DSpace logo

Use este identificador para citar ou linkar para este item: http://repositorioinstitucional.uea.edu.br//handle/riuea/2248
Registro completo de metadados
Campo DCValorIdioma
dc.contributor.authorCarmo , Cynara da Cruz-
dc.date.available2020-03-12-
dc.date.available2020-03-12T14:28:22Z-
dc.date.issued2005-11-24-
dc.identifier.urihttp://repositorioinstitucional.uea.edu.br//handle/riuea/2248-
dc.description.abstractEnzymes of hydrolytic nature such as cellulase, xylanase and glicosidase and/or others agents non-enzymatic produced by wood decay fungi, show a huge biotechnological potential. I order to investigate hydrolytic potential of two amazonian wood decay fungi, Pycnoporus sanguineus (L.:F.) Murr and Panus crinitus (L. Ex. Fr.) Singer, studies on influence of pH, temperature and medium at growth of fungi as well as determination of enzymatic activity of FPA, -glucanase and -xylosidase on stationary and agitation conditions at 180 rpm were done. Fungi studied shown preference by acid conditions (pH optimum 5,0) and temperature optimum between 30- 35° C. P. sanguineus had these optimum conditions at sabouraud medium supplemented with peptone while P. crinitus at malt extract medium. Temperature had more influence on fungal growth. Enzymatic activity were better at agitation conditions. At stationary condition with no glucose in the medium it wasn't detected FPA activity in both fungi and only to P. sanguinues the endo--glucanse activity was detected. At stationary growth the addition of glucose increase about 38% endo--glucanase activity for P. sanguineus but it not contributed to increase this activity for P. crinitus. For both fungi the -xylosidase activity at stationary conditions and presence of glucose it wasn't followed by endo-glucanase activity. P. crinitus presents a greater hemicelulolytic activity become evident by greater -xylosidase activity while P. sanguineus showed great celulolitic activity. There is need studies to find new medium to maximize hydrolytic enzyme activity to get viable purification to possible biotechnological uses.pt_BR
dc.languageporpt_BR
dc.publisherUniversidade do Estado do Amazonaspt_BR
dc.rightsAcesso Abertopt_BR
dc.rightsAtribuição-NãoComercial-SemDerivados 3.0 Brasil*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/br/*
dc.subjectEnzimas hidrolíticaspt_BR
dc.subjectXilosidasept_BR
dc.subjectGlicosidasept_BR
dc.subjectFPApt_BR
dc.subjectFungos basidiomicetospt_BR
dc.titleAtividade enzimatica hidrolítica dos fungos amazônicos pycnoporus sanguineus (l.f.) Murr e panus crinitus (l.ex. Fr.) Singerpt_BR
dc.title.alternativeHydrolytic enzymatic activity of Amazonian fungi pycnoporus sanguineus (l.f.) Murr and panus crinitus (l.ex. Fr.) Singer.pt_BR
dc.typeDissertaçãopt_BR
dc.date.accessioned2020-03-12T14:28:22Z-
dc.contributor.advisor-co1Roland, Ivete de Araújo-
dc.contributor.advisor-co1Latteshttp://lattes.cnpq.br/1018334565478759pt_BR
dc.contributor.advisor1Silva , Ademir de Castro e-
dc.contributor.advisor1Latteshttp://lattes.cnpq.br/5162043375426666pt_BR
dc.contributor.referee1Carmo, Cynara da Cruz-
dc.contributor.referee1Latteshttp://lattes.cnpq.br/5843265491876998pt_BR
dc.contributor.referee2Cordeiro , Milade Carneiro-
dc.contributor.referee2Lattes1686354643228538pt_BR
dc.contributor.referee3Lúcia Alencar, Maia-
dc.contributor.referee3Lattes7916419221203458pt_BR
dc.creator.Latteshttp://lattes.cnpq.br/5843265491876998pt_BR
