DSpace logo

Use este identificador para citar ou linkar para este item: http://repositorioinstitucional.uea.edu.br//handle/riuea/2269
Registro completo de metadados
Campo DCValorIdioma
dc.contributor.authorAraújo, Thiago Ferreira de-
dc.date.available2020-03-13-
dc.date.available2020-03-12T15:18:15Z-
dc.date.issued2008-12-30-
dc.identifier.urihttp://repositorioinstitucional.uea.edu.br//handle/riuea/2269-
dc.description.abstractAn electrophoretic analysis, 1 – DE and 2 – DE, were detected of the venom of Crotalus durissus ruruima proteins with molecular masses of ~ 14, 32 and 50 kDA. By electrophoresis, SDS-PAGE tricine was detected a protein band of molecular mass of ~ 5 kDA that it suggests to understand to the crotamine. The activities phospholipase A2 and coagulant activity had been also detected in the venom of Crotalus durissus ruruima. Fractions of the venom of Crotalus durissus ruruima with coagulant activity, in vitro, under human fibrinogen and human plasma had been gotten by chromatography molecular exclusion and reverse phase. The coagulant activity gotten by the fractions was inhibited alone by PMSF, suggesting that the responsible toxin for the coagulant activity is one serinoproteinase. The proteolitic activity gotten by zimogram, using as bovine fibrinogen substratum, suggests the presence enzyme thrombin – like with molecular masses of the ~ 25 – 40 kDA. Of the coagulants, fractions gotten by chromatography reverse phase fraction (fraction 09) only presented defibrinating activity, in vivo, evaluated in mouse. This activity was not inhibited, in vivo, when this fraction previously was mix with human serum. Key words: Crotalus durissus ruruima, thrombin – like, defibrinating activity, coagulant activity, serinoproteinasept_BR
dc.languageporpt_BR
dc.publisherUniversidade do Estado do Amazonaspt_BR
dc.rightsAcesso Abertopt_BR
dc.rightsAtribuição-NãoComercial-SemDerivados 3.0 Brasil*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/br/*
dc.subjectCrotalus durissus ruruimapt_BR
dc.subjectTrombina – símilept_BR
dc.subjectAtividade desfibrinogenantept_BR
dc.subjectAtividade coagulantept_BR
dc.subjectSerinoproteasept_BR
dc.titleProteômica e potencial da atividade trombolítica da propriedade desfibrinogenante, in vivo, do veneno da Serpente Amazônica Crotalus durissus ruruima (Houge 1965).pt_BR
dc.typeDissertaçãopt_BR
dc.date.accessioned2020-03-12T15:18:15Z-
dc.contributor.advisor1López-Lozano, Jorge Luis-
dc.contributor.advisor1Latteshttp://lattes.cnpq.br/6251525203051399pt_BR
dc.contributor.referee1López-Lozano, Jorge Luis-
dc.contributor.referee1Latteshttp://lattes.cnpq.br/6251525203051399pt_BR
dc.creator.Latteshttp://lattes.cnpq.br/9118006062331527pt_BR
dc.description.resumoAtravés de análises por técnicas de eletroforese, uni e bidimensional, foram detectadas no veneno de Crotalus durissus ruruima proteínas com massas moleculares de ~ 14, 32 e 50 kDA. Por eletroforese SDS – PAGE TRIS – TRICINA foi detectada uma banda protéica de massa molecular de ~ 5 kDA que sugere compreender à crotamina. As atividades fosfolipase A2 e atividade coagulante também foram detectadas no veneno de Crotalus durissus ruruima. Frações do veneno de Crotalus durissus ruruima com atividade coagulante, in vitro, sob fibrinogênio e plasma humano foram