RMN de 1H apresentando diferenças no crescimento e no perfil químico de ambas. Do fracionamento do extrato metanólico dos calos foi isolado um iridoide glicosilado que ainda se encontra em processo de elucidação. Este é o primeiro relato da presença de iridoides na espécie. Foi avaliado o efeito de distintas concentrações dos elicitores NaCl, KCl, AlCl3, SNP (NO), ABA e diferentes tempos de exposição a raios UV, no perfil químico e na produção do iridoide nos calos. Os resultados foram avaliados por meio de análises quimiométricas: análise de componentes principais (PCA)/ Fuzzy e análise hierárquica de clusters (HCA). Os elicitores SNP e AlCl3 mostraram ter maior efeito no perfil químico e na produção do iridoide nos calos, enquanto NaCl, KCl e ABA inibiram a produção do mesmo. Os resultados encontrados neste trabalho demonstram o grande potencial do uso da elicitação nos calos da espécie D. macrophylla e estimulam a continuação do estudo visando a indução da produção dos metabólitos ativos da planta.pt_BR
dc.publisher.countryBrasilpt_BR
dc.publisher.programPós-Graduação em Biotecnologia e Recursos Naturaispt_BR
dc.relation.referencesABDULLAH, M. A. et al. Establishment of cell suspension cultures of Morinda elliptica for the production of anthraquinones. Plant Cell, Tissue and Organ Culture, v. 54, n. 3, p. 173–182, 1998. AHMAD, S. et al. In vitro production of alkaloids: Factors, approaches, challenges and prospects. Pharmacognosy Reviews, v. 7, n. 1, p. 27, 2013. AJUNGLA, L. et al. Influence of biotic and abiotic elicitors on accumulation of hyoscyamine and scopolamine in root cultures of Datura metel L. Indian Journal of Biotechnology, v. 8, n. 3, p. 317–322, 2009. AL-KHAYRI, J. M. Determination of the date palm cell suspension growth curve, optimum plating efficiency, and influence of liquid medium on somatic embryogenesis. Emirates Journal of Food and Agriculture, v. 24, n. 5, p. 444–455, 2012. ALMEIDA, J. A. S. et al. Improving hierarchical cluster analysis: A new method with outlier detection and automatic clustering. Chemometrics and Intelligent Laboratory Systems, v. 87, n. 2, p. 208–217, 2007. ANDRADE, J. B.; NUNEZ, C. V. Isolamento e identificação de 5-hidroxi-3,4’,7- trimetoxiflavona, lupeol e β-sitosterol de Duroia saccifera (Rubiaceae). ll SIMPÓSIO REGIONAL NORTE DE FARMACOGNOSIA. Anais...2018 ANJUSHA, S.; GANGAPRASAD, A. Callus culture and in vitro production of anthraquinone in Gynochthodes umbellata (L.) Razafim. & B. Bremer (Rubiaceae). Industrial Crops and Products, v. 95, p. 608–614, 2017. ANTOGNONI, F. et al. Induction of flavonoid production by UV-B radiation in Passiflora quadrangularis callus cultures. Fitoterapia, v. 78, n. 5, p. 345–352, 2007. AQUINO, R. et al. New 3-Methyoxyflavones , an Iridoid Lactone and a Flavonol from Duroia hirsuta. Journal of Natural Products, v. 62, p. 560–562, 1999. ARASIMOWICZ, M.; FLORYSZAK-WIECZOREK, J. Nitric oxide as a bioactive signalling molecule in plant stress responses. Plant Science, v. 172, n. 5, p. 876– 887, 2007. ARMIJOS-GONZÁLEZ, R.; PÉREZ-RUIZ, C. In vitro germination and shoot proliferation of the threatened species Cinchona officinalis L (Rubiaceae). Journal of Forestry Research, v. 27, n. 6, p. 1229–1236, 2016. BALASUNDRAM, N.; SUNDRAM, K.; SAMMAN, S. Phenolic compounds in plants and agro-industrial by-products: Antioxidant activity, occurrence, and potential uses. Food Chemistry, v. 99, n. 1, p. 191–203, 2006. BANERJEE, P. et al. Super Natural II-a database of natural products. Nucleic Acids Research, v. 43, n. D1, p. D935–D939, 2015. BAQUE, M. A.; HAHN, E. J.; PAEK, K. Y. Induction mechanism of adventitious root from leaf explants of Morinda citrifolia as affected by auxin and light quality. In Vitro 148 Cellular and Developmental Biology - Plant, v. 46, n. 1, p. 71–80, 2010. BARREIRO, E. J. Produtos natiraos bioativos de origem vegetal e o desenvolvimento de fármacos. Química Nova, v. 13, n. 1, p. 29–39, 1990. BARRUETO CID, L. P. El Cultivo de Tejidos: Antecedentes Históricos Del Cultivo De Tejidos Vegetales. In: PRIETO, H. et al. (Eds.). . Biotecnología Vegetal. 