DSpace logo

Bitte benutzen Sie diese Kennung, um auf die Ressource zu verweisen: http://repositorioinstitucional.uea.edu.br//handle/riuea/2278
Langanzeige der Metadaten
DC ElementWertSprache
dc.contributor.authorPaz, Andréia da Costa-
dc.date.available2020-03-13-
dc.date.available2020-03-13T14:13:03Z-
dc.date.issued2018-03-27-
dc.identifier.urihttp://repositorioinstitucional.uea.edu.br//handle/riuea/2278-
dc.description.abstractZika virus (ZIKV) causes an arbovirose with widespread worldwide distribution transmitted to humans by the bite of females of infected mosquitoes. Ae. aegypti and Ae. albopictus are considered the main vectors, being widely distributed particularly in the tropical region where the virus is prevalent. Although Ae. albopictus is typical of wild environments, this species is also found adapted to the urban environment. In Manaus its occurrence has been recorded since 2002, however its role in the ZIKV transmission dynamics is unknown. To be considered a good vector the mosquito must have vector competence, which involves the susceptibility of the mosquito to become infected by a virus, to replicate it and to transmit it. Studies on the vectorial competence of the genus Aedes for the ZIKV are wide, but with divergent results. For Ae. albopictus in Brazil, only one study was carried out with a population of Rio de Janeiro, and there was no information on the vectorial competence of this species in the city of Manaus. This work aimed to evaluate the vectorial competence of a population of Aedes albopictus from the city of Manaus to the ZIKV. The work was carried out in the entomology laboratory of the Tropical Medicine Foundation. Females of Ae. albopictus were exposed to the virus through artificial feeding and, for comparison purposes, a population of Ae. aegypti was used as control group. Rates of virus infection and dissemination were analyzed through the body and head by RT-qPCR, after dissection on the 7th, 14th and 21st day post-infection. Transmission analysis to determine vector competence occurred on the 14th day post-infection from saliva collection and quantification by RTqPCR. The population of Ae. albopictus from Manaus was susceptible to infection with ZIKV, presenting values similar to that observed for the control group formed by a population of Ae. aegypti evaluated on the same days post infection. It presented infection rates of 65% in the 7th dpi and 70% in the 14th and 21st dpi. The rates of disseminated infection were 23% in the 7th dpi, 57% in the 14th and 14% in the 21dpi. Vector competence was 30% in the 7th dpi, 40% in the 14th and 10% in the 21st. Transmission of the virus was observed in 30% of the 10 Ae. albopictus analyzed. The results obtained in this study demonstrated that the Ae. albopictus from Manaus is susceptible to ZIKV, allowing replication over the post-infection days; infection rates were high and similar to that observed for Ae. aegypti, the main vector of the ZIKV in the world. In addition to being susceptible, Ae. albopictus also showed that the virus had spread to the salivary glands, demonstrating that the population of Ae. albopictus in the city of Manaus presents the vectorial competence as vector of the Zika virus. The great geographic distribution and the high adaptability of Ae. albopictus make their transmission potential an indication of attention as the outbreak of ZIKV continues. Keywords: Arbovirose, susceptibility, viral replication, competence, vector.pt_BR
