DSpace logo

Use este identificador para citar ou linkar para este item: http://repositorioinstitucional.uea.edu.br//handle/riuea/2249
Registro completo de metadados
Campo DCValorIdioma
dc.contributor.authorOliveira, Juan Campos de-
dc.date.available2020-03-12-
dc.date.available2020-03-12T14:29:27Z-
dc.date.issued2018-08-29-
dc.identifier.urihttp://repositorioinstitucional.uea.edu.br//handle/riuea/2249-
dc.description.abstractThe Aedes aegypti mosquito is an important vector in the transmission of dengue virus, urban yellow fever, zika and chikungunya. The main tool used to control this vector is conventional chemical insecticides. However, continuous use causes many negative factors, such as environmental contamination and selection of resistant populations. In this sense, the biological control by microorganisms is a biotechnological alternative in the control of vectors, mainly the bioinseticidas formulated with bacteria of the genus Bacillus. Considering the diversity of Bacillus, members of this genus are capable of synthesizing bioinsecticidal biomolecules against different orders of insects. In addition, they are able to synthesize biopolymers, antibiotics and enzymes such as chitinase expressed by the chi gene. These enzymes have the ability to hydrolyze β-1,4 glycosidic bonds between the chitin polymer units. After ingestion by the larvae of the insect, it causes degradation of the peritrophic membrane that separates the epithelium from the middle intestine of the intestinal lumen, whose main component is chitin. This factor is a favorable requirement for its use in the control programs of insect vectors and agricultural pests. In this study, 124 bacterial strains isolated from soil, water, plant and insect from different Amazonian environments were used. All strains were identified by phenotypic characteristics as belonging to the bacilli group, being one hundred and fourteen (91.4%) Gram positive and ten (8.6%) Gram negative. In the molecular identification by amplification and sequencing of the 16S (rDNA) gene, 33 lines were identified, 27 belonging to the genus Bacillus, 4 to the genus Serratia, 1 to the genus Paenibacillus and 1 to the genus Achromobacter. In the molecular detection of the chi gene, six lineages (4.5%), BTAM27LB, 103PHAISP2, BTAM138LB, BTAM18NA, K2NA and R11ISP2 showed positive amplification, of which two were identified, BTAM 27- Bacillus sp. and R11ISP2-Bacillus amyloliquefaciens. In the selective bioassays of 124 lineages, 21 showed activity in Aedes aegypti larvae. The bioassays with the metabolic extracts produced by these 21 lineages cultivated in NA, LB and ISP2 medium demonstrated that 7 presented pathogenicity in the lyophilized culture and only 3 in the filtered supernatant. In another step, metabolic extracts produced by 9 strains cultured in chitin medium were evaluated, of which only 1 presented mortality in both the supernatant and lyophilized culture, presenting values corresponding to 100%. Thus, the selected strains present potential for the development of microbial bioinsecticides.pt_BR
dc.languageporpt_BR
dc.publisherUniversidade do Estado do Amazonaspt_BR
dc.rightsAcesso Abertopt_BR
dc.rightsAtribuição-NãoComercial-SemDerivados 3.0 Brasil*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/br/*
dc.subjectBioprospecçãopt_BR
dc.subjectMicrobiota amazônicapt_BR
dc.subjectEnzimas hidrolíticaspt_BR
dc.subjectInsetos vetorespt_BR
dc.titleSeleção de bacillus spp. da Amazonia brasileira portadores do gene Chi (quitinase) para o controle biológico de Aedes (stegomyia) aegypti(Linnaeus, 1762).pt_BR
dc.typeDissertaçãopt_BR
dc.date.accessioned2020-03-12T14:29:27Z-
dc.contributor.advisor1Tadei, Wanderli Pedro-
dc.contributor.advisor1Latteshttp://lattes.cnpq.br/6806722604010480pt_BR
dc.contributor.referee1Tadei, Wanderli Pedro-
dc.contributor.referee1Latteshttp://lattes.cnpq.br/6806722604010480pt_BR
dc.contributor.referee2Fonseca, Maria Dolores Pinheiro-
dc.contributor.referee2Latteshttp://lattes.cnpq.br/2306799349043803pt_BR
dc.contributor.referee3Procópio, Rudi Emerson de Lima-
dc.contributor.referee3Latteshttp://lattes.cnpq.br/2478199435796976pt_BR
dc.creator.Latteshttp://lattes.cnpq.br/2020048717853869pt_BR