obtidas por técnicas cromatográficas de filtração molecular e fase reversa. A atividade coagulante obtida pelas frações foi inibida só por PMSF, sugerindo que a toxina responsável pela atividade coagulante seja uma serinoprotease. A atividade proteolítica obtida por zimograma, utilizando como substrato fibrinogênio bovino, sugere a presença de enzimas trombina – símile com massas moleculares de ~ 25 a 40 kDA. Das frações coagulantes obtidas por cromatografia fase reversas somente uma fração (fração 09) apresentou atividade desfibrinogenante, in vivo, avaliada em camundongo. Essa atividade não foi inibida, in vivo, quando essa fração foi previamente incubada com soro humano. Os resultados sugerem que a atividade proteolítica do veneno de Crotalus durissus ruruima seja uma serinoprotease com potencial biotecnológico, como um possível antitrombolítico. Palavras Chaves: Crotalus durissus ruruima, trombina – símile, atividade desfibrinogenante, atividade coagulante, serinoproteasept_BR
dc.publisher.countryBrasilpt_BR
dc.publisher.programPrograma de Pós-Graduação em Biotecnologia e Recursos Naturaispt_BR
dc.relation.referencesAGUIAR, A.S., ALVES, C.R., MELGAREJO, A., GIOVANNI-DE-SIMONE,S., 1996. Purification and partial characterization of a thrombin-like/gyroxin enzyme from bushmaster (Lachesis muta rhombeata) venom. Toxicon 34, 555–565. ALEXANDER, G; GRUTHUSEN, J; ZEPEDA, H. & SCHWRTZON, R.J. 1988 Gyroxin, a toxin from the venom of Crotalus durissus terrificus, is a thrombin-like enzyme. Toxicon. 26: 953-960. ALI, S. A., STOEVA, S., ABBASI, A., ALAM, J. M., KAYED, R., FAIGLE, M., NEUMEISTER, B., VOELTER, W., 2000. Isolation, structural, and functional characterization of an poptosis-inducing L-amino acid oxidase from leaf-nosed viper (Eristocophis macmohoni) snake venom. Arch. Biochem. Biophys. 384, 216–226. AMARAL, C. F. S; MAGALHÃES, R. A.; REZENDE, N. A.1991. Comprometimento respIratório secundário a acidentes ofídicos crotálicos (Crotalus durissus) Rev. Inst. Trop. São Paulo, 33 251-255. AMICONI, G., AMORESANO, A., BOUMIS, G., BRANCACCIO, A., DE CRISTOFARO, R., DE PASCALIS, A., DI GIROLAMO, S., MARAS, B., SCALONI, A., 2000. A novel venombin B from Agkistrodon contortrix contortrix: evidence for recognition properties in the surface around the primary specificity pocket different from thrombin. Biochemistry 39, 10294–10308. ANTOSK. F. S., MURAKAMI M. T., A. CINTRA C. O., TOYAMA M. H., MARANGONI S., FORRER V. P., NETO J. R. B., POLIKARPOV I., ARNI R. K. 2007. Crystallization and preliminary X-ray crystallographic analysis of the heterodimeric crotoxin complex and the isolated subunits crotapotin and phospholipase A2. Acta Cryst. 63:287–290. BAEK, S., KWON, T. K., LIM, J., LEE, Y., CHANG, H., LEE, S., KIM, J., KWUN, K. 2000. Secretory Phospholipase A2-Potentiated Inducible Nitric Oxide Synthase Expression by Macrophages Requires NF- B Activation J. Immunol. 164, 6359–6365. 59 Barrio, A., 1961. Gyroxin, a new neurotoxin of Crotalus durissus terrificus venom. Acta Physiol. Latinoamer. 11, 22. BON C., HANGEUXJ.-P. C, JENG T.-W., FRAENKEL-CONRAT H. 1979. Postsynaptic Effects of Crotoxin and of Its Isolated Subunits. Eur. J. Biochem. 