dc.languageporpt_BR
dc.publisherUniversidade do Estado do Amazonaspt_BR
dc.rightsAcesso Abertopt_BR
dc.rightsAtribuição-NãoComercial-SemDerivados 3.0 Brasil*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/br/*
dc.subjectArbovirosept_BR
dc.subjectSuscetibilidadept_BR
dc.subjectReplicação viralpt_BR
dc.subjectCompetênciapt_BR
dc.subjectVetorpt_BR
dc.titleAvaliação da competência vetorial de populações de Aedes albopictus de Manaus, Amazonas ao Zika Víruspt_BR
dc.typeDissertaçãopt_BR
dc.date.accessioned2020-03-13T14:13:03Z-
dc.contributor.advisor-co1Pimenta, Paulo Filemon Paolucci-
dc.contributor.advisor-co1Latteshttp://lattes.cnpq.br/4592140991723664pt_BR
dc.contributor.advisor1Guerra, Maria das Graças Vale Barbosa-
dc.contributor.advisor1Latteshttp://lattes.cnpq.br/2940481324985304pt_BR
dc.contributor.referee1Guerra, Maria das Graças Vale Barbosa-
dc.contributor.referee1Latteshttp://lattes.cnpq.br/2940481324985304pt_BR
dc.contributor.referee2Tadei , Vanderli Pedro-
dc.contributor.referee3Mourão, Maria Paula Gomes-
dc.contributor.referee3Latteshttp://lattes.cnpq.br/6752341165899077pt_BR
dc.creator.Latteshttp://lattes.cnpq.br/2101031358422239pt_BR
dc.description.resumoO Zika vírus (ZIKV) causa uma arbovirose com ampla distribuição mundial transmitida ao homem pela picada de fêmeas de mosquitos infectados. Ae. aegypti e Ae. albopictus são considerados os principais vetores, por serem amplamente distribuídas particularmente na região tropical onde o vírus é prevalente. Embora Ae. albopictus seja típico de ambientes silvestres, esta espécie também é encontrada adaptada ao ambiente urbano. Em Manaus sua a ocorrência é registrada desde 2002, contudo não se sabe o seu papel na dinâmica de transmissão do ZIKV. Para ser considerado um bom vetor o mosquito deve apresentar competência vetorial, que envolve a suscetibilidade do mosquito em tornar-se infectado por um vírus, replicá-lo e transmiti-lo. Estudos sobre a competência vetorial do gênero Aedes para o ZIKV são amplos, porém com resultados divergentes. Para Ae. albopictus, no Brasil, apenas um estudo foi realizado com uma população do Rio de Janeiro, não havendo informações sobre a competência vetorial dessa espécie na cidade de Manaus. Este trabalho teve como objetivo avaliar a competência vetorial de uma população de Aedes albopictus da cidade de Manaus ao ZIKV. O trabalho foi realizado no laboratório de entomologia da Fundação de Medicina Tropical. Fêmeas de Ae. albopictus foram expostas ao vírus através de alimentação artificial e, para fins de comparação, uma população de Ae. aegypti foi utilizada como grupo controle. As taxas de infecção e disseminação do vírus foram analisadas através do corpo e cabeça, por RT-qPCR, após dissecção no 7º, 14º e 21º dia pósinfecção (dpi). A análise da transmissão para determinação da competência vetorial ocorreu no 14º dia pós-infecção a partir da coleta da saliva e quantificação por RT-qPCR. A população de Ae. albopictus de Manaus se mostrou suscetível a infecção ao ZIKV apresentando valores similares ao observado para o grupo controle formado por uma população de Ae. aegypti, avaliado nos mesmos dias pós infecção. Apresentou taxas de infecção de 65% no 7º dpi e 70% no 14º e 21ºdpi. As taxas de infecção disseminada foram de 23% no 7º dpi, 57% no 14º e 14% no 21ºdpi. A competência vetorial foi de 30% no 7º dpi, 40% no 14º e 10% no 21ºdpi. A