DSpace logo

Use este identificador para citar ou linkar para este item: http://repositorioinstitucional.uea.edu.br//handle/riuea/2232
Registro completo de metadados
Campo DCValorIdioma
dc.contributor.authorFernandes, Rubens de Andrade-
dc.date.available2020-03-09-
dc.date.available2020-03-11T14:57:02Z-
dc.date.issued2019-12-17-
dc.identifier.urihttp://repositorioinstitucional.uea.edu.br//handle/riuea/2232-
dc.description.abstractIn the present work, it has developed algorithms for embedded software and hardware devices, associated with microcontrolled and microprocessor platforms, with the purpose of achieving smart building convergence in lighting and energy metering systems without automation, communication and control features. To do so, the approach described in the SmartLVGrid framework is used, a model that uses the retrofit strategy for convergence in intelligent low voltageelectricpowerdistributionnetworks.Thisframeworkwillbeadaptedtoperformbuilding automation at the Embedded Systems Laboratory of the HUB research and development center, associated with the Escola Superior de Tecnologia of the Universidade do Estado do Amazonas. The obtained results indicate the possibility of the smart building convergence without total removal or disposal of the lighting and energy metering systems on site through the retrofit technique, resulting in low implementation costs and fast process of technological transition. ThelightingcontroldeviceswerebasedontheDC-DCconverterBuckLowSideassociatedwith a microcontroller with built-in wireless communication peripherals, allowing the device to be remotely controlled. The energy measuring device has circuits for measuring, conditioning and protecting the system. It also has a microprocessor platform with Linux operational system and integratedcommunicationperipherals.Withtheresults,discussionsandconclusionsofthiswork, it is expected to contribute to a robust and easy implementation method, capable of achieving smart building convergence, with the increase of energy efficiency.pt_BR
dc.languageporpt_BR
dc.publisherUniversidade do Estado do Amazonaspt_BR
dc.rightsAcesso Abertopt_BR
dc.rightsAtribuição-NãoComercial-SemDerivados 3.0 Brasil*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/br/*
dc.subjectSistemas Embarcadospt_BR
dc.subjectSmart Gridspt_BR
dc.subjectSmart Buildingspt_BR
dc.subjectSmart Circuitspt_BR
dc.subjectEmbedded Systemspt_BR
dc.titleDesenvolvimento de plataformas embarcadas aplicadas a implementação de smart buildings com base no framework SmartLVGridpt_BR
dc.title.alternativeDevelopment of embedded platforms applied to the implementation of smart buildings based on the SmartLVGrid frameworkpt_BR
dc.typeTrabalho de Conclusão de Cursopt_BR
dc.date.accessioned2020-03-11T14:57:02Z-
dc.creator.ID2548499974014028pt_BR
dc.contributor.advisor1Gomes, Raimundo Cláudio Souza-
dc.contributor.advisor1ID4244097441063312pt_BR
dc.contributor.advisor1Latteshttp://lattes.cnpq.br/4244097441063312pt_BR
dc.contributor.referee1Gondres Torné, Israel-
dc.contributor.referee1ID1869557808967575pt_BR
dc.contributor.referee1Latteshttp://lattes.cnpq.br/1869557808967575pt_BR
dc.contributor.referee2Oliveira, Jozias Parente de-
dc.creator.Latteshttp://lattes.cnpq.br/2548499974014028pt_BR
dc.description.resumoNo presente trabalho, foram desenvolvidos algorítimos para software embarcado e dispositivos de hardware, associados a plataformas microcontroladas e microprocessadas, com o objetivo de realizar a convergência smart building em sistemas de iluminação e medição de energia elétrica sem recursos de automação, comunicação e controle. Para tanto, é utilizada a abordagem descrita no framework SmartLVGrid, um modelo que utiliza a estratégia de retrofit para convergência em redes elétricas inteligentes de distribuição de energia elétrica em baixa tensão. Este framework será adaptado para realizar automação predial