dc.description.resumoAs enzimas de natureza hidrolíticas como celulases, xilanases e glicosidases e/ou outros agentes não enzimáticos produzidos por fungos que degradam a madeira, apresentam um enorme potencial biotecnológico. Com o intuito de investigar o potencial hidrolítico de dois fungos amazônicos degradadores de madeira, Pycnoporus sanguineus (L.:F.) Murr e Panus crinitus (L. ex. Fr.) Singer, foi realizado o estudo sobre a influência do pH, temperatura e meio de cultura no crescimento desses fungos e determinada a atividade enzimática FPA, endo- ß-glucanase, ß-glicosidase e ßxilosidase, sob a condição estacionária e sob agitação a 180 rpm. Os fungos estudados mostraram preferência por meio ácido (pH ótimo 5,0) e temperatura ótima na faixa de 30-35 °C. Para P. sanguineus essas condições ótimas foram obtidas em meio sabouraud acrescido de peptona, enquanto que para Panus crinitus foi extrato de malte. O parâmetro temperatura foi o que mais influenciou no crescimento fúngico. A atividade enzimática de ambos os fungos foi maior sob a condição de agitação. Na condição estacionária e sem a presença de glicose no meio de cultura não foi detectada atividade FPA para ambos os fungos e somente para P. sanguineus foi detectada atividade endo--glucanase . Nesta condição estacionária o acréscimo de glicose ao meio aumentou cerca de 38% a atividade endo--glucanase no P. sanguineus, mas não contribuiu para aumento dessa enzima no Panus crinitus. Para ambos os fungos a atividade de -xilosidase em condição estacionária e meio de cultura com glicose não foi acompanhada pela atividade endo-glucanase. O estudo revelou que o fungo Panus crinitus apresenta uma maior atividade hemicelulolítica, evidenciado pela maior atividade -xilosidase , enquanto que o P. sanguineus maior atividade celulolítica. Fazse mister, portanto, estudos posteriores para se buscar novos meios de cultura para a obtenção da máxima atividade dessas enzimas de natureza hidrolítica visando viabilizar a purificação para possíveis usos biotecnológicos.pt_BR
dc.publisher.countryBrasilpt_BR
dc.publisher.programPrograma de Pós-Graduação em Biotecnologia e Recursos Naturais da Amazôniapt_BR
dc.relation.referencesADLER, E. Lignin Chemistry – Past, Present and Future – Wood Science Technology 11: 169-218. 1977. ALMEIDA, Vera Maria Fonseca de - pesquisadora do Instituto Nacional de Pesquisa da Amazônia (INPA). 2001. ANDERSON, J. & SMITH, J.E. effects of temperatura on filamentous fungi. IN: Inhibition and inactivation of vegetative microbes. Symposium Society for Applied Bacteriology pp. 191-218. Edited by F.A. Skinner and W.G.Hugo. London and New York: Academic Press. 1976. ANDERSON, J.g. Temperature-induced development. IN.: The filamentous fungi. Vol.3. Developmental Mycology. Edited by John E. Smith & David R. Berry. London: Edward Arnod Punls. 1978. ARCHER, David B.; MACKENZIE, D.A & JEENES, D.J. 2001. Genetic engeneering: yeasts and filamentous fungi. IN.: Basic Biotechnology, Edited by Colin Ratledge and Bjorn Kristiansen, Cambridge University Press. Cambridge, UK. pp 96-126. ARNOLD, A E.; MAYNARD, Z.; GILBERt, G.S. Fungal endophytes in dicotyledonous neotropical trees: patterns of abundance and diversity. Mycological Research 105: 1502-1507. 2001 ARNOLD, A E.; MAYNARD, Z.; GILBERt, G.S; Coley, P.D.; Kursar, T.A . Are tropical fungal endophytes hyperdiverse ? Ecology Letters 3: 267-274. 2000. AUST, S.D. Degradation of Environmental Pollutants by Phanerochaete. 1990. BAILEY,P.J; LIESE,W.; ROESCH, R.; KEILICH, G. ; AFTING, E.G. Cellulase (-1,4- glucan 4 glucanohydrolase) from the wood-degrading fungus Polyporus schweinitzu Fr. Biochim. Biophys. Acta 185: 381-191. 