transmissão do vírus foi observada em 30% dos 10 espécimes de Ae. albopictus analisadas. Os resultados obtidos neste estudo demostraram que a população de Ae. albopictus de Manaus é suscetível ao ZIKV, permitindo replicação ao longo dos dias pós-infecção; as taxas de infecção foram altas e similares ao observado para Ae. aegypti, principal vetor do ZIKV no mundo. Além de ser suscetível, Ae. albopictus demonstrou ainda que houve a disseminação do vírus até as glândulas salivares, demonstrando que a população de Ae. albopictus na cidade de Manaus apresenta a competência vetorial como vetor do Zika vírus. A grande distribuição geográfica e a alta adaptabilidade de Ae. albopictus tornam o seu potencial de transmissão um indicativo de atenção à medida que o surto de ZIKV continua. Palavras-chave: Arbovirose, suscetibilidade, replicação viral, competência, vetor.pt_BR
dc.publisher.countryBrasilpt_BR
dc.publisher.programPrograma de Pós-Graduação em Biotecnologia e Recursos Naturaispt_BR
dc.relation.referencesABUSHOUK, A. I.; NEGIDA, A.; AHMED, H. An updated review of Zika virus. Journal of Clinical Virology, v. 84, p. 53–58. 2016. AGEEP, T. B. et al. Participation of irradiated Anopheles arabiensismales in swarms following field release in Sudan. Malar J, v. 13. 2014. AKOUA-KOFFI, C. et al. Investigation surrounding a fatal case of yellow fever in Cote d’Ivoire in 1999. Bull Soc Pathol Exot, v. 94 p. 227–230. 2001. ALENCAR, C. H. M. et al. Potencialidades do Aedes albopictus como vetor de arboviroses no Brasil: um desafio para a atenção primária. Rev. APS, v. 11, n. 4, p. 459-467. Out-Dez. 2008. ALIOTA, M. T.; PEINADO, S. A.; OSORIO, J. E.; BARTHOLOMAY, L. C. Culex pipiens and Aedes triseriatus mosquito susceptibility to Zika Virus. Emerging Infectious Diseases, v. 22, n. 10, Out. 2016. ALTHOUSE, B. M. et al. Potential for Zika Virus to Establish a Sylvatic Transmission Cycle in the Americas. PLoS Negl Trop Dis, p. 1–11, 2016. AYRES, C. F. J. Identification of Zika virus vectors and implications for control. The Lancenet, v. 16, p.278-279. 2016. BARTENSCHLAGER, R.; MILLER, S. Molecular aspects of Dengue virus replication. Future Med, v. 3, p. 155–165. 2008. BEARCROFT, W. G. Zika virus infection experimentally induced in a human volunteer. Trans R Soc Trop Med Hyg, v. 50, p. 442-448. 1956. BENNETT, K. E. et al. Variation In Vector Competence For Dengue 2 Virus Among 24 Collections Of Aedes Aegypti From Mexico And The United States. Am. J. Trop. Med. Hyg, v. 67, n. 1, p. 85–92. 2002. BESERRA, E. B. et al. Ciclo de vida de Aedes (Stegomyia) aegypti (Diptera: Culicidae) em águas com diferentes características. Iheringia Sér Zool, v. 99, n. 3, p. 281–285, 2009. BLACK, W. C. Flavivirus susceptibility in Aedes aegypti. Archives of Medical Research, v. 33, p. 379–388. 2002. BRASIL. Ministério da Saúde. Boletim Epidemiológico, v. 48, n. 43. 2017. BOORMAN, J. P. T.; PORTERFIELD, J.S. A simple technique for infection of mosquitoes with viruses transmission of Zika virus. Trans R Soc Trop Med Hyg, v. 50, p. 238-242. 1956. CARNEIRO, L. A.; TRAVASSOS, L. H. Autophagy and viral diseases transmitted by Aedes aegypti and Aedes albopictus. Microbes Infect, doi: S1286e4579(16)00004-6. 2016. CDC. Centers for Disease Control and Prevention. Zika vírus. Disponível em <http://portugues.cdc.gov/zika/symptoms/symptoms.html> Acesso em 30 Out. 2016. 