dc.description.resumoO mosquito Aedes aegypti é um importante vetor na transmissão do vírus dengue, febre amarela urbana, zika e chikungunya. A principal ferramenta utilizada no controle deste vetor são os inseticidas químicos convencionais, porém, o uso contínuo provoca fatores negativos destacando-se a contaminação do meio ambiente e a seleção de populações resistentes. Neste sentido, o controle biológico por microrganismos é uma alternativa biotecnológica no controle de vetores, principalmente os bioinseticidas formulados à base de bactérias do gênero Bacillus. Considerando a diversidade de Bacillus, estes apresentam capacidade de síntese de biomoléculas bioinseticidas contra diferentes ordens de insetos. Além disso, sintetizam biopolimeros, antibióticos e enzimas como, por exemplo, as quitinases expressas pelo gene Chi. Estas enzimas hidrolisam as ligações glicosídicas β-1,4 entre as unidades constituintes da quitina. Após a ingestão das quitinases pelas larvas do inseto, provoca a degradação da membrana peritrófica que separa o epitélio do intestino médio do lúmen intestinal, cujo principal componente é a quitina. Este fator é um requisito favorável para a sua utilização nos programas de controle de insetos vetores e pragas agrícolas. Neste estudo, foram utilizadas 124 linhagens bacterianas isoladas do solo, água, planta e inseto de diferentes ambientes amazônicos. Todas foram identificadas pelas características fenotípicas como pertencentes ao grupo dos bacilos, sendo, cento e quatorze (91,4%) Gram positivos e dez (8,6%) Gram negativos. Na identificação molecular pela amplificação e sequenciamento do gene 16S (rDNA), 33 linhagens foram identificadas, 27 pertencendo ao gênero Bacillus, 4 ao gênero Serratia, 1 ao gênero Paenibacillus e 1 ao gênero Achromobacter. Na detecção molecular do gene Chi, seis (4,5%) linhagens, BTAM27LB, 103PHAISP2, BTAM138LB, BTAM18NA, K2NA e R11ISP2, apresentaram amplificação positiva para este gene, dentre estas, duas foram identificadas, BTAM 27- Bacillus sp. e R11ISP2- Bacillus amyloliquefaciens. No bioensaio seletivo de 124 linhagens, 21 apresentaram atividade larvicida em Aedes aegypti. Os bioensaios com os extratos metabólicos produzidos por estas 21 linhagens ativas, cultivadas em meio NA, LB e ISP2, demonstraram que sete apresentaram patogenicidade nas células lisadas e apenas 3 no sobrenadante filtrado. Em outra etapa, foi avaliado os extratos metabólicos produzidos por 9 linhagens ativas cultivadas em meio contendo quitina, das quais apenas 1 apresentou mortalidade tanto no sobrenadante quanto em células liofilizadas, apresentando valores correspondentes a 100%. Sendo assim as linhagens selecionadas apresentaram potencial para o desenvolvimento de bioinseticidas microbianos.pt_BR
dc.publisher.countryBrasilpt_BR
dc.publisher.programPROGRAMA DE PÓS-GRADUAÇÃO EM BIOTECNOLOGIA E RECURSOS NATURAIS DA AMAZÔNIApt_BR
dc.relation.referencesABDEL-FATTAH, Y. R.; SAEED, H. M.; GOHAR, Y. M.; EL-BAZ, M. A. Process Biochem, 40 (5), pp. 1707-1714, 2005. ABDULLAH, R. R.; SUKAR, N. A.; GHANIM, N. M. Improving the efficiency of Bacillus thuringiensis against insects of different feeding habits by plasmid transfer technique. Life Sci J. 11: 308–18.2014. ABINAYA, M.; VASEEHARAN, B; DIVYA, M; SHARMILIB, A; GOVINDARAJANC, M. A; SHINE, K. J; KHALEDD, G. B. Bacterial exopolysaccharide (EPS)-coated ZnO nanoparticles showed highanti biofilm activity and larvicidal toxicity against malaria and Zika virus vectors. Journal of Trace Elements in Medicine and Biology. 45. 93-103.2018. AGGARWAL, C.; PAUL, S.; TRIPATHI, V.; PAUL, B.; KHAN, M. A. Chitinase producing Serratia marcescens for biocontrol of Spodoptera litura (Fab) and studies on its chitinolytic activities. Annals of Agricultural Research, Cairo, v.36, n.2, p.132-137, 2015. ALVES, S.B. Controle Microbiano de Insetos. Vol. 4. Fundação de Estudos Luiz de Queiroz, Piracicaba, São Paulo. 1163pp, 1998. ARGÔLO-FILHO, R. C; LOGUERCIO, L. L. Bacillus thuringiensis is an environmental pathogen and host-specificity has developed as an adaptation to human generated ecological niches. Insects. 5:62–91, 2014. ARMENGOL, G., ESCOBAR, M.C., MALDONADO, M.E., ORDUZ, S. Diversity of Colombian strains of Bacillus thuringiensis with insecticidal activity against dipteran and lepidopteran insects. J. Appl. Microbiol. 