1971. BARATA, Lauro E. S. Instituto de Química da Universidade Estadual de Campinas.2000 BARR, D. P. Mechanisms White Rot Fungi Use to Degrade Pollutants Environmental Groups of Fungi. Microbiology Ecology. 21: 73-84. 1994. BETTUCI, L. & GUERREO, R. T. Hongos Xilófagos: Estúdio de Cultivos. Bol. Univ. De la Rep. Montivideo, n. 188, p. 3-40, 1971. BLANCHETTE, R. A. Wood decomposition by Phellinus pini: a scanning electron microscopy study. Can. J. Bot. 58: 1496-1503. 1980. BLANCHETE, R. A. Delignification by Wood-Decay Fungi Annual Reviews Phytopatology 29: 381-398. 1991. BOOMINATHAN, K. e REDDY, A. Fungal Degradation of Lignin: Biotechnological Applications. Vol. 4. Editado por Marcel Dekker Inc, N. York. 1992). BRADFORD, M.M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry v.72, p. 248-54, 1976. CAO, W.G.; CRAWFORD, D.L. Purification and some properties of b-glucosidase from the ectomycorrhizal fungus Pisolithus tinctorius strain SMF. Canadian Journal of Microbiology, v.39, p. 529-35, 1993. CARVALHO, S. M. S. Análise das enzimas amilolíticas produzidas por microrganismos isolados do Tarubá. Tese de Mestrado. Manaus – Amazonas. 1997. CASTRO e SILVA, A; ESPOSITO, E.; FERRAZ, A : DURÁN, N. 1993. Decay of Parqkia oppositifolia in Amazonian by Pycnoporus sanguineus and Potential Use for Effluent Decolorization. Holzforschung 47(5): 361-368. 1993 CASTRO E SILVA, A. Micromorfologia da degradação de madeira da espécie amazônica Hura creptans L. Por fungos lignolíticos pertencentes a classe Hymenomycetes. Tese de doutorado. Manaus: INPA/FUA. 1996a CASTRO e SILVA, A. e AGUIAR, I. J. A. Micromorfologia da Degradação da Madeira da Espécie Amazônica Hura crepitans L. Por Fungos Lignolíticos Pertencentes à Classe Hymenomycetes . Acta Amazônia, V 31, nº 3, p397 – 418, 2001b. CASTRO E SILVA, et al. O inexplorado potencial enzimático da biodiversidade amazônica. 2002c. CASTRO E SILVA, A. Madeiras da Amazônia: características gerais, nome vulgar e usos. Manaus: Edição SEBRAE. 2002d. CLEMONT,S.; CHARPENTIER, M.; PERCHERON,F. Polysaccharidases from Sporocytophaga myxococcoides: -mannanase, cellulase and xylanase. Bull. Soc. Chim. Biol. 52: 1481-1495. 1970. COUGHLAN, M.P. Cellulases: production, properties and applications. Biochemical Soc. Trans.., v13, p.405-06, 1985. COTÊ, W.A. Wood ultrastructure – An atlas of electron micrographs. Seatle: University of Washington Press, 1967, 96p. CRISAN, E.V.,Current concepts of themophiklismo and the thermophilic fungi. Mycologia 16:1171-1198. 1973. DAHM, H.; STREZELCZYK, E. Impact of vitamins on cellulolytic, pectolytic and proteolytic activity of mycorrhizal fungi. Symbiosis, v.18, p. 233-50, 1995. D’ALMEIDA M.L.O. em “Composição Química dos Materiais” em Celulose e Papel – Tecnologia de Fabricação da Pasta Celulósica. Vol.I. Ed. IPT – São Paulo, SP, 1982. DEKKER, R.F.H.; RICHARDS, G.N. Hemicellulases: Ocorrence, Purification, Physicochemical Properties and Mode of Action. Adv. Carbohydr. Chem. Biochem. 32: 277-352. 1976. DEKKER, R.F.H.. Hidrolysis Enzimática de Lignocelulósicos. Apostila do IX Curso International de Ingieneria Bioquimica. Escuela de Ingieneria Bioquimica. Universidad Católica de Valparaiso (Chile), p. 1- 132. 1989a. DREYFUSS, M.M.; CHAPELA, I.H. Potential of fungi in the discovery of novel, lowmolecular weight pharmaceuticals. In: The Discovery of natural Products with Therapeutic Potential (V.P. Gullo, ed.): 49-80. Butterworth-Heinemann, London. 1994. DURÁN, N.; REYES, J.L; BAEZA, J & CAMPOS, V. Biomass pgotochemistry- XII: Chemical and photochemical pre-tratmente of rice hull and its fungal degradation. Biotechnol. Bieng. 32:564-568. 