40 CHAN, J. F. W. et al. Zika fever and congenital Zika syndrome: An unexpected emerging arboviral disease. Journal of Infection, v. 72, p. 507-524. 2016. CHANG, C. et al. The Zika outbreak of the 21st century. Journal of Autoimmunity, n. 68. 2016. CHOUIN-CARNEIRO, T. et al. Differential Susceptibilities of Aedes aegypti and Aedes albopictus from the Americas to Zika Virus. PLOS Neglected Tropical Diseases, v. 10, n. 3. 2016. CIOTA, A. T. et al. Effects of Zika Virus Strain and Aedes Mosquito Species on Vector Competence. Emerging Infectious Diseases, v. 23, n. 7, p. 1110–1117, 2017. CLETON, N. B. et al. Syndromic Approach to Arboviral Diagnostics for Global Travelers as a Basis for Infectious Disease Surveillance. PLoS Neglected Tropical Diseases, v. 9, n. 9, p. 1–15, 2015. CONSOLI, R.A.G.B; LOURENÇO- DE- OLIVEIRA, R. Principais mosquitos de importância sanitária no Brasil, Fiocruz, Rio de Janeiro. 225pp. 1994. CORNET, M. et al. Transmission experimentale comparee du vírus amaril et du virus Zika chez Aedes aegypti. Ser Entomol Medicale Parasitol, v. 17, p. 47-53. 1979. COX, J.; BROWN, H. E.; RICO-HESSE, R. Variation in vector competence for dengue viruses does not depend on mosquito midgut binding affinity. PLoS Neglected Tropical Diseases, v. 5, n. 5, p. 1–7. 2011. DARWISH, M. A. et al. A seroepidemiological survey for certain arboviruses (Togaviridae) in Pakistan. Trans R Soc Trop Med Hyg, v. 77, p. 442–445. 1983. DICK, G. W. Zika virus. II. Pathogenicity and physical properties. Trans R Soc Trop Med Hyg, v. 46, n. 5, p. 521–34. 1952. DIAGNE, C. T. et al. Potential of selected Senegalese Aedes spp. mosquitoes (Diptera: Culicidae) to transmit Zika virus. BMC Infectious Diseases, v. 15. n. 492. 2015. DIALLO, D. et al. Zika virus emergence in mosquitoes in southeastern Senegal, 2011. PLoS One, v.9, e109442. 2014. DUCA, L. M. et al. Zika Virus Disease and Associated Neurologic Complications. Curr Infect Dis Rep, v. 19, n. 4. 2017. DUCHEMIN, J. B. et al. Zika vector transmission risk in temperate Australia: A vector competence study. Virology Journal, v. 14, n. 1, p. 1–10, 2017. DUPONT-ROUZEYROL, M. et al. Infectious Zika viral particles in breastmilk. The Lancet, doi: 10.1016/S0140-6736(16)00624-3. 2016. 41 ECDC, European Centre for Disease Prevention and Control. Zika virus epidemic in the Americas: potential association with microcephaly and Guillain-Barré syndrome. Stockholm: ECDC. 2015. EPELBOIN, Y.; TALAGA, S.; EPELBOIN, L.; DUSFOUR, I. Zika virus: An updated review of competent or naturally infected mosquitoes. PLOS Neglected Tropical Diseases, v. 11, n. 11, p. e0005933. 2017. FAGBAMI, A. H. Zika virus infections in Nigeria: virological and seroepidemiological investigations in Oyo State. J Hyg, v. 83 p. 213–219. 1979. FANSIRI, T. et al. Genetic mapping of specific interactions between Aedes aegypti mosquitoes and dengue viruses. Plos Genetics, e1003621, doi:10.1371/journal.pgen.1003621. 2013. FAYE, O. et al. Quantitative real-time PCR detection of Zika virus and evaluation with fieldcaught mosquitoes. Virology J, v. 10, p. 311. 2013. FÉ, N. F. et al. Registro da ocorrência de Aedes albopictus em área urbana do município de Manaus , Amazonas. Rev Saúde Pública, v. 37, n. 5, p. 2002–2003, 2003. FERNANDES, R. S. et al. Culex quinquefasciatus from Rio de Janeiro Is Not Competent to Transmit the Local Zika Virus. PLoS Negl Trop Dis, v. 10, e0004993. doi: https://doi.org/10.1371/journal.pntd.0004993. 2016. FORATTINI, O. P. Culicidologia Médica. São Paulo: Edusp. 