102, 77–88, 2006. AVRAMENKO, S. V. GALYNKIN. Características da biossíntese de enzimas quitinolíticas de Streptomyces griseus var. estreptomicina . Bioquímica Aplicada e Microbiologia. Vol. 46, edição 4 , pp 405–408, 2010. BARBOZA-CORONA, J. E.; NIETO-MAZZOCCO, E.; VELAZQUEZ-ROBLEDO, R.; SALCEDO-ARNANDEZ, R.; BAUTISTA, M.; JIMENEZ, B.; IBARRA, J. E. Cloning, sequencing, and expression of the chitinase gene ChiA74 from Bacillus thuringiensis. Appl Environ Microbiol. V.69, p.1023–1029, 2003. BASSLER, B. L.; YU, C.; LEE. Y. C.; ROSEMAN, S. Chitin utilization by marine bacteria. The Journal Of Biological Chemistry, Estados Unidos, v. 268, n. 36, p.24276-24286, 1991. BERINI, F; CACCIA, S; FRANZETTI, E; CONGIU, T; MARINELLI, F; CASARTELLI, M; TETTAMANTIA, G. Effects of Trichoderma viride chitinases on the peritrophic matrix of Lepidoptera. Pest Management Science, Sussex, v. 72, p. 980-989, 2016. BHATTACHARYA, D.; NAGPURE, A.; GUPTA, R. K. Bacterial Chitinases: Properties and Potential. Critical Reviews In Biotechnology, [s.l.], v. 27, n. 1, p.21-28, 2007. BOAKYE, E. Y,; LAWSON, I. Y D,; DANSO, S. K. A; OFFEI, S. K. Characterization and diversity of rhizobia nodulating selected tree legumes in Ghana. Symbiosis, v. 69, pp 89– 99.2016. BODE, H. B. Entomopathogenic bacteria as a source of secondary metabolites. Curr. Opin. Chem. Biol. 13: 224–230.2009. BOERA, W. D; PAULIEN, J. A, KLEIN, G. P; LAFEBERA, J. D; JANSEB, B. E; SPITB, J. W. W. Anti-fungal properties of chitinolytic dune soil bacteria. Soil Biology and Biochemistry, Grã-bretanha, v. 30, n. 2, p.193-203. 1998. BOICHENKO, V. A; KLIMOV, V. V; MIYASHITA, H; MIYACHI, S. Functional characteristics of chlorophyll d-predominanting photosynthetic ao oaratus in intact cells of Acaryochloris marina. Photosynth. Res. 65: 269-277, 2000. BOYCE, R.; LENHART, A.; KROEGER, A.; VELAYAUDHAN, R.; ROBERTOS, B.; HORSTICK, O. Bacillus thuringiensis israelensis (Bti) for the control of dengue vectors: systematic literature review. Tropical Medicine and International Health. V. 18 no5 p.564–577, 2013. BRAVO, A., GILL, S. S., SOBÉRON, M. Mode de action of Bacillus thuringiensis Cry e Cyt toxins and their potential for insect control. Toxicon 49, 423–435, 2007. CAI, Y; YAN, J; HU, X; HAN, B; YUAN, Z. Improving the insecticidal activity against resistant Culex quinquefasciatus by expression of chitinase gene chiAC in Bacillus sphaericus. Appl Environ Microbiol.12: 141–9, 2007. CAMPANINI, E. B., DAVOLOS, C. C., ALVES, E. C. C., LEMOS, M. V. F. Isolation of Bacillus thuringiensis strains that contain Dipteran-specific cry genes from Ilha Bela (São Paulo, Brazil) soil samples. Braz. J. Biol. 72, 243–247, 2012. CÁRDENAS R, SANDOVAL C, RODRÍGUEZ A, HERNÁNDEZ D, JAIMES E, MENDOZA J. Medio ambiente y protozoosis sistémicas. Características fisiográficas del entorno y su asociación en la leishmaniasis visceral. Acad. 2005; 3: 35-40, 2005. CHAIHARN M, LUMYONG S, HASAN N, PLIKOMOL A. Solid state cultivation of Bacillus thuringiensis R 176 with shrimp shell sandrice straw as a substrate for chitinase production. Ann Microbiol. V.63, p. 443-450, 2013. CHANDRASEKARAN, K. R.; REVATHI, A.; THANIGAIVEL, S. A. KIRUBAKARAN, S. SENTHIL-NATHAN. Bacillus subtilis chitinase identified by matrix-assisted laser desorption/ ionization time-of flight/time of flight mass spectrometry has insecticidal activity against Spodoptera litura Fab, Pestic. Biochem Physiol. 30 1 e 12, 2014. CHANDRASEKARAN, R., REVATHI, K., NISHA, S., KIRUBAKARAN, S. A., SATHISHNARAYANAN, S., SENTHIL- NATHAN, S. Physiological effect of chitinase purified from Bacillus subtilis against the tobacco cutworm Spodoptera litura Fab. Pesticide Biochemistry and Physiology, San Diego, v.104, n.1, p.65-71, 2012. CHAPIN, F. S.; ZAVALETA, E. S.; EVINER, V. T; NAYLOR, R. L.; VITOUSEK, P. M.; REYNOLDS, H. L. Consequences of changing biodiversity. Nature; 405: 234-4, 2000. CHEN, J; AIMANOVA, K; GILL, S. S. Functional characterization of Aedes aegypti alkaline phosphatase ALP1 involved in the toxicity of Cry toxins from Bacillus thuringiensis subsp. israelensis and jegathesan. Peptides. 98:78-85, 2017. CHERNIN, L. S.; WINSON, M. K; THOMPSON, J. M; HARAN, S; BYCROFT, B. W; CHET, I; WILLIAMS, P; STEWART, G.S. Chitinolytic activity in Chromobacterium violaceum: substrate analysis and regulation by quorum sensing. Journal of Bacteriology, 180 (17), pp. 4435-4441,1998. CHERNIN, L.; ISMAILOV, Z.; HARAN, S.; CHET, N. Chitinolytic Enterobacter agglomerans Antagonistic to Fungal Plant Pathogens. Applied And Environmental Microbiology, [s.l.], v. 61, n. 5, p.1720-1726, 1995. CLARRIDGE, JILL. E. Impact of 16S rRNA gene sequence Analysis for Identification of Bacteria on Clinical Microbiology and Infectious Diseases. Clinical Microbiology Reviews. 