1. ed. Santiago de Chile: [s.n.]. BARRUETO CID, L. P.; BATISTA TEIXEIRA, J. Explante, meio nutritivo, luz e temperatura. In: BARRUETO CID, L. P. (Ed.). . Cultivo in vitro de Plantas. 3a edição ed. Brasília, D.F.: Embrapa, 2014. p. 17–45. BECKMAN, N. G. The Distribution of Fruit and Seed Toxicity during Development for Eleven Neotropical Trees and Vines in Central Panama. PLoS ONE, v. 8, n. 7, 2013. BENNETT, R. N.; WALLSGROVE, R. M. Secondary metabolites in plant defence mechanisms. New Phytologist, v. 127, n. 4, p. 617–633, 1994. BERNARDES, L. S. C. et al. Produtos naturais e o desenvolvimento de fármacos. In: SIMÕES, C. M. O. et al. (Eds.). Farmacognosia: do produto ao medicamento. Porto Alegre: artmed, 2017. p. 107–128. BEZDEK, J. C.; EHRLICH, R.; FULL, W. FCM: The Fuzzy C-Means Clustering Algorithm James. Computers and Geosciences, v. 10, n. 2–3, p. 191–203, 1984. BIERE, A.; MARAK, H. B.; VAN DAMME, J. M. M. Plant chemical defense against herbivores and pathogens: Generalized defense or trade-offs. Oecologia, v. 140, n. 3, p. 430–441, 2004. BINDER, B. Y. K. et al. The effects of UV-B stress on the production of terpenoid indole alkaloids in Catharanthus roseus hairy roots. Biotechnology Progress, v. 25, n. 3, p. 861–865, 2009. BORNMAN, C. H. et al. Nicotiana tabacum Callus Studies IV. Anatomy and Differentiation of Vascular Tissue. Zeitschrift für Pflanzenphysiologie, v. 82, n. 5, p. 396–406, 1976. BOURGAUD, F. et al. Production of plant secondary metabolites: A historical perspective. Plant Science, v. 161, p. 839–851, 2001. BRAGA, F. C.; RATES, S. M. K.; SIMÕES, C. M. O. Avaliação da eficácia e segurança de produtos naturais candidatos a fármacos e medicamentos. In: SIMÕES, C. M. O. et al. (Eds.). . Farmacognosia: do produto ao medicamento. Porto Alegre: artmed, 2017. p. 53–68. BRERETON, R. G. Applied chemiometrics for Scientists. 1. ed. England: John Wiley and Sons, Ltd, 2007. BRILHANTE, A. B. DE S. Cultura De Calos E Suspensão Celular Da Espécie Duroia saccifera: Estudo Fitoquímico, Cinética De Crescimento E Avaliação Das Atividades Biológicas. [s.l.] Universidade Federal do Amazonas, 2018. BUSTO, V. D. et al. Anthraquinones production in Rubia tinctorum cell suspension 149 cultures: Down scale of shear effects. Biochemical Engineering Journal, v. 77, p. 119–128, 2013. CELEDÓN, P. A. F.; KOBAYASHI, A. K.; VIEIRA, L. G. E. Nutrient utilization by cotton cell suspension cultures. Scientia Agricola, v. 57, n. 3, p. 431–437, 2000. CETIN, E. S. Induction of secondary metabolite production by UV-C radiation in Vitis vinifera L. Öküzgözü callus cultures. Biological Research, v. 47, n. 1, 2014. CHAHAR, M. et al. Flavonoids: A versatile source of anticancer drugs. Pharmacognosy Reviews, v. 5, n. 9, p. 1, 2011. CHAWLA, H. . Introduction to Plant biotechnology. 3. ed. [s.l.] Science Publishers, 2009. CHEN, Q. et al. Interaction between abscisic acid and nitric oxide in PB90-induced catharanthine biosynthesis of Catharanthus roseus cell suspension cultures. Biotechnology Progress, v. 29, n. 4, p. 994–1001, 2013. CHIAVEGATTO, R. B. et al. Cell Viability, Mitotic Index and Callus Morphology of Byrsonima verbascifolia (Malpighiaceae). Tropical Plant Biology, v. 8, n. 3–4, p. 87–97, 2015. CHOI, Y. H. et al. Metabolic Discrimination of Catharanthus roseus Leaves Infected by Phytoplasma Using 1H-NMR Spectroscopy and Multivariate Data Analysis. Plant Physiology, v. 135, n. 4, p. 2398–2410, 2004. CHU, D.; BARNES, D. J. The lag-phase during diauxic growth is a trade-off between fast adaptation and high growth rate. Scientific Reports, v. 6, n. December 2015, p. 1–15, 2016. COELHO, L. M. Análise Proteômica De Calos, Folhas E Galhos De Duroia macrophylla Huber (Rubiaceae). [s.l.] Universidade