1987. DURAN, N.; FERRAZ, A.; MANSILA, H. Biopulping: A new view on wood delignification. Arch Biol. Tecnol. 33: 295-315. 1990. DURAND, H.; BARON, M.; CALMELS, T.; TIRABY, G. Classical and molecular genetics applied to Trichoderma reesei for the selection of improved celulolytic industrial strains. Biochemical General Cellulose Degradation, p. 135-51, 1988. ENZIMAS. Disponível em http://enzimas2000vila.bol.com.br . Acesso em junho de 2003. ERIKSSON, K.E. Swedish developments in biotechnology related to the pulp and paper industry. TAPPI 68: 46-77. 1985. ESPOSITO, Elisa & AZEVEDO, João Lúcio. Fungos: uma introdução à biologia, bioquímica e biotecnologia. Caxias do Sul: Educs, 2004. FENGEL, D. ; Wegener, G. em Wood: Chemistry, Ultrastructure, Reactions. New York: Walter de Gruyter. 1989. 613p. FERRAZ, André. Biodegradação da Madeira e suas Aplicações Tecnológicas. Disponível em www.abpm.com.br . Acesso em maio de 2003. FERRER, I. et al . Decolorization of kraft Effluent by free and Immobilized Lignin Peroxidase and Horseradish Peroxidase. Biotechnological Letters 13: 577-582.1991. GATTI, M.J. in Micologia Curso pós graduação em Biologia Parasitária do Instituto Oswaldo Cruz. Fundação Oswaldo Cruz. Rio de Janeiro.RJ. 1997. GUERRERO, Rosa Trinidad. Glossário de fungos: termos e conceitos aplicados à micologia. -2 ed. - Porto Alegre: Ed. Universidade/UFRGS, 2003. GODFREY, T. & WEST, S. (eds.). Industrial enzymology, 2nd Edition. Macmillan Press, London. 1996. HALLIWELL, N; HALLIWELL, G. Biotechnological aspects of lignicellulose and biomass degradation. Outlook Agriculture 24: 219-225. 1995. HAMMOND, P.M. Species inventory. In: Global Diversity: status of the Earth’s Living Resources (B. Groombridge, ed.) : 17-39. Chapman & Hall, London. 1992. HAMMOND, P.M. The current magnitude of biodiversity. In Global Biodiversity Assessment (V.H. Heywood, ed.): 113-138. Cambridge University Press, Cambridge, UK. 1995. HATAKKA, A. et al. Modification of Lignin by Laccase and Manganese Peroxidase. Proceedings of the 6th International Conference on Biotechnology in the Pulp and Paper Industry Advances in Applied and Fundamental Research, Austria. 1994. HAWKSWORTH, D.L. The fungal dimension of biodiversity: magnitude, significance, and conservation. Mycological Research 95: 641-655. 1991. HAWKSWORTH, D.L The magnitude of fungal diversity: the 1,5 million species estimate revisited. Mycological research 105(12): 1422-1432. 2001. HERRERA, A E. M. Thermoascus aurantiacus (CEPA BRASILEIRA: Aspecto do Crescimento, Produção Enzimática e Utilização no Tratamento de Materiais Lignocelulósicos. Dissertação de Mestrado. Campinas: Universidade de Campinas. 1991. HIGUCHI, T. Lignin Biochemistry and Biodegradation Wood Science Technology 24: 23-63. 1990. ILMÉN, M.; SALHEIMO, A.; ONNELA, M-L.; PENTIILÃ, M.E. Regulation of cellulase gene expression in the filamentous fungus Trichoderma reesei. Applied and Environmental Microbiology, v.63, n.1, p.1298-1306, Apr. 1997. KIRK, T.K. et al. Preparation and microbial decomposition of synthetic C-lignins. Proc. Natl. Acad. C-lignins. Proc. Natl. Acad. Sci. 72: 2515-2519. 1975. KIRK, T.K.;CHANG, H.M. Potential applications of biolignolytic systems. Enzyme Microb. Technol. 3: 189-196. 1981. KIRK, T. K. & FARREL, R. L. Enzimatic “combustion”. The Microbiol. Degradation of lignin. Arm. Rev. microbial. V. 41, p. 465-505, 1987. KOLLMANN, F.F.P. & COTÊ Jr. Principles of wood Science and Technology. New York. Springer-Verlag Berlin Hulberg. 1968. 