99, 471 -481. BOON, G. D. 1993. An overview of hemostasis. Toxicol. Pathol. v. 21(2), p.170 179, BRADFORD M. M. 1976. A rapId and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72, 248-254. BRASIL, 1999. Manual de diagnostico e Tratamento de Acidentes por Animais Peçonhentos. Ministério da Saúde. 131. BRAUD, S.; BON, C.; WISNER, 2000 .A. Snake venom acting on hemostasis. Biochimie. v. 82, p. 851-859. CARDOSO, D. F. & MOTA, I. 1997. Effect of Crotalus venom on the humoral and cellular immune response. Toxicon, 35 607-612. CASTRO, H.C., SILVA, D.M., CRAIK, C., ZINGALI, R.B., 2001. Structural features of a snake venom thrombin-like enzyme: thrombin and trypsin on a single catalytic platform?. Biochim. Biophys. Acta.1547, 183–195. _______________; ZINGALI, R.B.; ALBUQUERQUE, M.G.; PJOL-LUZ, M.; RODRIGUES, C.R.. 2004. Snake venom thrombin-like enzymes: from reptilase to now. CMLS. V. 61, p. 843-856 CASTRO, I. O MUNDO DA SAÚDE São Paulo: 2006: out/dez 30 (4): 644-653. 60 CHANG M. C. & HUANG T.F. 1995. Characterization of a thrombin-like enzyme, grambin, from the venom of Trimeresurus gramineus and its in vivo antithrombotic effect. Toxicon, 33: 1087-1098. CORIN, R. E., VISKATIS, L. J., VIDAL, J. C., ETCHEVERRY, M. A. 1993. Cytotoxicity of CrTX on murine erythroleukemia cells in vitro. Invest. New Drugs 11 11– 15. CURA, J. E., BLANZACO, D. P., BRISSON, C., CURA, M. A., CABROL, R., LARRATEGUY, L., MENDEZ, C.,MENDEZ, C., SECHI, J. C., SIVEIRA, J. S., THEILLER, E., DE ROODT, A. R., VIDAL, J. C. 2002. Phase I and pharmacokinetics study of Cro (cytotoxin PLA2, NSC-624244) in patient with advanced cancer. Clin Cancer Res 8: 1033-1041. DI CERA E., DANG Q. D. Y., AYALA M. 1997. Molecular mechanisms of thrombin function. (CMLS) 53 701-730. ___________, DANG Q. D., AYALA Y. M. 1997. Molecular mechanisms of thrombin function. Cell. Mol. Life Sci. 53:701–730. DOS-SANTOS M. C, FERREIRA L. C. L., DIAS DA SILVA W., FURTADO M.. F. D. 1993. Caracterizacion de las actividades biologicas de los venenos ‘amarillo’ y ‘blanco’ de Crotalus durissus ruruima comparados con el veneno de Crotalus durissus terrificus. Poder neutralizante de los antivenenos frente a los venenos de Crotalus durissus ruruima.Toxicon 31; 1459-1469. ______________., ASSIS E. B., MOREIRA T. D., PINHEIRO J., FORTES-DIAS C. L. 2005. Individual venom variability in Crotalus durissus ruruima snakes, a subspecies of Crotalus durissus from the Amazonian region. Toxicon 46: 958-961. EARPS L., SHOOLINGIN-JORDAN P.M. 1998. Molecular modelling of batroxobin on kallikreins. Biochem Soc Trans. 26: 283. 61 ESMON, C.T., OWEN, W.G., 1981. Identification of an endothelial cell cofactor for thrombin-catalyzed activation of protein C.Proc. Natl Acad. Sci. USA 78, 2249– 2252. FAURE, G., VILLELA, C., PERALES, J., BON, C. 2000. Interaction of the neurotoxic and nontoxic secretory phospholipases A2 with the crotoxin inhibitor from Crotalus serum. Eur. J. Biochem. 267, 4799–4808. FRANÇA, F.O.S.; MÁLAQUE, C.M.S. , 2003. Acidente BotrópIco. In: Animais Peçonhentos no Brasil: Biologia, Clínica e Terapêutica dos acidentes. 72-86. FUSTER-LLUCH O., GALINDO M.F., CEÑA V., JORDÁN J. 2004. Las serina proteasas y su función en los procesos de muerte neuronal. Rev neurol 38:449-457. GELB, M. H., JAIN, M. K., HANEL, A. M. & BERG, O. G. 1995. Interfacial Enzymology of GlycerolipId Hydrolases: Lessons from Secreted Phospholipases A2. Annu. Rev.Biochem. 