no Laboratório de Sistemas Embarcados do centro de pesquisa e desenvolvimento HUB, associado a Escola Superior de Tecnologia da Universidade do Estado do Amazonas. Os resultados obtidos indicam a possibilidade da convergência smart building sem remoção ou descarte total dos sistemas de iluminação e medição de energia no local através da técnica de retrofit, implicando em baixos custos de implementação e em rápido processo de transição tecnológica. Os dispositivos de controle de iluminação foram baseados no conversor DC-DC Buck Low Side associado a um microcontrolador com periféricos de comunicação wireless embutido, permitindo que o dispositivo possa ser controlado de forma remota. O dispositivo de medição de energia conta com circuitos para medição, condicionamento e proteção do sistema. Além de possuir uma plataforma microprocessada com sistema operacional Linux e com periféricos de comunicação integrados. Com os resultados, discussões e conclusões deste trabalho, espera-se contribuir para um método robusto e de fácil implementação, capaz de realizar a convergência smart building, com o incremento da eficiência energética.pt_BR
dc.publisher.countryBrasilpt_BR
dc.relation.referencesACLARA. I-210+ and I-210+c. 2019. Disponível em: <https://www.aclara.com/ products-and-services/smart-meters/ansi-residential/i-210-and-i-210c/>. ALBINI, L. C. P. Redes de computadores. 2015. ALEXANDER, C. K.; SADIKU, M. N. Fundamentos de circuitos elétricos. [S.l.]: AMGH Editora, 2013. ATZORI, L.; IERA, A.; MORABITO, G. The internet of things: A survey. Computer networks, Elsevier, v. 54, n. 15, p. 2787–2805, 2010. AZAZI, H. et al. Review of passive and active circuits for power factor correction in single phase, low power ac-dc converters. In: Proceedings of the 14th International Middle East Power Systems Conference (MEPCON’10). [S.l.: s.n.], 2010. p. 217. BARROS, E.; CAVALCANTE, S. Introdução aos sistemas embarcados. Artigo apresentado na Universidade Federal de Pernambuco-UFPE, p. 36, 2010. BERG, J. Wi-fi peer-to-peer on linux. In: Linux Plumbers Conference 2010. [S.l.: s.n.], 2010. BINGHAM, R. P. Sags and swells. Manager of Technology and Products Dranetz-BMI 1994, Original Draft September 1994 Revised February 16, 1998, New Durham Road Edison, NJ 08818-4019 USA, 1998. BOYLESTAD, R. L. Introductory circuit analysis. [S.l.]: Pearson Education, 2013. BRAY, T. The javascript object notation (json) data interchange format. 2014. CAFFREY, R. J. The intelligent building: an ASHRAE opportunity. [S.l.]: ASHRAE, 1988. CHAPMAN, S. J. Fundamentos de máquinas elétricas. [S.l.]: AMGH Editora, 2013. CHASE, O.; ALMEIDA, F. Sistemas embarcados. Mídia Eletrônica. Página na internet:< www. sbajovem. org/chase>, capturado em, v. 10, n. 11, p. 13, 2007. CHRISTIANSSON, P. Knowledge representations and information flow in the intelligent building. In: Proceedings of he Eighth International Conference on Computing in Civil and Building Engineering. ICCCBE-VIII 2000 (eds: Fruchter R, Pena-Mora F, Roddis K). [S.l.: s.n.], 2000. p. 14–17. CROW, B. P. et al. Ieee 802.11 wireless local area networks. IEEE Communications magazine, IEEE, v. 35, n. 9, p. 116–126, 1997. CUNHA, A. F. O que são sistemas embarcados. Saber Eletrônica, v. 43, n. 414, p. 1–6, 2007. DEVICES, A. ADE9000 Technical Reference Manual. 2017. DEVICES, A. Datasheet ADE9000. 2017. ELGIN. Catálogo: Iluminação. 2019. ESPRESSIF. Datasheet ESP32 V1.0. 2017. 109 EUROPEANCOMISSION. Smart Building: Energy efficiency application. 2017. Disponível em: <https://ec.europa.eu/growth/tools-databases/dem/monitor/sites/default/files/DTM_Smart% 20building%20-%20energy%20efficiency%20v1.pdf>. FAIRCHILD. Datasheet FQP12N60. 2000. FAIRCHILD. Applications of zero voltage crossing optically isolated triac drivers. AN-3004, FAIRCHILD Inc, 2002. FAIRCHILD. Datasheet 1N4007. 2003. FAIRCHILD. Datasheet MOC63. 