592p. KURASAWA, T.; YACHI, M.; SUTO, M.; KAMAGATA, Y.; TAKAO, S.; TOMITA, F. Induction of celullase by gentiobiose and its sulfur-containing analog in Penicillium purpurogenum. Applied and Environmental Microbiology, v.58, n.1, p.106-110, Jan. 1992.WEIGEL, J. Ethanol from cellulose. Experientia, v.38, p. 151-55, 1982. LAGUNA, Jose. Bioquimica, 2ª ed., Facultad de Medicina, UNAM, Mexico D.F., Fournier S.A., 1969. LEHNINGER, Albert Lester et al. Princípios de bioquímica. 2 edição. São Paulo: SARVIER, 1995. LEPAGE, E.S. Química da Madeira. In: Manual de Preservação da Madeira. Vol. I. Publicação IPT nº 1636. S. Paulo. SP. 1986. LINKO, M.; POTANEN, K.; VIIKARI, L. New developments in the application of enzymes for biomass processing. In: M.P. Coughlan (ed.), Enzyme Systems for Lignocellulose degradation. Londres: Elsevier Applied Science, pp 331-346. 1989. LOWE, D. A . Production of enzymes. IN.: Basic Biotechnology, Edited by Colin Ratledge and Bjorn Kristiansen, Cambridge University Press. Cambridge, UK. pp 392- 408. 2001. MANDELS, M. Microbial Sources of Cellulases. Biotechnol. Bioeng. Symp. 5: 81-105. 1974. MANDELS, M. Microbial sources of cellulase. Biotechnology and Bioengineering, v.5, p.81-105, 1975. MAY, R.M. How many species? Philosophical Transactions of the Royal Society of London, B 330: 293-304. 1991. NIMZ, H. Beech lignin: Proposal of a constitutional scheme. Angew. Chem. 13(5): 313-329. 1974. OLIVEIRA, A.M. et al. Agentes destruidores da Madeira In: IPT Manual de Preservação da Madeira. Vol. I. São Paulo, p 99 – 165, 1986. OLIVEIRA, R. M, et all. Produção de enzimas Hidrolíticas Extracelulares por Fusarium em Sistema de Batelada Simples. Disponível em http://interação.unis.Edu.br . Acesso em junho de 2003. PASCOE, I.G. History of systematic mycology in Australia. In History of Systematic Botany in Australia (P.S. Short, ed.): 259-264. Australian Botany Society, South Yarra. 1990. PASCHOLATI, S.F. Fitopatógenos: arsenal enzimático. In: BERGAMIN FILHO, A.; KIMATI, H.; AMORIM, L. (Eds). Manual de Fitopatologia – Princípios e Conceitos. São Paulo: Ed. Agronômica Ceres. V.1, p. 343-64. 1995. PANDEY, A .; NIGAM, P; SOCCOl, C.R; SOCCOl, V.T.; SINGH, D; MOHAN, R. Advances in microbial amylases. Biotechnol. Appl. Biochem. 31: 131-152. 2000. PANSHIN, A.J. & ZEEUW,C.Textbook of wood technology. New York: McGraw Hill Book Company Ltd. 1980. PETTERSEN, R.C. The chemical composition of wood. In: Roger M. Rowell (ed). The Chemistry of Solid Wood. Advances in Chemistry Serie 207. Washington DC: American Chemicam Society. 1984. PITSON, S. M.; SEVIOUR, R.J.; MCDOUGALL, B.M.; STONE, B.; & SADEK, M. Purification and characterization of na extracellular (1-6)--glicanase from the filamentous fungus Acremonium persicium. Biochem. J. , Vol. 316, p. 841-846, 1996. PRESTON, R.D. The physical biology of plant cell walls. London: Chapman & Hall Ltd. 1974. PUTZKE, Jair. Os reinos dos fungos. Santa Cruz do Sul: EDUNISC, 2002. v.1 e v.2. REIS, T.A.F.C. et al. Avaliação do potencial biotecnológico de xilanases do Clostridium thermocellum e Cellvibrio mixtus : sua utilização na suplementação de dietas à base de trigo para frangos. Revista Port. De Ciências Veterinárias. 2001. RODWEL. et alli Bioquimica de Harper, 13ª ed., s.d. 1985. ROBSON, L.; CHAMBLISS, G.: Cellulases of bacterial origin. Enzyme Microb. Techn., v.11, p.626, 1989. ROGER, J.C; NAKAS, J.P. Interrelation of Xylanase Induction and Cellulase Induction of Trichoderma longibrachiatum. Appl. Environ. Microbiol. 56: 2535- 2539. 1990. SARKANEN, K.V. & LUDWING, C.H. ed. Lignins: occurrence, formation, structure and reactions. New York, Wiley – Interscience, 1971, 916p. SCOTT, D.; HAMMER, F.E; SZALKUCKI, T. IN: Bioconversions: Enzyme technology in Food Biotechnology. D. Knorr (ed.). New York: Marcel Dekker. p. 413. 