17: 840-862 pp, 2004. CODY, R. M. Distribution of Chitinase and Chitobiase in Bacillus. Current Microbiology, [s.l.], v. 19, p.201-205,1989. DELLAGLIO, F.; DICKS, L. M. T.; DUTOIT, M.; TORRIANI, S. Designation of ATCC334 in place of ATCC 393 (NCDO 161) as the neotype strain of Lactobacillus casei subsp. caseiand rejection of the name Lactobacillusparacasei. Int J Syst Bacteriol. 41: 340–342. 1991. DEMAIN, A. L.; FANG, A. The natural functions of secondary metabolites, Adv. Biochem. Eng. Biotech. 69. 2000. DESHPANDE, M. V. Enzymatic degradation of chitin & its biological applications. Journal of Scientific & Industrial Research, 45, pp. 273-281,1986. DIAS, D. G. S.; SILVA, S. F.; MARTINS, E. S.; SOARES, C. M. S.; FALCÃO, R.; GOMES, A. C. M. M.; PRAÇA, L. B.; DIAS, J. M. C. S.; MONNERAT, R.G. Prospecção de estirpes de Bacillus thuringiensis efetivas contra mosquitos. Embrapa Recursos Genéticos e Biotecnologia – Boletim de Pesquisa e Desenvolvimento, Brasília, DF. 2002. DJENANE, Z.; NATECHE, F.; AMZIANE, M., GOMIS-CEBOLLA, J., EL- AICHAR, F., KHORF, H., FERRÉ, J. Assessment of the antimicrobial activity and the entomocidal potential of Bacillus thuringiensis isolates from Algeria. Toxins 9, 139–158, 2017. DUO-CHUAN, L. Review of fungal chitinases. Mycopathologia. 161:345-360, 2006. EL-KERSH, T. A.; AHMED, A. M.; AL-SHEIKH, Y. A.; TRIPET, F.; IBRAHIM, M. S.; METWALLI, A. A. M. Isolation and characterization of native Bacillus thuringiensis strains from Saudi Arabia with enhanced larvicidal toxicity against the mosquito vector Anopheles gambiae (s.l.). Parasit Vectors 9, 647, 2016. ELLEUCH, J.; TOUNSI, S.; HASSEN, N. B. B.; LACOIX, M. N.; CHANDRE, F.; JAOUA, S.; ZGHAL, R. Z. Characterization of novel Bacillus thuringiensis isolates against Aedes aegypti (Diptera: Culicidae) and Ceratitis capitata (Diptera: Tephridae). Journal of Invertebrate Pathology, 124: 90–97, 2015. FERREIRA-DE-BRITO, A.; RIBEIRO, I. P.; MIRANDA, R. M.; FERNANDES, R. S.; CAMPOS, S. S.; SILVA, K. A. B.; CASTRO, M. G.; BONALDO, M. C.; BRASIL, P.; LOURENÇO-DE-OLIVEIRA, C. First detection of natural infection of Aedes aegypti with Zika virus in Brazil and throughout South America. Mem. Inst. Oswaldo. Cruz. 111, 655- 658, 2016. FORATTINI, O. P. Culicidologia Médica. Universidade de São Paulo, São Paulo Brasil. 880pp, 2002. GAO, H.; KHERA, E.; LEE, J. K.; WEN, F. Immobilization of Multi-biocatalystsin Alginate Beads for Cofactor Regeneration and Improved Reusability. Journal of Visualized Experiments, n. 110, p. 1–9, 2016. GARCIA-MARTINEZ, J.; ACINAS, S. G.; ANTON, A. I. Use of the 16S-23S ribossomal genes spacer region in studies of prokaryotic diversity. Journal of Microbiological Methods, v.36, n1, p. 55-64, 1999. GENISHEVA, Z.; TEIXEIRA, J. A.; OLIVEIRA, J. Production of white wine by Saccharomyces cerevisiae immobilized on grape pomace. Journal of the Institute of Brewing, v. 118, n. 2, p. 163–173, 2012. GENISHEVA, Z.; TEIXEIRA, J. A.; OLIVEIRA, J. M. Immobilized cell systems for batch and continuous wine making. Trends in Food Science and Technology, v. 40, n. 1, p. 33– 47, 2014. GEORGE, M.; ABRAHAM, T. E. Polyionichydrocolloids for the intestinal delivery of protein drugs: Alginate and chitosan -a review. Journal of Controlled Release, v. 114, n. 1, p. 1–14, 2006. GOBATTO, V.; GIANI, S. G.; CAMASSOLA, M.; DILLON, A. J. P.; SPECHT, A.; BARROS, N. M. Bacillus thuringiensis isolates entomopathogenic for Culex quinquefasciatus (Diptera, Culicidae) and Anticarsia gemmatalis (Lepidoptera: Noctuidae). Braz. J. Biol. 70, 1039–1046, 2010. GOTO, K.; OMURA, T.; HARA, Y.; SADAIE, Y. Aplication of the partial 16S rDNA sequence as an index for rapid identification of species in the genus Bacillus. The Journal of General and Applied Microbiology. v. 46, p. 1-8, 2000. GROBOILLOT, A.; BOADI, D. K.; PONCELET, D.; NEUFELD, R. J. Immobilization of cells for application in the food industry. Critical Reviews in Biotechnology, v. 14, n. 2, p. 75–107, 1994. GROVER, A. Plant Chitinases: Genetic Diversity and Physiological Roles. Critical Review sin Plant Sciences, v. 31, n. 1, p. 57–73, 2012. GUBLER, D. J. Resurgent vector-bome disease as a global health problem. Emerging infectious diseases, v.4, n.3, p.442-450, 1998. GULERIA, S.; WALIA, A.; CHAUHAN, A.; SHIRKOT, C. K. Immobilization of Bacillus amyloliquefaciens SP1 and its alkaline protease in various matrices for effective hydrolysis of casein. 