2005. FARHANGI, H. The path of the smart grid. In: IEEE power and energy magazine. [S.l.: s.n.], 2010. v. 8, p. 18–28. FENG, Z.; LUO, Y.; HAN, Y. Design of led freeform optical system for road lighting with high luminance/illuminance ratio. Optics express, Optical Society of America, v. 18, n. 21, p. 22020–22031, 2010. FERNANDES, R.; GUIMARÃES, W. Implementation of a buck converter with hysteresis voltage control applied to led chip array package for street lighting. In: IEEE. 2018 Argentine Conference on Automatic Control (AADECA). [S.l.], 2018. p. 1–6. FERNANDES, R. de A. GitHub. 2019. Disponível em: <https://github.com/rdafr>. FRANCO, E. Qualidade de energia–causas, efeitos e soluções. Engecomp tecnologia em automaçao e controle LTDA, 2005. GOMES, R. C. S. et al. Smartlvgrid platform—convergence of legacy low-voltage circuits toward the smart grid paradigm. Energies, Multidisciplinary Digital Publishing Institute, v. 12, n. 13, p. 2590, 2019. GOMES, R. C. S. et al. Automation meta-system applied to smart grid convergence of low voltage distribution legacy grids. In: IEEE. 2017 IEEE International Conference on Smart Energy Grid Engineering (SEGE). [S.l.], 2017. p. 400–413. HEISELBERG, P.; CHRISTIANSSON, P.; REINHOLD, C. Intelligent buildings/smart homes. Smart Wireless Living, 2007. HEYDT, G. T.; AYYANAR, R.; THALLAM, R. Power acceptability. IEEE Power Engineering Review, v. 21, n. 9, p. 12–15, 2001. HOY, M. B. Smart buildings: an introduction to the library of the future. Medical reference services quarterly, Taylor & Francis, v. 35, n. 3, p. 326–331, 2016. HU,C.etal.stube+:aniotcommunicationsharingarchitectureforsmartafter-salesmaintenance in buildings. ACM Transactions on Sensor Networks (TOSN), ACM, v. 14, n. 3-4, p. 29, 2018. HUMFREY, N. Arduino Library List. 2019. Disponível em: <https://www.arduinolibraries.info/ >. JÚNIOR, C. et al. Um medidor de energia elétrica integrado em redes de comunicações. [sn], 2014. 110 KADAH, A. S. Solid state/electromechanical hybrid relay. [S.l.]: Google Patents, 1997. US Patent 5,699,218. LABS, S. Datasheet Si8660/61/62/63. 2019. LEGER, A. S. et al. Load management system for tactical microgrids using solid state relays. In: IEEE. 2017 North American Power Symposium (NAPS). [S.l.], 2017. p. 1–6. LIU, Z.; LEE, H. A synchronous led driver with dynamic level-shifting and simultaneous peak & valley current sensing for high-brightness lighting applications. In: IEEE. 2013 IEEE 56th International Midwest Symposium on Circuits and Systems (MWSCAS). [S.l.], 2013. p. 125–128. MAIER, A.; SHARP, A.; VAGAPOV, Y. Comparative analysis and practical implementation of theesp32microcontrollermodulefortheinternetofthings.In:IEEE.2017InternetTechnologies and Applications (ITA). [S.l.], 2017. p. 143–148. MAXIM. Datasheet MAX1555. 2003. MERCIADRI, L. The angström manual. 2010. MIRITZ, L. A. D. Programação de sistemas embarcados usando microcontroladores: um estudo de caso. 2016. MORI, Y. et al. A novel pfc buck chopper for single-phase with single switching device. In: IEEE. 2009 International Conference on Electrical Machines and Systems. [S.l.], 2009. p. 1–6. MOUSER. Analog Devices Inc. ADE9000 AFEs. 2019. Disponível em: <https: //br.mouser.com/new/Analog-Devices/adi-ade9000-afe/>. NAYYAR, A. An encyclopedia coverage of compiler’s, programmer’s & simulator’s for 8051, pic, avr, arm, arduino embedded technologies. International Journal of Reconfigurable and Embedded Systems, IAES Institute of Advanced Engineering and Science, v. 5, n. 1, 2016. PEREIRA, D. d. C. et al. Comparative analysis of basic single-stage non-isolated ac-dc topologiesemployedashigh-currentcobleddrivers.In:IEEE.2017BrazilianPowerElectronics Conference (COBEP). [S.l.], 2017. p. 1–6. PEREIRA, F. Microcontroladores PIC: programação em C. [S.l.]: Saraiva Educação SA, 2007. PRUDENZI, A.; FIORAVANTI, A.; CIANCETTA, F. Smart distributed energy monitoring for industrial applications. In: IEEE. 2019 II Workshop on Metrology for Industry 4.0 and IoT (MetroInd4. 