Federal do Amazonas, 2019. CONTRERAS-MEJÍA, J. A. Estudo Fitoquímico Do Extrato Hexânico Das Folhas De Duroia saccifera (Mart. ex Roem & Schult.) Hook. f. ex Schumann (RUBIACEAE). [s.l.] Universidade Federal do Amazonas, 2017. CROTEAU, R.; KUTCHAN, T. M.; LEWIS, N. G. Natural Products (Secondary Metabolites). In: BUCHANAN, B.; GRUISSEM, W.; JONES, R. (Eds.). . Biochemistry & Molecular Biology of Plants. [s.l.] American Society of Plant Physiologists, 2000. p. 5–8. CRUZ, F. S. DA; ARAÚJO, M. G. P. DE; NUNEZ, C. V. Leaves of Duroia longiflora: Isolation of a Biflavanoid and Histochemical Analysis. Natural Product Communications, v. 14, n. 0, p. 1–2, 2019. DAMTOFT, S. et al. 13C and 1H NMR spectroscopy as a tool in the configurational analysis of iridoid glucosides. Phytochemistry, v. 20, n. 12, p. 2717–2732, 1981. DAVEY, M. Secondary Metabolism in Plant Cell Cultures. Second Edi ed. [s.l.] Elsevier, 2017. v. 3 DEWIK, P. M. Medicinal Natrual Products: A Biosynthetic Approach. 2. ed. England: John Wiley and Sons, Ltd, 2002. 150 DICOSMO, F.; MISAWA, M. Plant Cell And Tissue Culture: Alternatives For Metabolite Production. Biotechnology Advances, v. 13, n. 3, p. 425–453, 1995. DINDA, B.; CHOWDHURY, D. R.; MOHANTA, B. C. Naturally Occurring Iridoids, Secoiridoids and Their Bioactivity. An Updated Review, Part 3. Chemical & Pharmaceutical Bulletin, v. 57, n. 8, p. 765–796, 2009. DINDA, B.; DEBNATH, S.; BANIK, R. Naturally Occurring Iridoids and Secoiridoids. An Updated Review, Part 4. Chemical & Pharmaceutical Bulletin, v. 59, n. 7, p. 803–833, 2011. DINDA, B.; DEBNATH, S.; HARIGAYA, Y. Naturally occurring iridoids. A review, part 1. Chemical & pharmaceutical bulletin, v. 55, n. 2, p. 159–222, 2007a. DINDA, B.; DEBNATH, S.; HARIGAYA, Y. Naturally occurring secoiridoids and bioactivity of naturally occurring iridoids and secoiridoids. A review, part 2. Chemical & pharmaceutical bulletin, v. 55, n. 5, p. 689–728, 2007b. DOMINGOS, P. et al. Nitric oxide: A multitasked signaling gas in plants. Molecular Plant, v. 8, n. 4, p. 506–520, 2015. DOWNS, G. M.; BARNARD, J. M. Clustering Methods and Their Uses in Computational Chemistry. In: LIPKOWITZ, K. B.; BOYD, D. B. (Eds.). . Reviews in Computational Chemistry, Volume 18. Hoboken, New Jersey, USA: John Wiley & Sons, Inc., 2002. v. 18. EL-NAGGAR, L. J.; BEAL, J. L. Iridoids. a review. Journal of Natural Products, v. 43, n. 6, p. 649–707, 1980. EVANS, W. C. Trease and Evans Pharmacognosy. 16. ed. [s.l.] Elsevier, 2009. FINKELSTEIN, R. R.; ROCK, C. D. Abscisic Acid Biosynthesis and Response. The Arabidopsis Book, v. 1, n. Figure 2, p. e0058, 2002. FRANÇA, S. DE C. Bioprocessos inovadores para a produção de metabólitos ativos de plantas. In: SIMÕES, C. M. O. et al. (Eds.). . Farmacognosia: do produto ao medicamento. Porto Alegre: artmed, 2017. p. 39–52. FUMAGALI, E. et al. Revisão tecidos de plantas : O exemplo dos gêneros Tabernaemontana e. Brazilian Journal of Pharmacognosy, v. 18, n. August, p. 627–641, 2008. FURR, M.; MAHLBERG, P. G. Histochemical analyses of laticifers and glandular trichomes in cannabis sativa. Journal of Natural Products, v. 44, n. 2, p. 153–159, 1981. GAMBORG, O. L.; MILLER, R. A.; OJIMA, K. Nutrient requirements of suspension cultures of soybean root cells. Experimental Cell Research, v. 50, n. 1, p. 151–158, 1968. GEISSMAN, T. A.; GRIFFIN, T. S. Sesquiterpene lactones: acid-catalyzed color reactions as an aid in structure determination. Phytochemistry, v. 10, p. 2475– 2485, 1971. GHISALBERTI, E. L. Biological and pharmacological activity of naturally occurring 151 iridoids and secoiridoids. Phytomedicine, v. 5, n. 2, p. 147–163, 1998. GIRI, C. C.; ZAHEER, M. Chemical elicitors versus secondary metabolite production in vitro using plant cell, tissue and organ cultures: recent trends and a sky eye view appraisal. Plant Cell, Tissue and Organ Culture, 2016. GOBBO-NETO, L.; LOPES, N. P. Plantas