3 Biotech, v. 6, n. 2, p. 1–12, 2016. GUO, S.; LI, X.; HE, P.; HO, H.; WU, Y.; HE, Y. Whole genome sequencing of Bacillus subtilis XF-1 reveals mechanisms for biological control and multiple beneficial properties in plants. J. Ind. Microbiol. Biotechnol. 42, 925–937, 2015. GUO, X.; XU, P.; ZONG, M.; LOU, W. Purification and characterization of alcaline chitinase from Paenibacillus pasadenensis CS0611. Cuihua Xuebao/Chinese Journal of Catalysis, v. 38, n. 4, p. 665–672. 2017. GUPTA, C. P.; BHAVESH KUMAR, R. C.; MAHESHWARI, D. K. Chitinase-mediated destructive antagonistic potential of Pseudomonas aeruginosa GRC1 against Sclerotinia sclerotiorum causing stem rot of peanut. Biocontrol, [s.l.], v. 51, n. 6, p.821-835, 2006. HABIB, M. E. M.; ANDRADE, C. F. S. Bactérias entompatogênicas In: Alves, S.B. Controle microbiano de insetos. Piracicaba: FEALQ. 12, 383-446p, 1998. HALDER, S. K.; MAITY, C.; JANA, A.; PATI, B. R.; MONDAL, K.C. Chitinolytic enzymes from the newly isolated Aeromonas hydrophila SBK1: study of the mosquitocidal activity. Biocontrol, [s.l.], v. 57, n. 3, p.441-449, 2012. HALDER, S. K.;MAITY, C.; JANA, A.; GHOSH, K. A.; PAUL, T.; KUMAR, P. M.; PATI, B. R.; MONDAL, K. C. Chitinases biosynthesis by immobilizedAeromonas hydrophila SBK1by prawn shells valorization and application of enzyme cock tail for fungal protoplast preparation. Journal of Bioscience and Bioengineering, v. 117, n. 2, p. 170–177, 2014. HAMID, R.; KHAN, M. A.; AHMAD, M.; AHMAD, M. M.; ABDIN, M. Z; MUSARRAT, J; JAVED, S. Chitinases: An update. J Pharm Bioallied Sci, v. 5, p. 21–29. 2013. HAN, Y.; LIM, H. K.; LEE, J. M.; JANG, Y. G. Architecture of the Saccharomyces cerevisiae SAGA transcription coactivator complex. EMBO J 33 (21): 2534-46. 2014. HAWK, C. T.; LEARY, S. L. Formulary of laboratory animals. American College of Laboratory Animal Medicine, Iowa State University Press / AMES, 101pp, 1995. HOWARD, M. B.; EKBORG, N. A.; WEINER. R. M.; HUTCHESON, S. W. Detection and characterization of chitinases and other chitin-modifying enzymes. Journal of Industrial Microbiology and Biotechnology, v. 30, n. 11, p. 627–635, 2003. IBARRA, J. E.; DEL RINCON, M. C.; ORDUZ, S.; NORIEGA, D.; BENINTENDE, G.; MONNERAT, R. A diversity of Bacillus thuringiensis strains from Latin America with insecticidal activity against diferente mosquito species. Appl Environ Microbiol. 69: 5269– 74, 2003. IDRIS, A.; SUZANA, W. Effect of sodium alginate concentration, bead diameter, initial Ph and temperature on lactic acid production from pine apple waste using immobilized Lactobacillus delbrueckii. Process Biochemistry, v. 41, n. 5, p. 1117–1123, 2006. IKEDA, A. C.; BASSANI, L. L.; ADAMOSKI, D.; STRINGARI, S.; CORDEIRO, V. K.; GLIENKE, C.; STEFFENS, M. B. R.; HUNGRIA, M.; GALLI-TERASAWA, L. V. Morphological and genetic characterization of endophytic bacteria isolated from roots of different maize genotypes. Microbial Ecology, v. 65: p.154-160, 2013. IQBAL, M.; SAEED, A. Novel method for cell immobilization and its application for production of organic acid. Letters in Applied Microbiology, v. 40, n. 3, p. 178–182, 2005. ISLAM, R., DATTA, B. Diversity of chitinases and their industrial potential. Int. J. Appl. Res. 1, 55–60, 2015. ITOH, T.; HIBI, T. A.; FUJII,Y. A.; SUGIMOTO, B. I.; FUJIWARA, A. A.; SUZUKI, F. A.; IWASAKI,A.Y.; KIM,A. J.; TAKETO,C. A.; KIMOTO,D. H. Cooperative degradation of chitin by extracelular and cell surface-expressed chitinases from Paenibacillus sp. strain FPU-7. Applied and Environmental Microbiology, v. 79, n. 23, p. 7482–7490, 2013. JUÁREZ-HERNÁNDEZ, E.; CASADOS-VÁZQUEZ, L. E.; BIDESHI, D. K.; SALCEDOHERNÁNDEZ, R.; BARBOZA-CORONA, J. E. Role of the C-terminal and chitin insertion domains on enzymatic activity of endochitinase ChiA74 of Bacillus thuringiensis. International Journal of Biological Macromolecules, Guildford, v.102, p.52-59, 2017. JUNG, W. J.; MABOOD, F.; SOULEIMANOV, A.; PARK, R. D.; SMITH, D. L.Chitinases produced by Paenibacillus illinoisensis and Bacillus thuringiensis subsp. pakistani degrade Nod factor from Bradyrhizobium japonicum. Microbiological