64: 653–688. GENÉ J. A., ROY G, GUTIÉRREZ J. M., CERDAS L. 1989. Comparative study on coagulant, defibrinanting, fibrinolytic and fibrinogenolytic activities of Costa Rican snake venoms and their neutralization by polyvalent antivenom. Toxicon 27: 841–848. Gornitskaia, O.V, Platonova T.N, Volkov G.L. 2003. Enzymes of snake venoms. Ukr Biokhim Zh; 75:22–32. GUTIÉRREZ, J. M. DOS SANTOS M. C., FURTADO M. F., ROJAS G. 1991. Biochemical and pharmacological similarities between the venoms of newborn Crotalus durissus durissus and adult Crotalus durissus terrificus rattlesnakesToxicon 29: 1273-1277. Heise, P.J. Maxson. L.R., Dowling, H.G, Hedges, S.B. 1995. Higher-level snake phylogeny inferred from mitochondrial DNA sequences of 12S rRNA genes. Mol Biol Evol 12:259–65. 62 HENSCHEN-EDMAN, A.H., THEODOR, I., EDWARDS, B.F., PIRKLE, H., 1999. Crotalase, a fibrinogen-clotting snake venom enzyme: primary structure and evidence for a fibrinogen recognition exosite different from thrombin. Thromb. Haemost. 81, 81–86. HOGE, A.R. 1965, Preliminary account on neotropIcal Crotalinae (Serpentes Viperidade) Mem. Inst Butantan, 32 109-184. HUANG, Q.Q., TENG, M.K., NIU, L.W., 1999. Purification andcharacterization of two fibrinogen-clotting enzymes from five-pace snake (Agkistrodon acutus) venom. Toxicon 37,999–1013. ISETTI G. & MAURER M. C. 2004. Thrombin activity is unaltered by N-terminal truncation of factor XIII activation peptides. Biochemistry, 43, 4150 -4159. ITOH N, TANAKA N, MIHASHI S, YAMASHINA I. 1988 Molecular cloning and sequence analysis of cDNA for batroxobin, a thrombin-like snake venom enzyme. J Biol Chem; 262: 3132–5. JUNQUEIRA-DE-AZEVEDO, I.L., HO, P.L., 2002. A survey of gene expression and diversity in the venom glands of the pItviper snake Bothrops insularis through the generation of expressed sequence tags (ESTs). Gene 299, 279–291. KARALLIEDDE, l. 1995. Animal Toxin. Br. J. Anaesth. 74: 319 – 327. KINI, R.M., 1997. Phospholipase A2—a complex multifunctional protein puzzle, in: Kini, R.M. (Ed.), Venom Phospholipase A2 Enzymes: Structure, Function and Mechanism. Wiley, England, pp. 1–28. KIRBY, E.P., NIEWIAROWSKI, S., STOCKER, K., KETTNER, C., SHAW, E., BRUDZYNSKI, T.M., 1979. Thrombocytin, a serine protease from Bothrops atrox venom 1. Purification and characterization of the enzyme. Biochemistry 18, 3564– 3570. 63 KISIEL, W., KONDO, S., SMITH, K.J., MCMULLEN, B.A., SMITH, L.F., 1987. Characterization of a protein C activator from Agkistrodon contortrix contortrix venom. J. Biol. Chem. 262, 12607–12613. KOCHVA, E. 1987. The origin of snake and evolution of the venom apparatus. Toxicon 25 (1): 65-106. KOH, Y.S., CHUNG, K.H., KIM, D.S., 2001. Biochemical characterization of a thrombin-like enzyme and a fibrinolyticserine protease from snake (Agkistrodon saxatilis) venom. Toxicon 39, 555–560. KREM M. M. & DI CERA E. 2001. Molecular markers of serineprotease evolution. EMBO J. 20: 3036–3045. LAEMMLI, U. K. , 1970. Cleavage of strutural proteins during the assembly of the head of bacteriophage T4. Nature. v. 227, p. 680-685. LIMA D. C., ABREU P. A., DE FREITAS C. C., D. O. SANTOS, BORGES R. O., DOS SANTOS T. C., CABRAL L. M., RODRIGUES C. R., CASTRO H. C. 2005. Snake Venom: Any Clue for Antibiotics and CAM? Evid. Based Complement. Altern. Med. 