2002. GOMES, A. C. et al. Aedes albopictus em área rural do Brasil e implicações na transmissão de febre amarela silvestre. Rev Saúde Pública, v. 33, p. 95-7. 1999. GRARD, G. et al. Zika virus in Gabon (Central Africa) 2007: a new threat from Aedes albopictus? PLoS Negl Trop Dis, v. 8, e2681. 2014. GUBLER, D.J. et al. Variation in susceptibility to oral infection with dengue viruses among geographic strains of Aedes aegypti. Am J Trop Med Hyg, v. 28, n. 6, p. 1045–52. 1979. GUEDES, M. L. P. Culicidae (Diptera) no Brasil: Relações entre diversidade, distribuição e enfermidades. Oecologia Australis, v. 16, n. 2, p. 283-296, Jun. 2012. GUEDES, D. R. D. 2012. Análise da competência vetorial para o vírus Dengue em populações naturais de Aedes aegypti e Aedes albopictus de Pernambuco, Recife. 102 f. Tese (Doutorado em Saúde Pública). Centro de Pesquisas Aggeu Magalhães–CPqAM da Fundação Oswaldo Cruz-FIOCRUZ/MS. Recife. GUEDES, D. R. D. et al. Zika virus replication in the mosquito Culex quinquefasciatus in Brazil. Emerging Microbes and Infections, v. 6, n. 8. 2017. HALSTEAD, S. B. Dengue virus-mosquito interactions. Annual review of entomology, v. 53, p. 273-291, 2007. 42 HAMEL, R.et al. Biology of Zika virus infection in human skin cells. J Virol, v. 89, n. 17, p. 8880e96. 2015. HEITMANN, A. et al. Experimental transmission of Zika virus by mosquitoes from central Europe. Euro Surveill, v. 22. 2017. HIGGS, S.; BEATY, B. J. Natural cycles of vector-borne pathogens. In: MARQUARDT, W. C. (Ed.). Biology of disease vectors. Burlington: Elsevier Academic Press, 2004. HUANG, Y. S. et al. Culex species mosquitoes and Zika Virus. Vector-borne and zoonotic diseases, 2016 JAN, C. et al. A serological survey of arboviruses in Gabon. Bull Soc Pathol Exot Filiales, v. 71, p.140–146. 1978. JOUBERT, D. A. et al. Establishment of a Wolbachia Superinfection in Aedes aegypti Mosquitoes as a potential approach for future resistance management. PLoS Pathog, v. 12, n. 2. e1005434. 2016. JUPILLE, H. et al. Zika Virus, a New Threat for Europe? PLoS Neglected Tropical Diseases, v. 10, n. 8, p. 1–8, 2016. KAUFFMAN, E. B.; KRAMER, L. D. Zika Virus Mosquito Vectors: Competence, Biology, and Vector Control. The Journal of Infectious Diseases, v. 216, n. suppl_10, p. S976–S990. 2017. KELSER, E. A. Meet dengue's cousin, Zika. Microbes and Infection, v.18. 163e166, 2016. KRAMER, L. D.; EBEL, G. D. Dynamics of flavivirus infection in mosquitoes. Adv Virus Res, v. 60, p. 187–232. 2003. LAMBRECHTS, L.; SCOTT, T. W.; GUBLER, D. J. Consequences of the expanding global distribution of Aedes albopictus for dengue virus transmission. PLoS Neglected Tropical Diseases, v. 4, n. 5, 2010. LANCIOTTI, R. S. et al. Genetic and Serologic Properties of Zika Virus Associated with an Epidemic, Yap State, Micronesia, 2007. Emerging Infectious Diseases, v. 14, p. 1232–1239. 2008. LEANDRO, R. S. Competição e dispersão de Aedes (Stegomyia) aegypti (Linnaeus, 1762) e Aedes (Stegomyia) albopictus (Skuse, 1894) (Diptera: Culicidae) em áreas de ocorrência no município de João Pessoa – PB. 2012. 68f. Dissertação (Mestrado em Ciência e Tecnologia Ambiental). Universidade Estadual da Paraíba, Campina Grande. LI, M.I. et al. Oral susceptibility of Singapore Aedes (Stegomyia) aegypti (Linnaeus) to Zika virus. PLoS Negl Trop Dis, v. 6, e1792. 2012. LINDENBACH, B. D.; RICE, C. M. Molecular biology of flaviviruses. Adv. Virus Res, v. 59, p. 23–61. 