Medicinais: Fatores De Influência No Conteúdo De Metabólitos Secundários. Quimica Nova, v. 30, n. 2, p. 374–381, 2007. GOMEZ, Y. R. Química y Farmacología de Iridoides. n. July, 2016. GREGIANINI, T. S. et al. The Alkaloid Brachycerine is Induced by Ultraviolet Radiation and is a Singlet Oxygen Quencher. Photochemistry and Photobiology, v. 78, n. 5, p. 470–474, 2007. GROUT, B. General Principles of Tissue Culture. Second Edi ed. [s.l.] Elsevier, 2017. v. 2 GRYCOVA, L. Quaternary protoberberine alkaloids. Phytochemistry Reviews, v. 68, p. 150–175, 2007. HAMID, H. A.; RAMLI, A. N. M.; YUSOFF, M. M. Indole alkaloids from plants as potential leads for antidepressant drugs: A mini review. Frontiers in Pharmacology, v. 8, 2017. HARTMANN, T. Diversity and variability of plant secondary metabolism: A mechanistic view. Entomologia Experimentalis et Applicata, v. 80, n. 1, p. 177–188, 1996. HUSSAIN, A. et al. Plant Tissue Culture : Current Status and Opportunities. In: LEVA, A.; RINALDI, L. M. R. (Eds.). . Recent Advances in Plant in vitro Culture. Pakistan: InTech, 2012. p. 0–28. IKEUCHI, M.; SUGIMOTO, K.; IWASE, A. Plant Callus: Mechanisms of Induction and Repression. The Plant Cell, v. 25, n. 9, p. 3159–3173, 2013. INDU, S. et al. Production of Flavonoids in Callus Culture of Anthocephalus indicus A. Rich. Asian Journal of Plant Sciences, v. 12, n. 1, p. 40–45, 2013. JHA, S. et al. Production of emetine and cephaeline from cell suspension and excised root cultures of Cephaelis ipecacuanha. Phytochemistry, v. 30, n. 12, p. 3999–4003, 1991. JOHANSEN, D. A. Plant Microtchenique. New York: Mc.Graw-Hill, 1940. KHAN, J. A. et al. Effect of Light and Dark Culture Conditions on Callus Induction and Growth in Citrus (Citrus reticulata Blanco.). Int. J. Biol. Biotech, v. 3, n. 4, p. 669–672, 2006. KLEIN-JÚNIOR, L. C.; HENRIQUES, A. T. Alcaloides:generalidades e aspectos básicos. In: SIMÕES, C. M. O. et al. (Eds.). . Farmacognosia: do produto ao medicamento. Porto Alegre: artmed, 2017. p. 305–316. KUCERA, B.; COHN, M. A.; LEUBNER-METZGER, G. Plant hormone interactions during seed dormancy release and germination. Seed Science Research, v. 15, n. 152 4, p. 281–307, 2005. LACKMAN, P. et al. Jasmonate signaling involves the abscisic acid receptor PYL4 to regulate metabolic reprogramming in Arabidopsis and tobacco. Proceedings of the National Academy of Sciences, v. 108, n. 14, p. 5891–5896, 2011. LAW, K. H.; DAS, N. P. Production of (-)-epicatechin by Uncaria elliptica callus cultures. Phytochemistry, v. 28, n. 4, p. 1099–1100, 1989. LEDÜC, C.; RUHNAU, P.; LEISTNER, E. Isochorismate hydroxymutase from Rubiaceae cell suspension cultures. Plant Cell Reports, v. 10, n. 6–7, p. 334–337, 1991. LEE, T. K.; LEE, W. S. Diauxic Growth in Rice Suspension Cells Grown on Mixed Carbon Sources of Acetate and Glucose. Plant Physiology, v. 110, n. 2, p. 465– 470, 1996. LEIFERT, C.; MURPHY, K. P.; LUMSDEN, P. J. Mineral and Carbohydrate Nutrition of Plant Cell and Tissue Cultures Mineral and Carbohydrate Nutrition of Plant Cell and Tissue Cultures. Critical Reviews in Plant Sciences, v. 14, n. 2, p. 83–109, 1995. LILA, M. A. Valuable Secondary Products from In Vitro Culture. In: TRIGIANO, R. N.; GTAY, D. J. (Eds.). . Plant Development and Biotechnology. 1. ed. New York: CRC Press, 2005. p. 358. LINDEN, J. . et al. Gas Concentration Effects on Secondary Metabolite Production by Plant Cell Culture. In: SCHEPER, T.; ZHONG, J.-J. (Eds.). . Advances in Biochemical Engineering Biotechnology: Plant Cells. [s.l.] Springer, 2001. LITZ, R. E.; JARRET, R. L. Regeneración de plantas en cultivo de tejidos: embriogénesis somática y organogénesis. In: ROCA, W. M.; MROGINSKI, L. A. (Eds.). . Cultivo de Tejidos en la Agricultura, Fundamentos y Aplicaciones. 1. ed. Cali: [s.n.]