2: 39-47. LÓPEZ – LOZANO, J. L. 2002. Venenos de serpentes da Amazônia-Propriedades e Relações Moleculares fisiológicas e taxonômicas. Tese de Doutorado em Biologia Molecular. Universidade de Brasília. Brasília. MAGALHÃES H. P. B., AGALHÃESA M, JULIANO L., NELSON D. L., ROGANA E. 2006. Mechanism of action and determination of the best substrate for a thrombinlike enzyme from Lachesis muta muta venom by regression analysis of the kinetic parameters determined with peptidyl p-nitroanilide substrates Toxicon 47: 453-458. MARKLAND JR., F.S., 1998. Snake venoms and the hemostatic system. Toxicon 36, 1749–1800. 64 MAROUN, R.C., 2001. Molecular basis for the partition of the essential functions of thrombin among snake venom serineproteinases: the case of thrombin-like enzymes. Haemostasis31, 247–256. MARSH, N.; WILLIAMS, V. , 2005. Pratical applications of snake venom toxins in haemostasis. Toxicon. In press. p. 1-11. MATSUI, T., SAKURAI, Y., FUJIMURA, Y., HAYASHI, I., OH-ISHI, S.,SUZUKI, M., HAMAKO, J., YAMAMOTO, Y., YAMAZAKI, J., KINOSHITA, M., TITANI, K., 1998. Purification and amino acid sequence of halystase from snake venom of Agkistrodon halys blomhoffii, a serine protease that cleaves specifically fibrinogenand kininogen. Eur. J. Biochem. 252, 569–575. __________; FUJIMURA, Y. TITANI, K. 2000. Snake venom proteases affecting hemostasis and thrombosis. BBA, v. 1477, p.146-156. MEBS, D., 1999. Snake venom composition and evolution of Viperidae. KaupIa 8, 145–148. MELGAREJO, A.R., 2003. Serpentes Peçonhentas do Brasil. In: Animais Peçonhentos no Brasil: Biologia, Clínica e Terapêutica dos acidentes. p. 33-59. MUNIZ, E. G. 2002. Veneno de Crotalus durissus ruruima Propriedades moleculares, farmacológicas e imunológicas. Dissertação de Mestrado em Patologia TropIcal. Universidade Federal do Amazonas, Amazonas. MURAKAMI, M. T. & ARNI, R. K. (2003). A structure based model for liposome disruption and the role of catalytic activity in myotoxic phospholipase A2s. Toxicon 42: 903–913. NARAYANAN, S.; HAMASAKI, N. 1998. Current concepts of coagulation and fibrinolysis. Adv. Clin. Chem. v. 33, p.133-68. 65 NEWMAN, R. A., VIDAL, J. C., VISKATIS, L. J., JOHNSON, J., ETCHEVERRY, M. A. 1993. VRCTC-310—a novel compound of purified animal toxins sepatares antitumor efficacy from neurotoxicity.. Invest. New Drugs 11 (2–3), 151–159. NIEWIAROWSKI, S., KIRBY, E.P., BRUDZYNSKI, T.M., STOCKER, K., 1977. Thrombocytin, a serine protease from Bothrops atrox venom 2.Interaction with platelets and plasma-clotting factors. Biochemistry18, 3570–3577. NIKAI T, OHARA A, KOMORI Y, FOX JW, SUGIHARA H. 1995. Primary structure of a coagulant enzyme, bilineobin, from Agkistrodon bilineatus venom. Arch Biochem Biophys; 318: 89–96. NUSTAD K, ORSTAVIK T.B., GAUTVIK K.M., PIERCE J.V. 1978. Glandular kallikreins. Gen Pharmacol. 9: 1-9. OGUIURA N., BONI-MITAKE M., RÁDIS-BAPTISTA G. 2005. New view on crotamine, a small basic polypeptide myotoxin from South American rattlesnake venom. Toxicon 46: 363-370 ___________., CAMARGO M. E., DA SILVA A. R. P., HORTON D. S. P. Q. 2000. Quantification of crotamine, a small basic myotoxin, in South American rattlesnake (Crotalus durissus terrificus) venom by enzyme-linked immunosorbent assay with parallel-lines analysis. Toxicon 38: 443-448. OLDRA, M. B. 2003. Abordagem fisioterapêutica no tratamento e na prevenção das hemartroses em hemofílicos: Revisão sistemática. Trabalho de Conclusão de Curso apresentado à Universidade Estadual do Oeste do Paraná. Paraná. OWNBY, C.L. 1998. Structure, function and biophysical aspects of the myotoxins from snake venoms .J. Toxicol: Toxin Rev. 17, 213-238. 