0&IoT). [S.l.], 2019. p. 274–278. PRUDENZI, A. et al. Distributed power quality monitoring in customer’s electrical distribution system. In: IEEE. 2019 IEEE International Conference on Environment and Electrical Engineering and 2019 IEEE Industrial and Commercial Power Systems Europe (EEEIC/I&CPS Europe). [S.l.], 2019. p. 1–5. PYPI. The Python Package Index. 2019. Disponível em: <https://pypi.org/>. R.MICELI; FAVUZZA, S.; GENDUSO, F. A perspective on the future of distribution: Smart grids, state of the art, benefits and research plans. Energy and Power Engineering, p. 36–42, 2013. 111 SAMIMI, M. H. et al. A review on the rogowski coil principles and applications. measurements, v. 4, p. 5, 2013. SEAN, E.; VIC, S. The 230v cbema curve—preliminary studies [c]. In: Proceedings of Universities Power Engineering Conference (AUPEC). Christchurch: IEEE. [S.l.: s.n.], 2010. p. 1–6. SEMICONDUCTOR, O. Power factor correction handbook. HBD853/D, Rev, v. 3, 2007. SEMICONDUCTOR, O. Datasheet FL7701. 2013. SEMICONDUCTOR, O. Aplication Notes, “AN-9744- Smart LED Lamp Driver IC with PFC Function”. 2014. SEMICONDUCTOR, O. Accurate shunt resistor connections for optimum performance with the on semiconductor ncs21xr current sense amplifiers (csa’s). DN05117/D, Rev, v. 2, 2019. SHAHNIA, F.; WOLFS, P. J.; GHOSH, A. Voltage unbalance reduction in low voltage feeders by dynamic switching of residential customers among three phases. IEEE Transactions on Smart Grid, IEEE, v. 5, n. 3, p. 1318–1327, 2014. SHARON, Y.; KHACHATRYAN, B.; CHESKIS, D. Towards a low current hall effect sensor. Sensors and Actuators A: Physical, Elsevier, v. 279, p. 278–283, 2018. SILVA, P. T. P. d. R. et al. Utilização de medidores eletrônicos de energia na supervisão e controle do fator de potência. Dissertação (B.S. thesis) — Universidade Tecnológica Federal do Paraná, 2012. SINGH, M. et al. Secure mqtt for internet of things (iot). In: IEEE. 2015 Fifth International Conference on Communication Systems and Network Technologies. [S.l.], 2015. p. 746–751. SINHA, A. et al. Design of an energy efficient iot enabled smart system based on dali network over mqtt protocol. In: IEEE. 2017 3rd International Conference on Computational Intelligence & Communication Technology (CICT). [S.l.], 2017. p. 1–5. ST. Datasheet M41T0M6. 2004. ST. Rc snubber circuit design for triacs. AN437, ST Microelectronics Inc, 2007. STMICROELECTRONICS. Datasheet BTA24. 2007. TANENBAUM, A. S. et al. Computer networks, 4-th edition. ed: Prentice Hall, 2003. TORADEX. Datasheet Colibri iMX6ULL. 2019. TORADEX. NXP i.MX 6ULL Computador em módulos - Colibri iMX6ULL. 2019. Disponível em: <https://www.toradex.com/pt-br/computer-on-modules/colibri-arm-family/nxp-imx6ull>. TOTONCHI, A. T. Smart buildings based on internet of things: A systematic review. VISHAY. Datasheet UF4007. 2018. WILLIAM, M. A.; EUGENE, G. E. Electric illumination devices. [S.l.]: Google Patents, 1968. US Patent 3,395,476. 112 XIANGRONG, L.; DIANGUO, X.; XIANGJUN, Z. Low cost electronic ballast with buck converter as pfc stage. In: IEEE. 2006 CES/IEEE 5th International Power Electronics and Motion Control Conference. [S.l.], 2006. v. 1, p. 1–5. YU-ZHEN, X. et al. Inductor optimize design for bcm buck-pfc in led driver. In: IEEE. 2011 International Conference on Electric Information and Control Engineering. [S.l.], 2011. p. 2264–2267. ZHANG, J. et al. Reliability analysis of high-power led streetlight. In: IEEE. 2012 9th International Conference on Fuzzy Systems and Knowledge Discovery. [S.l.], 2012. p. 2755–2758.pt_BR
dc.subject.cnpqMedição, Controle, Correção e Proteção de Sistemas Elétricos de Potênciapt_BR
dc.publisher.initialsUEApt_BR
Aparece nas coleções:EST - Trabalho de Conclusão de Curso Graduação



Este item está licenciada sob uma Licença Creative Commons Creative Commons