2003. 43 LIMA-CÂMARA, T. N. Arboviroses emergentes e novos desafios para a saúde pública no Brasil. Rev Saúde Pública, v. 50, n. 36. 2016. LIU, Z. et al. Competence of Aedes aegypti, Ae. albopictus, and Culex quinquefasciatus Mosquitoes as Zika Virus Vectors, China. Emerging Infectious Diseases, as. v. 23, n. 7. 2017. LOURENÇO-DE-OLIVEIRA, R. et al. Culex quinquefasciatus mosquitoes do not support replication of Zika virus. Journal of General Virology, DOI 10.1099/jgv.0.000949. 2017. LUCA, M. DI et al. Experimental studies of susceptibility of Italian Aedes albopictus to Zika virus. Eurosurveillance, p. 1–4, 2016. MACNAMARA, F. N. Zika virus: A report on three cases of human infection during an epidemic of jaundice in Nigeria. Transactions of the Royal Society of Tropical Medicine and Hygiene, v. 48, n. 2, p. 139–145, 1954. MCCRAE, A.W; KIRYA, B. G. Yellow fever and Zika virus epizootics and enzootics in Uganda. Trans R Soc Trop Med Hyg, v. 76, p. 552–562. 1982. MARCHETTEN N. J.; GARCIA, R.; RUDNICK, A. Isolation of Zika virus from Aedes aegypti mosquitoes in Malaysia. Am J Trop Med Hyg, v. 18, p. 411–415. 1969 MONLUN, E. et al. Surveillance of the circulation of arbovirus of medical interest in the region of eastern Senegal. Bull Soc Pathol Exot, v. 86, p. 21–28. 1993. MUSSO, D.; NILLES, E. J.; CAO-LORMEAU, V. M. Rapid spread of emerging Zika virus in the Pacific area. Clinical Microbiology and Infection, v. 20, n. 10, p. O595–O596, 2014. MUSSO, D. et al. Potential sexual transmission of Zika virus. Emerging Infectious Diseases, v. 21, p. 359–361. doi: 10.3201/eid2102.141363. 2015. MUSSO, D.; GUBLER, D. J. Zika Virus. Clinical Microbiology Reviews, v. 29, n. 3, Jul. 2016. OEHLER, E. et al. Zika virus infection complicated by Guillain-Barré syndrome: case report, French Polynesia, December 2013. Eurosurveillance, v. 19, n. 9, p. 1-3. 2014. OLSON, J. G. et al. Zika virus, a cause of fever in Central Java, Indonesia. Trans R Soc Trop Med Hyg, v. 75, p. 389–393. 1981. OMS. Organização Mundial da Saúde. Doença do vírus Zika. 2016. Disponível em <http://www.who.int/mediacentre/factsheets/zika/pt/> Acesso em 27 Out. 2016. PAHO. Pan American Health Organization. Guideline for Zika virus disease and complications surveillance. Washington, D.C. 2016. PAUPY, C. et al. Aedes albopictus , an arbovirus vector : From the darkness to the light. Microbes and Infection, v. 11, 2009. 44 POMPON, J. et al. A Zika virus from America is more efficiently transmitted than an Asian virus by Aedes aegypti mosquitoes from Asia. Scientific Reports, v. 7, n. 1, p. 1–8, 2017. POWELL, J. R.; TABACHNICK, W. J. History of domestication and spread of Aedes aegypti - A Review. Memorias do Instituto Oswaldo Cruz, Rio de Janeiro, v. 108, p. 1117. 2013. RABAAN, A. A. et al. Overview of Zika infection, epidemiology, transmission and control measures. Journal of Infection and Public Health, DOI: http://dx.doi.org/10.1016/j.jiph.2016.05.007. 2016. REZA, S. et al. Zika virus: A review of literature. Asian Pacific Journal of Tropical Biomedicine, doi: 10.1016/j.apjtb.2016.09.007. 2016. RICHARD, V.; PAOAAFAITE, T. Vector Competence of French Polynesian Aedes aegypti and Aedes polynesiensis for Zika Virus. PLoS Negl Trop Dis, p. 1–8, 2016. RÍOS-VELÁSQUEZ, C. M. et al. Distribution of dengue vectors in neighborhoods with different urbanization types of Manaus, state of Amazonas, Brazil. Mem Inst Oswaldo Cruz, v. 102, n. 5, p. 617-623. 