66 PARRY, M.A., JACOB, U., HUBER, R., WISNER, A., BON, C., BODE, W., 1998. The crystal structure of the novel snake venom plasminogen activator TSV-PA: a prototype structure for snake venom serine proteinases. Structure 6, 1195–1206. PASSERO L. F. D., TOMOKANE T. Y., CORBETT C. E. P., LAURENTI M. D., TOYAMA M. H.. 2007. Comparative studies of the anti-leishmanial activity of three Crotalus durissus ssp. venoms. Parasitol Res. 101:1365–1371. PAWELEK, P., CHEAH, J., COULOMBE, R., MACHEROUX, P., GHISLA, S., VRIELINK, A. 2000. The structure of l-amino-acid oxidase reveals the substrate trajectory into an enantiomerically conserved active site. EMBO J. 19: 4204 – 4215. PIRKLE H. 1998. Thrombin-like Enzymes from Snake Venoms: An Updated Inventory. Thromb Haemost 79: 675–83. PONCE-SOTO L. A., LOMONTE B., RODRIGUES-SIMIONI L., NOVELLO J.C., MARANGONI S. 2007. Biological and Structural Characterization of Crotoxin and New Isoform of Crotoxin B PLA2 (F6a) from Crotalus durissus collilineatus Snake Venom. Protein J 26: 221-230. RANGEL-SANTOS, A., DOS-SANTOS, E. C., LOPES-FERREIRA, M., LIMA, C., CARDOSO, D. F.,MOTA, I. 2004. A comparative study of biological activities of crotoxin and CB fraction of venoms from Crotalus durissus terrificus, Crotalus durissus cascavella and Crotalus durissus collilineatus. Toxicon, 43, 801–810. ___________________, LIMA, C., LOPES-FERREIRA, M., CARDOSO, D. F. 2004. Immunosuppresive role of principal toxin (crotoxin) of Crotalus durissus terrificus venom. Toxicon, 44, 609–616. RAW, I., ROCHA, M.C; ESTEVES, M.I. & KAMIGUTI, A.S. 1986. Isolation and characterization of a thrombin like enzyme from the venom of Crotalus durissus terrificus. Braz. J. Med. Biol. Res. 19: 333-338. ROSING J., GOVERS-RIEMSLAG J. W., YUKELSON L. TANS G. 2001. Factor V activation and inactivation by venom proteases. Haemostasis 31: 241–246 67 RUDD, C.J., VISKATIS, L.J., VIDAL, J.C., ETCHEVERRY, M.A., 1994. In vitro comparison of cytotoxic effects of Cro against three human tumors and normal human epIdermal keratinocyte cell line. Invest New Drugs 12: 183-184. SALAZAR, A. M., RODRIGUEZ-ACOSTA, A., GIRO N., AGUILAR M. E I.,GUERRERO, B., 2006. A comparative analysis of the clotting and fibrinolytic activities of the mapanare (Bothrops atrox) snake venom from different geographical areas in Venezuela. Thromb. Res., in press SAMPAIO, S. C., SANTOS, M. F., COSTA, E. P., RANGEL-SANTOS, A. C., CARNEIRO, S.M.,CURI, R., CURY, Y. 2006. Lipoxygenase-derived eicosanoids are involved in the inhibitory effect of Crotalus durissus terrificus venom or crotoxin on rat macrophage phagocytosis. Toxicon 47, 313-321. SAMY R P., PACHIAPPAN A., GOPALAKRISHNAKONE P., THWIN M. M., HIAN Y. E., CHOW V. TK. , BOW H., WENG J. T. 2006. In vitro antimicrobial activity of natural toxins and animal venoms tested against Burkholderia pseudomallei BMC Infectious Diseases 6:100 1-16. SANT´ANA C. D. 2005. Caracterização funcional e