. p. 143–157. LIU, S. et al. Beneficial behavior of nitric oxide in copper-treated medicinal plants. Journal of Hazardous Materials, v. 314, p. 140–154, 2016. LLOYD, G.; MCCOWN, B. . Commercially-Feasible Micropropagation of Mountain Laurel, Kalmia latifolia, by Use of Shoot-Tip Culture. Combined Proceedings- International Plant Propagator’s Society, v. 30, p. 421–427, 1980. LOPEZ, A.; HUDSON, J. B.; TOWERS, G. H. N. Antiviral and antimicrobial activities of Colombian medicinal plants. Journal of Ethnopharmacology, v. 77, n. 2–3, p. 189–196, 2001. LOYOLA-VARGAS, V. M. et al. Biosíntesis de los alcaloides indólicos. Una revisión crítica. Revista Sociedad Química Mexicana, v. 48, p. 67–94, 2004. MARTINS, D. et al. Triterpenes and the Antimycobacterial Activity of Duroia macrophylla Huber ( Rubiaceae ). BioMed Research International, v. 2013, n. 605831, p. 7 pages, 2013. MARTINS, D. Estudo Químico E Biológico DE Duroia macrophylla Huber( RUBIACEAE ). [s.l.] Universidade Federal do Amazonas, 2014. 153 MARTINS, D. et al. Tamizaje fitoquímico y evaluación de las actividades biológicas de Duroia macrophylla ( Rubiaceae ). Journal of Pharmacy & Phamacognosy Research, v. 2, n. 6, p. 158–171, 2014. MARTINS, D.; NUNEZ, C. V. Secondary Metabolites from Rubiaceae Species. Molecules, v. 20, p. 13422–13495, 2015. MENDOZA, H.; RAMÍREZ P, B. R.; JIMÉNEZ, L. C. Rubiaceae de Colombia: Guía ilustrada de géneros. stituto de Investigaci ón de Recursos Biológicos Alexander von Humboldt. Bogotá, Colombia: Ramos López Editorial, 2004. MIAO, G. PENG et al. Aggregate cell suspension cultures of Tripterygium wilfordii Hook. f. for triptolide, wilforgine, and wilforine production. Plant Cell, Tissue and Organ Culture, v. 112, n. 1, p. 109–116, 2013. MOON, S. H. et al. Antioxidant and anticancer potential of bioactive compounds following UV- C light-induced plant cambium meristematic cell cultures. Industrial Crops & Products, v. 109, n. September, p. 762–772, 2017. MORARD, P.; HENRY, M. Optimization of the mineral composition of in vitro culture media. Journal of Plant Nutrition, v. 21, n. 8, p. 1565–1576, 1998. MORENO, P. R. H.; HEIJDEN, R. VAN DER; VERPOORTE, R. Effect of terpenoid precursor feeding and elicitation on formation of indole alkaloids in cell suspension cultures of ... PlantCell Reports. Plant Cell Reports, v. 12, n. 12, p. 702–705, 1993. MOSSOR-PIETRASZEWSKA, T. Effect of aluminium on plant growth and metabolism. Acta Biochimica Polonica, v. 48, n. 3, p. 673–686, 2001. MURASHIGUE, T.; SKOOG, F. A Revised Medium for Rapid Growth and Bio Assays with Tobacco tissue Cultures. Physiologia Plantarum, v. 15, p. 473–497, 1962. MURTHY, H. N.; LEE, E. J.; PAEK, K. Y. Production of secondary metabolites from cell and organ cultures: Strategies and approaches for biomass improvement and metabolite accumulation. Plant Cell, Tissue and Organ Culture, v. 118, n. 1, p. 1– 16, 2014. MUSTAFA, N. R. et al. Initiation, growth and cryopreservation of plant cell suspension cultures. Nature Protocols, v. 6, n. 6, p. 715–742, 2011. NAGATOSHI, M. et al. Iridoid-specific glucosyltransferase from Gardenia jasminoides. Journal of Biological Chemistry, v. 286, n. 37, p. 32866–32874, 2011. NAMDEO, A. G. Plant Cell Elicitation for Production of Secondary Metabolites : A Review. Pharmacognosy reviews, v. 1, n. 1, p. 69–79, 2007. NASCIMENTO, N. C. DO et al. Accumulation of brachycerine, an antioxidant glucosidic indole alkaloid, is induced by abscisic acid, heavy metal, and osmotic stress inleaves of Psychotria brachyceras. Plant Physiology and Biochemistry, v. 73, p. 33–40, 2013. NUNEZ, C. et al. Raunitidine isolated from Duroia macrophylla (Rubiaceae). Planta Medica, v. 75, n. 09, p. 15–16, 2009. 