1987. SIAU, J.F. Transport processes in wood. Berlin, Springer-Verlarg. 245p. (Springer Series in Wood Science). 1984. SJOSTROM, E. Wood Chemistry: fundamentals and applications. New York, Academic Press. 223p. 1981. SILVEIRA, F.Q.P. Purificação e caracterização de uma xilananse termoestável de Trichoderma harzianum. Brasília: UNB, 1997. Dissertação, Universidade Nacional de Brasília, 1997. SILVEIRA, Verlande Duarte. Micologia. 4 ed. Rio de Janeiro: ed. Interamericana, 1981. SMITH, D.; WALLER, J.M. Cultuire collevtions of microrganisms: tehir importance in tropical plant pathology. Fitopatologia Brasileira 17: 1-8. 1992. TAN, L. U. L. et al Purificación and Characterization of a Thermostable Xylanase from a Thermophilic Fungus Thermoascus aurantiacus. Canadian Journal Microbiology 33:689-694.1987. TANAKA, A .;TOSA, T.; KOBAYASHI, T (eds.). Industrial Applications of Immobilized Enzymes. Marcel Dekker, New York. 1993. TIMELL, T.E. Wood hemicelluloses. Part II. Adv.Carb. Chem. Biochem. 20: 409-469. 1964. THIEMANN, J.E.; XAVIER, M.S.S.P.; COLEN, G.; GUIA, M.M. Produção de celulases e hidrólise enzimática de resíduos celulolíticos. In: FERMENTAÇÕES INDUSTRIAIS E TRANSFORMAÇÕES MICROBIANAS NO SOLO. Sociedade Brasileira de Microbiologia. p. 168-85. 1980. TODA,S.; SUZUKI,H.; NISIZAWA, K. Some Ezymatic Properties and the Substrate Specifications of Trichoderma cellulases with special reference to their activity towards xylan. J. Ferment. Technol. 49: 499-521. 1971. TRABULSI, L.R. Microbiologia. 2a ed. Editora Atheneu. São Paulo. SP. 1998. UHLIG, H. Industrial Enzymes and Their Applications. New York: John Wiley & Sons, Inc. p454. 1998. VAN DER HEIJDEN, M.G.A. et al. Mycorrhizal fungal diversity determines planr biodiversity, ecosystem variability and productivity. Nature 396: 69-72. 1998). VANDEVIVERE, P.; VERSTRAETE, W. Environmental applications. IN: Basic Biotechnology, eds Colin Ratledge e Bjorn Kristiansen, Cambrige University Press, 531 – 557 pp Cambridge, United Kingdom. 2001. VIIKARI, L. et al. Charactrization of pulps treated with hemicellulolitic enzymes prior to bleaching. Biotech. In: Pulp and Paper Manufacture. Applications and productivity. Nature. 1990. WAINWRIGHT,M. Novel uses for fungi in biotechnology. Chemistry & Industry: 31 – 34. 1990. WENZEL, H.F.J. The Chemical Technology of Wood. New York: Academic Press. 1970. WILCOX, W.W. Changes in wood microstructure through pregressive stages of decay. USDA Forest Service. Research Paper FPL 70. 1968. 72p. WHISTLER, R.L. & RICHARDDS, E.L.Hemicelluloses. In: W. Pigman; D. Horton. The Carbohydrates and Biochemistry. New York: Wiley-Interscience Publication, 1970. WONG, K.K.Y.; SADDLER, J.N. In: M.P. Coughlan & G.P. Hazlewood (eds.) Hemicellulose & Hemicellulases. Page 127-139. London: Portand Press. 1993. WONG, K.K.Y.; TAN, L.V.L.; SADDLER, J.N . Multiplicity of -1,4-xylanase in microorganisms: Functions and Applications. Microbial Rev. 52:305-317. 1988. WOOD, T.M. Properties of cellulolytic enzyme systems. In: GOUCHLAM, M.P. (Ed) Cellulose: production, properties and application. Meeting Galway: Society Hast Colloquium. 611p. 1985. WOODWARD, J.; WISEMAN, A . Fgal and Other -glucosidases: their Properties and Applications. Enzyme Microbiol. Technol. 4: 73-79. 1982.pt_BR
dc.subject.cnpqEnzimologiapt_BR
dc.publisher.initialsUEApt_BR
Aparece nas coleções:DISSERTAÇÃO - MBT Programa de Pós-Graduação em Biotecnologia e Recursos Naturais da Amazônia



Este item está licenciada sob uma Licença Creative Commons Creative Commons