estrutural de uma nova serinoprotease do veneno de Bothrops jararacussu. Dissertação de Mestrado apresentada ao Programa de Pós-Graduação em Toxicologia. Universidade de são paulo Ribeirão Preto. _______________, TICLI F. K., OLIVEIRA L. L., GIGLIO J. R., RECHIA C. G. V., FULY A. L., SELISTRE DE ARAÚJO H. S., FRANCO J. J., STABELI R. G., SOARES A. M., SAMPAIO S. V. 2007. BjussuSP-I: A new thrombin-like enzyme isolated from Bothrops jararacussu snake venom. CBP in press: 01-12. SANTOS, B.F., SERRANO, S.M., KULIOPULOS, A., NIEWIAROWSKI, S., 2000. Interaction of viper venom serine peptidases with thrombin receptors on human platelets. FEBS Lett. 477, 199–202. SARAVIA, P., ROJAS, E., ARCE, V., GUEVARA, C., LOPEZ, J.C., CHAVES, E., VELASQUEZ, R., ROJAS, G., GUTIERREZ, J.M., 2002. Geographic and ontogenic 68 variability in the venom of the NeotropIcal rattlesnake Crotalus durissus: pathophysiological and therapeutic implications. Rev. Biol. Trop. 50: 337–346. SCHMAIER, A.H., COLMAN, R.W., 1980. Crotalocytin: characterization of the timber rattlesnake platelet activating protein. Blood 56, 1020–1028. SEGERS K., ROSING J., NICOLAEG. A.F. S. 2006. Structural models of the snake venom factor V activators from Daboia russelli and Daboia lebetina. Proteins 64: 4968 – 984. SERRANO, S. M. T. & MAROUN R. C 2005, Snake venom serine proteinases: sequence homology vs. substrate specificity, a paradox to be solved. Toxicon 45 8: 1115-1132. __________________, MATOS, M.F., MANDELBAUM, F.R., SAMPAIO, C.A., 1993. Basic proteinases from Bothrops moojeni (caissaca) venom-I Isolation and activity of two serine proteinases, MSP 1 and MSP 2, on synthetic substrates and on platelet aggregation. Toxicon 31, 471–481. SILVA-JUNIOR F. P., GUEDES H. L.M., GARVEY L. C., AGUIAR A. S., BOURGUIGNON S. C., DI CERA E., GIOVANNI-DE-SIMONE S. 2007. BJ-48, a novel thrombin-like enzyme from the Bothrops jararacussu venom with high selectivity for Arg over Lys in P1: Role of N-glycosylation in thermostability and active site accessibility.Toxicon 50, 18-31 __________________, GUEDES H. L.M., LAURA C. ANIESSE G., AGUIAR S., BOURGUIGNON S. C., DI CERA E., GIOVANNI-DE-SIMONE S. 2007. BJ-48, a novel thrombin-like enzyme from the Bothrops jararacussu venom with high selectivity for Arg over Lys in P1: Role of N-glycosylation in thermostability and active site accessibility Toxicon. 50: 18-31. 69 STOCKER, K. (1990b) Snake venom protein afecting hemostasis and Fibrinolysis. In Medical Use of Snake Venom Proteins, ed. K. F. Stocker, pp. 97±160. CRC Press, Boca Raton. _______________., FISCHER, H., MEIER, J., 1982. Thrombin-like snake venom proteinases. Toxicon 20, 265–273. STUBBS, M.T., BODE, W., 1993. A player of many parts: the spotlightfalls on thrombin structure. Thromb. Res. 69, 1–58. TAKATSUKA, H., SAKURAI, Y., YOSHIOKA, A., KOKUBO, T., USAMI, Y., SUZUKI, M., MATSUI, T., TITANI, K., YAGI, HIDEO, MATSUMOTO, M., FUJIMURA, Y., 2001a. Molecular characterization of L-amino acid oxidase from Agkistrodon halys blomho§i with special reference to platelet aggregation. Biochim. Biophys. Acta 1544, 267–277. _____________., SAKURAI, Y., YOSHIOKA, A., KOKUBO, T., USAMI, Y., SUZUKI, M., MATSUI, T., TITANI, K., YAGI, H., MATSUMOTO, M., FUJIMURA, Y., 2001b. Molecular characterization of L-amino acid