154 NUNEZ, C. V; VASCONCELLOS, M. C. DE. Composiçao Farmacêutica Antitumoral Compreendendo Alcalóide, Processo Para Sua Obtenção, E Seu Uso Brasil, 2012. OLIVEIRA JÚNIOR, C. J. F. et al. Cell wall polysaccharides from cell suspension cultures of the Atlantic Forest tree Rudgea jasminoides (Rubiaceae). Trees, v. 24, n. 4, p. 713–722, 2010. OMAR, R. et al. Kinetics and modelling of cell growth and substrate uptake in Centella asiatica cell culture. Biotechnology and Bioprocess Engineering, v. 11, n. 3, p. 223–229, 2006. OSAWA, H.; MATSUMOTO, H. Possible involvement of protein phosphorylation in aluminum-responsive malate efflux from wheat root apex. Plant Physiology, v. 126, n. 1, p. 411–420, 2001. PAGE, J. E.; MADRINAN, S.; TOWERS, G. H. N. Identification of a Plant-Growth Inhibiting Iridoid Lactone From Duroia hirsuta, the Allelopathic Tree of the Devils- Garden. Experientia, v. 50, n. 9, p. 840–842, 1994. PATEL, H.; KRISHNAMURTHY, R. Elicitors in Plant Tissue Culture. Journal of Pharmacognosy and Phyochemistry, v. 2, n. 2, p. 60–65, 2013. PEREIRA, A. C. et al. Purification of an antibacterial compound from Lantana lilacina. Brazilian Journal of Pharmacognosy, v. 18, n. 2, p. 204–208, 2008. PÉREZ-ALONSO, N.; JIMÉNEZ, E. Producción de metabolitos secundarios de plantas mediante el cultivo in vitro. Biotecnología Vegetal, v. 11, n. 4, p. 195–211, 2011. PIĄTCZAK, E.; GRĄBKOWSKA, R.; WYSOKIŃSKA, H. Production of Iridoid and Phenylethanoid Glycosides by In Vitro Systems of Plants from the Buddlejaceae, Orobanchaceae, and Scrophulariaceae Families. Bioprocessing of Plant In Vitro Systems, p. 1–23, 2018. PIETTA, P. G. Flavonoids as antioxidants. Journal of Natural Products, v. 63, n. 7, p. 1035–1042, 2000. RAMACHANDRA RAO, S.; RAVISHANKAR, G. A. Plant cell cultures:Chemical factories of secondary metabolites. Biotechnology Advances, v. 20, n. 2, p. 101– 153, 2002. RAMAKRISHNA, A.; RAVISHANKAR, G. A. Influence of abiotic stress signals on secondary metabolites in plants. Plant Signaling & Behavior, v. 6, n. 11, p. 1720– 1731, 2011. RAMANI, S.; CHELLIAH, J. UV-B-induced signaling events leading to enhancedproduction of catharanthine in Catharanthus roseus cell suspension cultures. BMC plant biology, v. 7, p. 61, 2007. RAMIREZ-ESTRADA, K. et al. Elicitation, an effective strategy for the biotechnological production of bioactive high-added value compounds in plant cell factories. Molecules, v. 21, n. 2, 2016. RAVEN, P. H.; EVERT, R. F.; EICHHORN, S. E. Biologia Vegetal. 5. ed. New 155 York: Worth Publishers, 1992. REIS, A. J. et al. Evaluation of antifungal, antimycobacterial and larvicide activity of the Duroia macrophylla and D. saccifera. Revista de Epidemiologia e Controle de Infecção, v. 1, n. 1, p. 108–124, 2016. RIBEIRO, J. E. L. DA S. et al. Flora da Reserva Ducke: Guia de identificação das plantas vasculares de uma floresta de terra-firme na Amazônia Central. Manaus: INPA-DFID, 1999. SANADHYA, I. Enhanced Production of Alkaloid, a Bioactive Compound in in vitro Culture System of Anthocephalus Indicus a. Rich. Journal of International Academic Research for Multidisciplinary, v. 393, n. 4, 2014. SCHELER, C.; DURNER, J.; ASTIER, J. Nitric oxide and reactive oxygen species in plant biotic interactions. Current Opinion in Plant Biology, v. 16, n. 4, p. 534–539, 2013. SCHRIPSEMA, J.; DAGNINO, D. Alcaloides indólicos. In: SIMÕES, C. M. O. et al. (Eds.). . Farmacognosia: do produto ao medicamento. Porto Alegre: artmed, 2017. p. 367–388. SENA, M. M. DE et al. Avaliação do uso de métodos quimiométricos em análise de solos. Quimica Nova, v. 23, n. 4, p. 547–556, 2000. SEYDEL, P.; DÖRNENBURG, H. Establishment of in vitro plants, cell and tissue cultures from Oldenlandia affinis for the production of cyclic peptides. Plant Cell, Tissue and Organ Culture, v. 85, n. 3, p. 247–255, 2006. SHILPA, K.; VARUN, K.; LAKSHIMI, B. S. An alternate Method of Natural Drug Production: Eliciting Secondary Metabolite Production Using Plant Cell Culture. Journal of Plant Sciences, v. 5, n. 3, p. 222–247, 2010. SIDDIQUE, A. B.; ISLAM, S. S. Effect of light and dark on callus induction and regeneration in tobacco (Nicotiana tabacum L.). Bangladesh Journal of Botany, v. 44, n. 4, p. 643–651, 2015. SIEWEKE, H. J.; LEISTNER, E. O-succinylbenzoate: Coenzyme a ligase from anthraquinone producing cell suspension cultures of Galium mollugo. Phytochemistry, v. 31, n. 7, p. 2329–2335, 1992. SIMÕES, C. et al. Anthocyanin production in callus cultures of Cleome rosea: Modulation by culture conditions and characterization of pigments by means of HPLC-DAD/ESIMS. Plant Physiology and Biochemistry, v. 47, n. 10, p. 895–903, 2009. SKOOG, F.; MILLER, C. . Chemical Regulation of Growth and Organ Formation in Plant Tissue Cultured in Vitro. Symposia of the Society for Experimental Biology, v. 11, p. 118–131, 1957. SMITH, R. H. Plant Tissue Culture: Techinques and Experiments. 3. ed. USA: Elsevier, 2013. SOORNI, J.; KAHRIZI, D.; MOLSAGHI, M. The effects of Photoperiod and 2,4-D Concentrations on Callus Induction of Cuminum cyminum Leaf Explant: An 156 Important Medicinal Plant. Asian Journal of Botanical Sciences, v. 5, n. 7, p. 378– 383, 2012. SOUZA, J. C. DE. Obtenção De Calos De Duroia Saccifera Hook . F . Obtenção De Calos De Duroia saccifera Hook . F .(Rubiaceae), Estudo Químico E Avaliação Biológica Dos Seus Extratos. [s.l.] Universidade Federal Do Amazonas, 2016. SOUZA, R. R. DE et al. Optimization of jenipapo in vitro seed germination process. Ciência e Agrotecnologia, v. 40, n. 6, p. 658–664, 2016. SPOLLANSKY, T. C.; PITTA-ALVAREZ, S. I.; GIULIETTI, A. M. Effect of jasmonic acid and aluminium on production of tropane alkaloids in hairy root cultures of Brugmansia candida. Electronic Journal of Biotechnology, v. 3, n. 1, p. 31–32, 2000. STELLA, A.; BRAGA, M. R. Callus and cell suspension cultures of Rudgea jasminoides, a tropical woody Rubiaceae. Plant Cell, Tissue and Organ Culture, v. 68, n. 3, p. 271–276, 2002. SUMNER, L. W.; MENDES, P.; DIXON, R. A. Plant metabolomics: Large-scale phytochemistry in the functional genomics era. Phytochemistry, v. 62, n. 6, p. 817– 836, 2003. SZABADOS, L.; MROGINSKI, L. A.; ROCA, W. M. Suspensiones celulares: descripción, manipulación y aplicaciones. In: ROCA, W. M.; MROGINSKI, L. A. (Eds.). . Cultivo de Tejidos en la Agricultura, Fundamentos y Aplicaciones. 1. ed. Cali: CIAT( Centro Internacional de Agricultura Tropical), 1991. p. 174–195. TAIZ, L.; ZEIGER, E. Plant Physiology. 5th. ed. [s.l.] artmed, 2010. TANATA, F. . Estudo Químico Do Extrato Hexânico Das Folhas E Dos Extratos Dos Calos Cultivados In Vitro De Duroia macrophylla Huber (Rubiaceae). [s.l.] Universidade Federal do Amazonas, 2017. TAYLOR, C. M.; CAMPOS, M. T. V. A.; ZAPPI, D. Flora da Reserva Ducke, Amazonas, Brasil : Rubiaceae. Rodriguésia, v. 58, n. 3, p. 549–616, 2007. THE PLANT LIST .Version 1.1. Publicado na internet; http://www.theplantlist.org/. 2019(acessado 18 Janeiro). THORPE, T. A. History of Plant Cell Culture. In: SMITH, R. H. (Ed.). . Plant Tissue Culture. 3. ed. USA: Elsevier, 2012. p. 1–22. TROPICOS.ORG. Missouri Botanical Garden. Publicado na internet; http://www.tropicos.org. 2019(acesso em: 18 Janeiro). TUNDIS, R. et al. Biological and Pharmacological Activities of Iridoids: Recent Developments. Mini-Reviews in Medicinal Chemistry, v. 8, n. 4, p. 399–420, 2008. TUTEJA, N.; SOPORY, S. K. Chemical signaling under abiotic stress environment in plants. Plant Signaling and Behavior, v. 3, n. 8, p. 525–536, 2008. UEDA, S.; IWAHASHI, Y.; TOKUDA, H. Production of anti-tumor-promoting iridoid glucosides in genipa americana and its cell cultures. Journal of Natural Products, v. 54, n. 6, p. 1677–1680, 1991. 