Research, [s.l.], v. 163, n. 3, p.345-349, 2008. KAMIL, Z.; SALEH, M.; MOUSTAFA, S. Isolation and identification of Rhizosphere Soil Chitinolytic Bacteria and their Potential in Antifungal Biocontrol. Global Journal of Molecular Sciences, (s.1.), v.2, n.2, p.57-66, 2007. KELKENBERG, M.; ODMAN-NARESH, J.; MUTHUKRISHNAN, S.; MERZENDORFER, H. Chitin is a necessary component to maintain the barrier function of the peritrophic matrix in the insect midgut. Insect Biochemistry and Molecular Biology, Oxford, v. 56, p. 21-28, 2015. KIDIBULE, P. E.; PALOMA, S. M.; JIMENEZ-ORTEGA, E.; RAMIREZ-ESCUDERO, M.; MIQUEL, M. C.; FRANCISCO, J. P.; SANZ-APARICIO, J.; FERNANDEZ-LOBATO, M. Use of chitin and chitosan to produce new chitooligosaccharides by chitinase Chit42: enzymatic activity and structural basis of protein specificity. Microb Cell Fact . 2018. LIMA, J. B. P.; VALLE, D. Manutenção das colônias de Aedes aegypti. Protocolo LAVICAF – FIOCRUZ. Rio de Janeiro, 2007. LOBO, K. S.; SOARES-DA-SILVA, J.; SILVA, M. C.; TADEI, W. P.; POLANCZYK, R. A .; PINHEIRO, V. C. S. Isolation and molecular characterization of Bacillus thuringiensis found in soils of the Cerrado region of Brazil, and their toxicity to Aedes aegypti larvae. Rev. Brasil. Entomol. 2017. LOGAN, N. A.; POPOVIC, T.; HOFFMASTER, A. Bacillus and other aerobic endospore forming bacteria. In: Murray P R, Baron E J, Jorgensen J H, Landry M L, Pfaller M A. Editors. Manual of Clinical Microbiology.Washington D.C: ASM Press. pp. 455- 473, 2007. LOMBARD, V.; GOLACONDA, R. H.; DRULA, E.; COUTINHO, P. M.; HENRISSAT, B. The Carbohydrate active enzymes database (CAZy) in 2013. Nucleic Acids Res 42: D490–D495, 2014. MADIGAN, M. T.; MARTINKO, J. M.; PARKER, J. (Eds.). Microbiologia de Brock. 12ª Edição. Porto Alegre: Editora Artmed, 2010. MANDIGAN, M. T.; MARTINKO, J. M.; PARKER, J. (Eds.). Microbiologia de Brock. 12ª Edição. Porto Alegre: Editora Artmed, 2012. MARTINEZ, M. B.; TADDEI, C. R. Métodos de Diagnóstico. In: Trabulsi L R, Nawani N N, Kapadnis B P. Chitin degrading potential of bacteria from extreme and moderate environment. Indian J. Exp. Biol. V.41(3), p. 248-54, 2008. MINISTERIO DA SAÚDE (2017). Febre Zika .http://bvsms.saude.gov.br/bvs/publicacoes/virus_zika_brasil_resposta_sus.pdf. Acessado em 12/03/18 MUBARIK, N. R.; MAHAGIANI, I.; ANINDYAPUTRI, A.; SANTOSO, S.; RUSMANA, I. Chitinolytic bacteria isolated from chili rhizosphere: chitinase characterization and its application as biocontrol for White fly (Bemisia tabaci Genn.). Am JAgr Biol Sci 5:430-5, 2010. NILSSON, W.; STROM, M. S. Detection and identification of bacterial pathogens of fish in kidney tissue using terminal restriction fragments length polymorphism (T-RFLP) analysis of 16S rRNA genes. Diseses of Aquatic Organisms, 43:175-185, 2002. NURDEBYANDARU, N.; MUBARIK, N. R.; PRAWASTI, T. S. Chitinolytic Bacteria Isolated from Chili Rhizosphere: Chitinase Characterization and Application as Biocontrol for Aphis gossypii. Microbiology Indonesia, [s.l.], v. 4, n. 3, p.103-107, 2010. OKAY, S.; ÖZDAL, M.; KURBANOǦLU, E. B. Characterization, antifungal activity, and cell immobilization of a chitinase from Serratia marcescens MO-1. Turkish Journal of Biology, v. 37, n. 6, p. 639–644, 2013. OLIVEIRA, S. M.; SILVA, D. F.; SANTOS, I. N.; CORRÊA, C. V. P.; LIBERAL, T. C. DE F., BRANCO, F. L. C.; COLARES, C. N. J.; ESCHER, S. K. S.; ISHIDA, J. K.; MUI,T. S.; ARAUJO, J. M.; AMORIM, E. L. C. Prospecção de enzimas de interesse industrial produzidas por actinobactéria isolado de solo na Amazônia. Scientia Plena 13, 031001, 2017. OOTANI, M. A.; RAMOS, A. C. C.; AZEVEDO, E. B.; GARCIA, B. O.; SANTOS, S. F.; AGUIAR, R. W. S. Avaliação da toxicidade de estirpes de Bacillus thuringiensis para Aedes aegypti Linneus (Díptera: Culicidae). J. Biotec. Biodivers. 2, 37–43, 2011. ORRILLO, E. O.; GARCIDUENAS, L. E. S.; ROGEL, M. A.; GONZÁLES, V.; PERALTA, H.; MORA, J; MARTÍNEZ, J. Taxonomy of Rhizobia and Agrobacteria from the Rhizobiaceae Family in Light of Genomics. Systematic and Applied Microbiology, v. 38, p. 287-291, 2015. PATEL, A. K.; AHIRE, J. J.; PAWAR, S. P.; CHAUDHARI, B. L.; CHINCHOLKAR, S. B. Comparative accounts of probiotic characteristics of Bacillus spp. isolated from food wastes. Food Res Int 42 (4):505–510. 