oxidase from Agkistrodon halys blomhoffii with special reference to platelet aggregation. Biochim. Biophys. Acta 1544 (1–2), 267–277. THEAKSTON, R. D. G; & REID, H. A. 1983. The development of simple standard assay procedures for the characterization of snake venoms. Bull WHO 61: 949 – 956. TOKUNAGA, F., NAGASAWA, K., TAMURA, S., MIYATA, T., IWANAGA, S., KISIEL, W., 1988. The factor V-activating enzyme (RVV-V) from Russell’s viper venom Identification of isoproteins RVV-V alpha, -V beta, and -V gamma and their complete amino acid sequences. J. Biol. Chem. 263, 17471–17481. TORRENT R. M. R., BONGIOVANNI B., LEIVA L. C., DUFFARD, A. M. E., RODRIGUEZ J. P., PEREZ O. C. A., DUFFARD R.. 2007. Neurotoxicological effects of a thrombin-like enzyme isolated from Crotalus durissus terrificus venom (preliminary study) Toxicon 50: 144–152. 70 TOYAMA M. H., CARNEIRO E. M., MARANGONI S., BARBOSA R. L., G. CORSO., BOSCHERO A. C. 2000. Biochemical characterization of two crotamine isoforms isolated by a single step RP-HPLC from Crotalus durissus terrificus (South American rattlesnake) venom and their action on insulin secretion by pancreatic islets Biochimica et Biophysica Acta (BBA) 1474, 1, 56-60. _____________., TOYAMA D. D. O., PASSERO L. F. D., LAURENTI M. D., CORBETT C. E., TOMOKANE T. Y., FONSECA F. V, ANTUNES E., JOAZEIRO P. P., BERIAM L. O. S., MARTINS M. A. C., MONTEIRO H. S. A., FONTELES M. C. 2006. Isolation of a new L-amino acid oxidase from Crotalus durissus cascavella venom. Toxicon 47: 47-57. VADAS, P., BROWNING, J., EDELSON, J., PRUZANSKI, W. 1993. Extracellular phospholipase A2 expression and inflammation: the relationship with associated disease states. J. LipId Mediat. 8,1–30. WANG, Y.M., WANG, S.R., TSAI, I.H., 2001. Serine protease isoforms of Deinagkistrodon acutus venom: cloning, sequencing and phylogenetic analysis. Biochem. J. 354, 161–168. YONG-HONG, J. I. A.; YANG, J .I. N.; QIU-MIN, L.; SHENG, D. L. I.; WAN-YU, W.; YU-LIANG, X. 2003. Jerdonase, a novel serine protease with kini-realising and fibrinogenolytic activity from Trimeresurus jerdonii venom. Acta. Biochim. Biophis. Sinica. v. 35(8), p. 689-694. ZHANG S., MA B., SAKAI J., SHIONO H., MATSUI T., SUGIE I. 2001. Characterization of a thrombin-like serine protease,Kangshuanmei, isolated from the venom of a Chinese snake,Agkistrodon halys brevicaudus stejnegeri. J. Nat. Toxins 10:221– 238. ZHANG Y. L., HERVIO L., STRANDBERG L. MADISON E. L. 1999. Distinct contributions of residue 192 to the specificity of coagulation and fibrinolytic serine proteases. J. Biol.Chem. 274: 7153–7156. 71 ZHANG, H. L., HAN, R., CHEN, Z. X., CHEN, B. W., GU, Z. L., REID, P. F., RAYMOND, L. N. & OIN, Z. H. 2006. OpIate and acetylcholine-independent analgesic actions of crotoxin isolated from Crotalus durissus terrificus venom. Toxicon 48: 175182.pt_BR
dc.subject.cnpqBiotecnologiapt_BR
dc.publisher.initialsUEApt_BR
Aparece nas coleções:DISSERTAÇÃO - MBT Programa de Pós-Graduação em Biotecnologia e Recursos Naturais da Amazônia

Arquivos associados a este item:
Arquivo Descrição TamanhoFormato 
Atividade bioinseticida das toxinas do veneno do escorpião amazônico Tityus metuendus (POCOCK 1897).pdf1,69 MBAdobe PDFVisualizar/Abrir


Este item está licenciada sob uma Licença Creative Commons Creative Commons