157 VASCONSUELO, A.; BOLAND, R. Molecular aspects of the early stages of elicitation of secondary metabolites in plants. Plant Science, v. 172, n. 5, p. 861– 875, 2007. VILJOEN, A.; MNCWANGI, N.; VEERMAK, I. Anti-Inflammatory Iridoids of Botanical Origin. Current Medicinal Chemistry, v. 19, n. 14, p. 2104–2127, 2012. VILLEGAS, A. et al. First principle-based models in plant suspension cell cultures: a review. Critical Reviews in Biotechnology, v. 37, n. 8, p. 1077–1089, 2017. WANG, J. et al. Production of Active Compounds in Medicinal Plants: From Plant Tissue Culture to Biosynthesis. Chinese Herbal Medicines, v. 9, n. 2, p. 115–125, 2017. WANG, X.; HARRINGTON, P. D. B.; BAUGH, S. F. Comparative study of NMR spectral profiling for the characterization and authentication of cannabis. Journal of AOAC International, v. 100, n. 5, p. 1356–1364, 2017. WHITEHEAD, S. R.; TIRAMANI, J.; BOWERS, M. D. Iridoid glycosides from fruits reduce the growth of fungi associated with fruit rot. Journal of Plant Ecology, v. 9, n. 3, p. 357–366, 2016. WINK, M. Plant breeding: Importance of plant secondary metabolites for protection against pathogensand herbivores. Theoretical and Applied Genetics, v. 75, p. 225– 233, 1988. WINK, M.; ROBERTS, M. F. Alkaloids : Biochemistry, Ecology, and Medicinal Applications. New York AND LONDON: PLENUM PRESS, 1998. WU, J. et al. Complete assignments of 1H and 13C NMR data for 10 phenylethanoid glycosides. Magnetic Resonance in Chemistry, v. 42, n. 7, p. 659– 662, 2004. WU, S. et al. Nitric Oxide Regulates Shikonin Formation in Suspension-Cultured Onosma paniculatum Cells. Plant and Cell Physiology, v. 50, n. 1, p. 118–128, 2009. XUE, Z.; YANG, B. Phenylethanoid glycosides: Research advances in their phytochemistry, pharmacological activity and pharmacokinetics. Molecules, v. 21, n. 8, p. 1–25, 2016. YA-UT, P.; CHAREONSAP, P.; SUKRONG, S. Micropropagation and hairy root culture of Ophiorrhiza alata Craib for camptothecin production. Biotechnology Letters, v. 33, n. 12, p. 2519–2526, 2011. ZAFAR, N. et al. Aluminum chloride elicitation ( amendment ) improves callus biomass growth and reserpine yield in Rauvolfia serpentina leaf callus. Plant Cell, Tissue and Organ Culture (PCTOC), v. 130, n. 2, p. 357–368, 2017. ZANCA, S. S. Análise Fitoquímica Sazonal e Cultura De Tecidos in vitro De Duroia macrophylla Huber. [s.l.] Instituto Nacional de Pesquisas da Amazônia, 2015. ZENK, M. H.; EL-SHAGI, H.; SCHULTE, U. Anthraquinone Production By Cell Suspension Cultures Of Morinda citrifoila. Planta Medica Suppl, 1975. 158 ZGÓRKA, G. TLC of iridoids. In: WAKSMUNDZKA-JAHNOS, M.; SHERMA, J.; KOWALSKA, T. (Eds.). . Thin Layer Chromatography in Phytochemistry. [s.l.] CRC Press Taylor and Francis Group, 2008. ZHANG, Q. et al. Medicinal uses , phytochemistry and pharmacology of the genus Uncaria. Journal of Ethnopharmacology, v. 173, n. 9, p. 48–80, 2015. ZHAO, J. et al. Improvement of indole alkaloid production in Catharanthus roseus cell cultures by osmotic shock. Biotechnology Letters, n. 22, p. 1227–1231, 2000. ZHAO, J.; DAVIS, L. C.; VERPOORTE, R. Elicitor signal transduction leading to production of plant secondary metabolites. Biotechnology Advances, v. 23, n. 4, p. 283–333, 2005. ZHAO, J.; VERPOORTE, R. Manipulating indole alkaloid production by Catharanthus roseus cell cultures in bioreactors: From biochemical processing to metabolic engineering. Phytochemistry Reviews, v. 6, n. 2–3, p. 435–457, 2005. ZHONG, J.-J. Biochemical Engineering of the Production of Plant-Specific Secondary Metabolites by Cell Suspension Cultures. In: SCHEPER, T.; ZHONG, J.-J. (Eds.). . Advances in Biochemical Engineering Biotechnology: Plant Cells. [s.l.] Springer, 2001. v. 72p. XIX–XX. ZULDIN, N. N. M. et al. Induction and analysis of the alkaloid mitragynine content of a Mitragyna speciosa suspension culture system upon elicitation and precursor feeding. The Scientific World Journal, v. 2013, 2013.pt_BR
dc.subject.cnpqBiotecnologiapt_BR
dc.publisher.initialsUEApt_BR
Aparece nas coleções:DISSERTAÇÃO - MBT Programa de Pós-Graduação em Biotecnologia e Recursos Naturais da Amazônia

Arquivos associados a este item:
Arquivo Descrição TamanhoFormato 
Aprimoramento da obtenção de calos e suspensões celulares de Duroia macrophylla Huber (Rubiaceae).pdf35,43 MBAdobe PDFVisualizar/Abrir


Este item está licenciada sob uma Licença Creative Commons Creative Commons