2009. PATIL, C. D.; PATIL.; B. K. SALUNKE, R. B. Insecticidal potency of bacterial species Bacillus thuringiensis SV2 and Serratia nematodiphila SV6 against larvae of mosquito species Aedes aegypti, Anopheles stephensi, and Culex quinquefasciatus. Parasitol. Res. 110: 1841–1847, 2012. PEREIRA, E.; TELES, B.; MARTINS, E.; PRACA, L.; SANTOS, A.; RAMOS, F.; BERRY, C.; MONNERAT, R. Comparative toxicity of Bacillus thuringiensis berliner strains to larvae of Simuliidae (Insecta: Diptera). Bt Res. 4, 8–13, 2013. PIGOTT, C. R.; ELLAR, D. J. Role of receptors in Bacillus thuringiensis crystal toxin activity. Microbiology and Molecular Biology Reviews, 71: 255-281, 2007. PRAÇA, L. B.; BATISTA, A. C.; MARTINS, É. S.; SIQUEIRA, C. B.; DIAS, D. G. S.; GOMES, A. C. M. M.; FALCÃO, R.; MONNERAT, R. G. Estirpes de Bacillus thuringiensis efetivas contra insetos das ordens Lepidoptera. Coleoptera e Diptera. Pesquisa Agropecuária Brasileira, Brasília, pp. 11–16.2004. PRASANNA, L.; EIJSINK, V. G.; MEADOW, R.; GASEIDNES, S. A novel strain of Brevibacillus laterosporus produces chitinases that contribute to its biocontrol potential. Applied Microbiology and Biotechnology, Berlin, v.97, p.1601-1611, 2013. QUIMBAYO, M.; RÚA-URIBE, G.; PARRA-HENAO, G.; TORRES, C. Evaluation of lethal ovitraps as a strategy for Aedes aegypti control. Biomedica 34, 473–482, 2014. RAMÍREZ-LEPE, M.; RAMÍREZ-SUERO, M. Biological Control of Mosquito Larvae by Bacillus thuringiensis subsp. Israelensis. Insecticides – Pest Engineering. Dr. Farzana Perveen (Ed.), ISBN: 978-953-307-895-3, 2012. RANI, R. P.; ANANDHARAJ, M.; SABHAPATHY, P.; RAVINDRAN, A. D. Physiochemical and biological characterization of novel exopolysaccharide produced by Bacillus tequilensis FR9 isolated from chicken. Int J Biol Macromol 96:1–10, 2017. REBIÈRE, C. Identificação molecular e fenotípica de bactérias de solo rizosférico com tolerância ao fungicida Mancozeb, em Manaus, Estado do Amazonas, Brasil. Ver Pan-Amaz Saude; 6(2): 37-43, 2015. REVATHI, K.; CHANDRASEKARAN, R.; THANIGAIVEL, A.; KIRUBAKARAN, S. A; SATHISH-NARAYANAN, S. SENTHIL-NATHAN. Effects of Bacillus subtilis metabolites on larval Aedes aegypti L. Pestic. Biochem. Physiol. 107, 369e376, 2013, REYES, M. L.; CALDERÓN, G. E.; GUTIÉRREZ, N. A.; GONZÁLEZ, C. R.; AZAOLA, E. A.; BARRANCO, F. E. Caracterización y expresión del gen quitinasa chit II de Lecanicillium lecanii en cultivo sólido. Rev Mex Ing Quím 11: 97-104, 2012. ROSA DA SILVA, J. L; SCHWALM, F. U; SILVA, E. C; MARISA DA COSTA, RALF HEERMANN; O. S. Larvicidal and Growth-Inhibitory Activity of Entomopathogenic Bacteria Culture Fluids Against Aedes aegypti (Diptera: Culicidae). Journal of Economic Entomology, 110(2), 2017. SAHAIKH, S. A.; DESHPANDE, M. V. Chitinolytic enzymes: their contribution to basic and applied research. World Journal of Microbiology and Biotechnology, v. 9, p. 468-475, 1993. SCHMIDT, T. R.; SCOTT, E. J.; DYER, D. W. Whole-genome phylogenies of the family Bacillaceae and expansion of the sigma factor gene family in the Bacillus cereus speciesgroup. BMC Genomics, 12(430): 1-16, 2011. SCHULZ, D.; PEREIRA, M. A.; BONELLI, R. R.; NUNES, M. M.; BATISTA, C. R. V. Bacteriocins: mechanism of action and use in food preservation. Alim. Nutr., Araraquara, v.14,n.2,p.229-235, 2003. SENOL, M. H. N.; DIKBAS, N.; KOTAN, R. Purification of Chitinase enzymes from Bacillus subtilis bacteria TV-125, investigation of kinetic properties and antifungal activity against Fusarium culmorum. Annals of Clinical Microbiology and Antimicrobials, v. 13, n. 1, p. 1–7, 2014. SHA, L.; SHAO, E.; GUAN, X.; HUANG, Z. Purification and partial characterization of intact and truncated chitinase from Bacillus thuringiensis HZP7 expressed in Escherichia coli. Biotechnology Letters, Dordrecht, v.38, p.279-284, 2016. SOARES-DA-SILVA, J.; PINHEIRO, V.C.S.; LITAIFF-ABREU, E.; POLANZYK, R.A.; TADEI, W.P. Isolation of Bacillus thuringiensis from the state of Amazonas, in Brazil, and screening against Aedes aegypti (Diptera, Culicidae). Revista Brasileira de Entomologia. 59: 1-6, 2015. SOARES-DA-SILVAA, J.; QUEIRÓS, S. G.; AGUIAR, J. S.; VIANA, J. L.; MARIA DOS R.A.V.; SILVA, M. N.; PINHEIRO, V. C.S.; POLANCZYK, R. A.; CARVALHO-ZILSEE, G. A.; TADEI, W. P. Molecular characterization of the gene profile of Bacillus thuringiensis Berliner isolated from Brazilian ecosystems and showing pathogenic activity against mosquito larvae of medical importance. Revista Brasileira de Entomologia. 