2007. ROBIN, Y.; MOUCHET, J. Serological and entomological study on yellow fever in Sierra Leone. Bull Soc Pathol Exot Filiales, v. 68, p. 249–258. 1978. ROBINSON, A.S.; KNOLS, B. G.; VOIGT, G.; HENDRICHS, J. Conceptual framework and rationale. Malar J, v. 8, n. 2. 2009. RYCKEBUSCH, F.; Berthet, M.; Missé, D.; Choumet, V. Infection of a french population of Aedes albopictus and of Aedes aegypti (Paea strain) with zika virus reveals low transmission rates to these vectors saliva. International Journal of Molecular Sciences, v. 18, n. 11. 2017. SALAZAR, M. I. et al. Dengue virus type 2: replication and tropisms in orally infected Aedes aegypti mosquitoes. BMC Microbiology, v. 13, p. 1–13, 2007. SALUZZO, J. F. et al. Serological survey for the prevalence of certain arboviruses in the human population of the south-east area of Central African Republic. Bull Soc Pathol Exot Filiales, v. 74, p. 490–499. 1981. SCHOLTE, E.J.; SCHAFFNER, F. Waiting the tiger: establishment and spread of the Aedes albopictus mosquito in Europe, in: W. Takken, B.G.J. Knols (Eds.), Emerging Pests and Vector-Borne Diseases in Europe, Wageningen Academic Publishers, Wageningen, The Netherlands. p. 241-260. 2007. SERPA, L. L. N. 2014. Oviposição de Aedes (Stegomyia) aegypti e Aedes (Stegomyia) albopictus em município com transmissão de dengue, Estado de São Paulo, Brasil. 152f. Tese (Doutorado em Ciências). Coordenadoria de Controle de Doenças/SES. São Paulo. SIMPSON, D. I. Zika Virus Infection In Man. Transactions Of The Royal Society Of Tropical Medicine And Hygiene, v. 58, n.4. 1964. 45 VALDERRAMA, A.; DIAZ, Y.; LÓPEZ-VERGÈS, S. Interaction of Flavivirus with their mosquito vectors and their impact on the human health in the Americas. Biochemical and Biophysical Research Communications, doi: 10.1016/j.bbrc.2017.05.050. 2017. VEGA-RUA, A. et al. High efficiency of temperate Aedes albopictus to transmit chikungunya and dengue viruses in the Southeast of France. PLoS ONE, v.8, e59716. 2013. VEGA-RUA, A. et al. High level of vector competence of Aedes aegypti and Aedes albopictus from ten American countries as a crucial factor in the spread of Chikungunya virus. Journal of virology, v. 88, n. 11, p. 6294–306, 2014. WEAVER, S. C; REISEN, W. K. Present and future arboviral threats. Antiviral Research, v. 85, p. 328–345. 2010. WEAVER, S. C. et al. Zika virus: History, emergence, biology, and prospects for control. Antiviral Research, v. 130, p. 69-80. 2016. WONG, P. J. et al. Aedes (Stegomyia) albopictus (Skuse): A Potential Vector of Zika Virus in Singapore. PLOS Neglected Tropical Diseases, v. 7, n. 8, p. e2448. 2013. YE, Q. et al. Infection , Genetics and Evolution Genomic characterization and phylogenetic analysis of Zika virus circulating in the Americas. MEEGID, v. 43, p. 43–49, 2016. ZANLUCA, C. et al. First report of autochthonous transmission of Zika virus in Brazil. Memorias do Instituto Oswaldo Cruz, v. 110, n. 4, p. 569–572, 2015. ZARA, A. L. S. A. et al. Estratégias de controle do Aedes aegypti: uma revisão. Epidemiol. Serv. Saúde, v. 25, n. 2, p. 391-404, abr-jun. 2016.pt_BR
dc.subject.cnpqBiotecnologiapt_BR
dc.publisher.initialsUEApt_BR
Enthalten in den Sammlungen:DISSERTAÇÃO - MBT Programa de Pós-Graduação em Biotecnologia e Recursos Naturais da Amazônia



Diese Ressource wurde unter folgender Copyright-Bestimmung veröffentlicht: Lizenz von Creative Commons Creative Commons