59: 1-6, 2017. SOMEYA, N.; NAKAJIMA, M.; HIRAYAE, K; HIBI, T; AKUTSU, K. Synergistic antifungal activity of chitinolytic enzymes and prodigiosin produced by biocontrol bacterium, Serratia marcescens strain B2 against gray mold pathogen, Botrytis cinérea. Journal of General Plant Pathology, 67 (4), pp. 312-317, 2001. SOWMYA, B.; GOMATHI, D.; KALAISELVI, M.; RAVIKUMAR, G.; ARULRAJ, C.; CHANDRASEKAR,U. Production and Purification of Chitinase by Streptomyces sp. from Soil. Journal of Advanced Scientific Research, v. 3, n. 3, p. 25–29, 2012. SUBBANNA, A. R. N. S.; RAJASEKHARA, H.; STANLEY, J.; MISHRA, K. K.; PATTANAYAK, A. Pesticidal prospectives of chitinolytic bacteria in agricultural pest management. Soil Biology and Biochemistry, Oxford, v.116, p.52-66, 2018. SURYANTO, D.; IRAWATI, N.; MUNIR, E. Isolation and Characterization of Chitinolytic Bacteria and Their Potential to Inhibit Plant Pathogenic Fungi. Microbiol Indones, v. 5, n. 3, p. 144-148, 2011. SUZUKI, K.; SUGAWARA, N.; SUZUKI, M.; UCHIYAMA, T.; KATOUNO, F.; NIKAIDOU, N.; WATANABE, T. Chitinases A, B, and C1 of Serratia marcescens 2170 produced by recombinant Escherichia coli: enzymatic properties and synergism on chitin degradation. Bioscience. Biotechnology and Biochemistry, 66 (5), pp. 1075-1083, 2002. TADEI, W. P.; THATCHER, B. D.; SANTOS, J. M. M.; SCARPASSA, V. M.; RODRIGUES, I. B.; RAFAEL, M. S. Ecologic observations on anopheline vectors of malaria in the brasilian Amazon. Amer. J. Trop. Med. Hyg., 59: 325-35,1998. TADEI, W. P; RODRIGUES, I. B; RAFAEL, M. S; SAMPAIO, R. T. M.; MESQUITA, H. G; PINHEIRO, V. C. S.; ZEQUI, J. A. C.; ROQUE, R. A.; DOS SANTOS, J. M. M.. Adaptative processes control measures, genetic background, and resilience of malária vectors and environmental changes in the Amazon region. Hydrobiologia (The Hague. Print), v. 1, p. 1-18, 2017. USHARANI, T. R.; GOWDA, T. K. S. Cloning of chitinase gene from Bacillus thuringiensis. Indian Journal of Biotechnology. V. 10, p. 264-269, 2011. VELIZ, E. A.; MARTÍNEZ, H. P.; HIRSCH, A. M. Chitinase-producing bacteria and their role in biocontrol. AIMS Microbiology, Spring field, v.3, p.689-705, 2017. VOS, P.; GARRITY, G.; JONES, D.; KRIEG, N. R.; LUDWIG, W.; RAINEY, F. A.; SCHLEIFER, K. H.; WHITMAN, W. B. (Eds.). Bergey's Manual of Systematic Bacteriology. Vol 3. The Firmicutes.1450 pp, 2009. WANG, K.; YAN, P. S.; CAO, L. X. Chitinase from a novel strain of Serratia marcescensJPP1for biocontrol ofaflatoxin: Molecular characterization and production optimization using response surface methodology. BioMed Research International, v, 2014. WHO - World Health Organization. Guidelines for laboratory and field testing of mosquito larvicides. WHO/CDS/WHOPES/GCDPP/2005.13, 2005. WHO− World Health Organization, 2017. Draft Global Vector Control Response 2017– 2030. WILKERSON, R. C.; LINTON, Y. M.; FONSECA, D. M.; SCHULTZ, T. R.; PRICE, D. C.; STRICKMAN, D. A. Making mosquito taxonomy useful: A stable classification of tribe Aedini that balances utility with current knowledge of evolutionary relation ships. Plos one. 0133602, 2015. WRBU - Walter Reed Biosystematics Unit. 2018. Mosquito identification resources. (http://www.wrbu.org/VeclD MQ.html). Acesso em 26 de Julho de 2018. YAN, L.; JING, T.; YUJUN, Y.; BIN, L. I.; HUI, L. I.; CHUN, L. I. Biocontrol Efficiency of Bacillus subtilis SL-13 and characterization of an Antifungal Chitinase. Biotechnology And Bio engineering: Chinese Journal of Chemical Engineering, [s.l.], v. 19, n. 1, p.128-134, 2011. YOON, J. H.; KIM, I. G.; KANG, K. H.; KWANG,T.;YONG. P. H. Bacillus marisflavisp. nov. and Bacillus aquimaris sp. nov., isolated from sea water of a tidal flat of the Yellow Sea in Korea. International Journal of Systematic and Evolutionary Microbiology, 53:1297- 1303, 2003. ZARA, A. L.; SANTOS, S. M. D.; FERNANDES-OLIVEIRA, E. S.; CARVALHO, R.G.; COELHO, G. E. Estratégias de controle do Aedes aegypti: uma revisão. Epidemiologia e Serviços de Saúde, 25: 391-404, 2016. ZHANG, Q.; HUA, G.; ADANG, M. J. Effects and mechanisms of Bacillus thuringiensis crystal toxins for mosquito larvae. Insect Science, 24: 714-729, 2016.pt_BR
dc.publisher.initialsUEApt_BR
Aparece nas coleções:DISSERTAÇÃO - MBT Programa de Pós-Graduação em Biotecnologia e Recursos Naturais da Amazônia



Este item está licenciada sob uma Licença Creative Commons Creative Commons